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Background. Herein, we tried to develop a prognostic predictionmodel for patients with LUAD based on the expression profiles of lipid
metabolism-related genes (LMRGs). Methods. Molecular subtypes were identified by non-negative matrix factorization (NMF)
clustering.4e overall survival (OS) predictive gene signature was developed and validated internally and externally based on online data
sets. Time-dependent receiver operating characteristic (ROC) curve, Kaplan–Meier curve, nomogram, restricted mean survival time
(EMST), and decision curve analysis (DCA) were used to assess the performance of the gene signature. Results. We identified three
molecular subtypes in LUADwith distinct characteristics on immune cells infiltration and clinical outcomes. Moreover, we confirmed a
seven-gene signature as an independent prognostic factor for patients with LUAD. Calibration and DCA analysis plots indicated the
excellent predictive performance of the prognostic nomogram constructed based on the gene signature. In addition, the nomogram
showed higher robustness and clinical usability compared with four previously reported prognostic gene signatures. Conclusions.
Findings in the present study shed new light on the characteristics of lipid metabolism within LUAD, and the established seven-gene
signature can be utilized as a new prognostic marker for predicting survival in patients with LUAD.

1. Introduction

Globally, lung cancer is the leading cause of cancer death
worldwide with a five-year survival rate of advanced-stage
patients less than 5% [1, 2]. As the major histological subtype
of lung cancer (approx. 85% cases), lung adenocarcinoma
(LUAD) results in the death of most patients from local
recurrence or distant metastasis [2]. 4e prognosis of ad-
vanced LUAD is still not satisfactory, and treatment options
are limited [3]. In order to anticipate the natural history of
the disease in individual patients, it is mandatory that the
nature of LUAD in each patient should be clearly under-
stood since only individually tailored molecular profiles and

markers could spare the patients from undergoing a po-
tentially more harmful, aggressive chemical therapy or even
leave them untreated. 4erefore, there is an increasing in-
terest in the molecular characterization of LUAD allowing
prognosticate overall patient survival.

4e interaction of tumor cells and lipid metabolism is
supposed to play an important role in LUAD progression
[4, 5]. Although metabolism reprogramming was presumed
to be one of the hallmarks of tumorigenesis, molecular
characteristics of lipid metabolic disorder within the tumor
microenvironment are incompletely understood. Almost
nothing is known about the precise role and underlying
mechanism of lipid metabolism-related genes (LMRGs) and
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their gene expression profiles in primary resected LUAD,
not yet anything known related to the prognostic distinc-
tions of LUAD.

4e current study aimed at the discovery of a new
prognostic signature in patients with LUAD using Cox and
the least absolute shrinkage and selection operator (LASSO)
regression models to analyze the expression profile of
LMRGs using 4e Cancer Genome Atlas (TCGA) LUAD
data set. Based on LMRG expression data from public da-
tabases in TCGA, we constructed molecular subtypes with
distinct different immune characteristics and clinical out-
comes. 4en, we developed a seven-LMRG signature for
assessing the prognosis of patients with LUAD and further
validated it in TCGA, GSE31210, and GSE50081 data sets.
4is signature was tightly associated with patients’ outcomes
and could serve as an independent pathological factor.

2. Methods and Materials

2.1. Patients and Data Sets. 4e RNA-seq data and clinical
information of 594 LUAD samples were downloaded from
the TCGA database (http://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/TCGA).
TCGA LUAD data set was preprocessed with the criteria as
follows: (1) excluded samples without clinical data and
OS < 30 days; (2) excluded data of normal esophagus
tissue sample; (3) excluded genes with FPKM � 0 in 50%
of samples; and (4) included the expression profile of
genes related to lipid metabolism. Finally, 490 samples
from TCGA LUAD data set were enrolled for subsequent
analysis. Two data sets, which contains gene expression
profiles of LUAD samples in the GEO database, GSE31210
(contains 226 LUAD samples) and GSE50081 (contains
129 LUAD samples), were downloaded from NCBI
(http://www.ncbi.nlm.nih.gov/geo/). Both data sets were
preprocessed with the criteria as follows: (1) excluded
normal tissue sample data; (2) converted OS data from
year or month to days; (3) transformed gene probes to the
human gene SYMBOL using the bioconductor package of
R, those matched to multiple genes were removed, and if
multiple probes were matched one gene, the median was
selected as the expression profile of this gene; and (4)
microarray data was normalized from Affymetrix plat-
form by using robust multiarray average method [6]. 4e
clinicopathological characteristics of patients from these
three data sets after preprocessing are summarized in
Table 1.

For the TCGA LUAD data set, 90% of them was ran-
domly divided into training cohorts (n� 441), and the entire
data set was selected as a validation cohort. GSE31210 and
GSE50081 data sets were used as external validation cohorts.
For real-time quantitative PCR (RT-qPCR) and immuno-
chemistry (IHC) analysis, 10 NSCLC patients undergoing
resection were enrolled in this study from the biobank of
FUSCC. Surgically excised tumors used for qRT-PCR were
immediately immersed in liquid nitrogen and stored at
−80°C. At the same time, formalin-fixed paraffin-embedded
(FFPE) tissues were also obtained from the same patient’s
tissues for IHC.

4is study was approved by the Institutional Review
Boards of Fudan University Shanghai Cancer Center
(FUSCC).

2.2. Identification of Molecular Subtypes Based on Lipid
Metabolic Genes. A total of 776 genes related to lipid
metabolism from six lipid metabolism-related gene sets
(Supplementary Table 1) were collected from the Molecular
Signature Database v7.0 (MSigDB). Among them, 3 genes
were not offered in the TCGA LUAD data set, and 30 genes
with FPKM� 0 in more than half of the samples were also
excluded. Finally, 743 genes were enrolled for subsequent
analysis. Prognostic genes were detected by univariate Cox
regression survival analysis using the R package survival
coxph function, and log rank P< 0.05 was selected as the
threshold. 4e molecular subtypes were identified based on
these prognostic genes using the non-negative matrix fac-
torization (NMF) method, and the optimal number of
subtypes were determined according to indicators including
cophenetic correlation, residual sum of squares (RSS), dis-
persion, and silhouette. Cophenetic correlation range be-
tween 0 and 1, it positively reflect the stability of the cluster
obtained from NMF [7]. 4e silhouette coefficient can be
used to select the appropriate number of clusters. According
to the line chart, the point with the largest coefficient change
range can be found intuitively, and the point with the largest
distortion range reflects the best number of clusters [8]. A
residual sum of squares (RSS) is a statistical technique used
to measure the amount of variance in a data set that is not
explained by a regression model [9]. 4us, the RSS value
negatively reflects the clustering performance of the model.

2.3. Analysis of Gene Expression Profile and Immune Score
among Molecular Subtypes. DESeq2 was used to calculate
differentially expressed genes (DEGs) among each cluster
(FDR <0.05 and |log2FC|> 1). Weighted gene correlation
network analysis (WGCNA) coexpression algorithm was used
for detecting coexpressed genes and modules by the R package
WGCNA [10]. To improve the accuracy of network con-
struction, the transcripts per kilobase of exon model per
million mapped reads (TPM) profile of genes were extracted
from the TCGA LUAD data sets, and hierarchical cluster
analysis was performed on the 490 samples first to remove the
outlier samples. Second, the distance between each gene was
calculated using the Pearson correlation coefficient; a weighted
coexpression network was constructed using the R package
WGCNA; and coexpression modules were screened by setting
the soft threshold power β as 7. 4ird, the topology overlap
matrix (TOM)was then constructed from the adjacencymatrix
to avoid the influence of noise and spurious associations. On
the basis of TOM, average-linkage hierarchical clustering using
the dynamic shear tree method was subsequently conducted to
define coexpression modules, and the minimum gene size of
each module was set as 30. 4e feature vector values (eigen-
genes) of each module were calculated in turn to explore the
relationship among modules, and then modules with highly
correlated eigengenes were merged into a new module by
performing cluster analysis with the following threshold:
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height� 0.25, DeepSplit� 2, andminModuleSize� 30. In order
to identify themodules of interest, the correlation between each
coexpression module and patients’ clinical features as well as
cluster subtypes was further evaluated. Modules with signifi-
cant correlation with the lipid-metabolism subtypes of LUAD
patients were defined as key modules for the subsequent se-
lection of hub genes (Spearman correlation coefficient >0.4;
P< 0.05).

Tumor immune estimation resource (TIMER) tool [11]
was used to compare the enumeration of six tumor-infil-
tration immune cell types (including B cell, CD4+T cell,
CD8+T cell, neutrophil, macrophage, and dendritic cell) of
each LUAD sample in the tumor microenvironment (Sup-
plementary Table 2). Next, the difference on the Immune-
Score and StromalScore, which represent the relative
proportion of immune cells and stromal cells in tumor tissues,
among each molecular subtype was calculated by using the R
package Estimation of STromal and Immune cells in MA-
lignant Tumours using Expression data (ESTIMATE) [12].
4e ESTIMATEScore, which refers to the purity of tumor
tissues, is the sum of ImmuneScore and StromalScore.

2.4. Construction of Lipid Metabolism-Related Prognostic
Gene Signature. Coexpression genes in the training set were
detected by univariate Cox regression survival analysis, and

log rank P< 0.01 was selected as the threshold. To narrow the
gene range and maximize the accuracy, Least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis [13], a method screening signatures with generally
effective prognostication performance by performing au-
tomatic feature selection, was performed by using the glmnet
package of R to identify the prognostic gene. And optimal
genes were evaluated by tenfold cross-validation.

Multivariate Cox regression survival analysis was per-
formed to construct the prognostic risk model. 4e risk
score for each patient of the training set was calculated with
the linear combinational of the signature gene expression
weighted by their regression coefficients. Risk
score� (exprgene1 × coefficientgene1) + (exprgene2 × coef-
ficientgene2) + . . .+ (exprgenen × coefficientgenen). Receiver
operating characteristics (ROC) curves, carried out by using
the R package timeROC, were used to analyze the risk score
of each sample, and samples were set as a high- or low-risk
group by setting the threshold as 0.

2.5. Bioinformatic Analysis. Pathway enrichment analysis of
differentially coexpressed genes was performed through the
R package WebGestaltR (the threshold FDR <0.05). Single-
sample gene set enrichment analysis (ssGSEA) was applied
for identifying the relationship between the risk scores of

Table 1: Clinical and pathologic characteristics of patients in the preprocessed TCGA and GEO LUAD data sets.

Characteristic TCGA data set (n� 490) Training set (n� 441) GSE31210 data set (n� 226) GSE50081 data set (n� 129)

Age (years) <65 213 192 164 42
≥65 267 241 62 87

Survival state Alive 312 178 191 76
Dead 280 161 35 53

Gender Female 262 238 121 62
Male 238 203 105 67

T stage

T1 163 146 — 44
T2 263 243 — 83
T3 42 37 — 2
T4 18 13 — —

N stage
N0 317 290 — 129
N1 92 80 — —
N2 68 40 — —

M stage
M0 324 289 — —
M1 24 22 — —
MX 138 126 — —

Tumor stage

Stage I 263 242 168 93
Stage II 115 105 58 36
Stage III 79 65 — —
Stage IV 25 22 — —

TP53 mutation Present 253 233 — —
Absent 237 237 — —

KRAS mutation Present 140 126 — —
Absent 350 315 — —

RP1L1 mutation Present 97 89 — —
Absent 393 352 — —

Smoking history

1 year 68 62 — —
2 years 116 104 — —
3 years 126 112 — —
4 years 162 156 — —
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different samples and biological functions using the R
package GSVA. 4e classical gene sets of Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways
(c2.cp.kegg.v7.0.symbols) were considered to decipher the
phenotype. For each analytical pathway, the enrichment
score (ES) and the significance of ES were calculated, and the
normalized enrichment score (NES) and false discovery rate
(FDR) were further calculated to examine functional en-
richment results. An FDR cutoff value of 0.05 was consid-
ered in this test.

2.6. Statistical Analysis. Kaplan–Meier curves were applied
to assess the difference in OS between different groups.
Multivariate Cox regression analyses were performed to
assess the independent prognostic factors. Decision curve
analysis (DCA), which can evaluate predictive models from
the perspective of clinical consequences [14], was performed
in the entire cohort to test the clinical usefulness of the
nomogram in comparison with the gene signature and
clinicopathological parameters. All statistical analyses were
using R 3.6.0 (https://mirrors.tuna.tsinghua.edu.cn/CRAN/)
with default software parameters. P value <0.05 was con-
sidered significant statistically.

Immunohistochemistry Analysis. Formalin-fixed and paraf-
fin-embedded specimens were cut into 5mm thick sections
and mounted on glass slides. IHC was carried out as pre-
viously reported [15]. CD4 antibody and CD8 antibody were
purchased from Abcam. DAB reagent was purchased from
Fansbio (Guangzhou, China).

2.7. RT-PCR. Total RNA was harvested from LUAD tissue
using Trizol and reverse-transcribed into cDNA using Pri-
meScript RT reagent kit (with gDNA Eraser) (Takara). 4e
cDNA was amplified using the SYBR qPCR Master Mix
(Takara) on a real-time PCR system (LightCycler480).
Primer sequences are shown in Table 2. All primers were
synthesized by Sangon Biotech Co. Ltd. (Shanghai). RT-PCR
was carried out as previously reported [15].

3. Result

3.1. Identification of Molecular Subtypes in LUAD. By uni-
variate Cox regression survival analysis, 126 lipid meta-
bolism-related genes were identified correlated with the
overall survival (OS) of patients with LUAD in the TCGA
data set (Supplementary Table 3). 4en, by using non-neg-
ative matrix factorization (NMF) method, three molecular
subtypes (Cluster 1 (n� 82), Cluster 2 (n� 182), and cluster 3
(n� 226)) were constructed based on these prognostic genes
(Figure 1(a); Supplementary Figure 1(a)). Gene expression
profile and the distribution of clinicopathological parameters
in each subtype were shown in Figure 1(b). We further
analyzed the relationship between the molecular subtype and
clinicopathological features of LUAD patients. It was ob-
served that most of the patients at the M1 stage were divided
into Cluster 1, which had worse survival. 4e Cluster 2 with
the best outcomes inversely showed a trend of younger age

and early TNM stage and exhibited wild TP53 and RP1L1
status (Supplementary Figure 1(b)). In addition, the differ-
ences in immune characteristics among the three subtypes
were analyzed. Cluster 1 showed the lowest proportions of
B cell, CD4+T cell, CD8+T cell, neutrophil, macrophage, and
dendritic cell (DC) than the other two subtypes (Supple-
mentary Figure 1(c)). 4e calculated ImmuneScore, Stro-
malScore, and ESTIMATEScore were also remarkably lower
in Cluster 1, which represented less immune and stromal cell
components in tumor microenvironment (TME) and lower
tumor priority for the samples in the other two subtypes
(Supplementary Figure 1(d)); in contrast, Cluster 2 showed
the highest ImmuneScore, which suggests that patients in
Clusters 1 and 2 have distinct immune and stroma charac-
teristics. Furthermore, Kaplan–Meier method with log-rank
tests was applied to explore the difference in prognosis among
the three molecular subtypes in LUAD. Although it seems
that patients in Cluster 1 confer the worst OS (Figure 1(c)),
there was no significant difference between Clusters 1 and 3
(Figure 1(d)). However, compared with Cluster 1 (P< 0.001)
and Cluster 2 (P � 0.002), patients in Cluster 2 showed the
longest OS time (Figure 1(d)).

3.2. WGCNA Coexpression Analysis. Genes differentially
expressed among each molecular subtype were calculated.
4ere are 1,287 differentially expressed genes (DEGs; 591
up-regulated and 696 down-regulated; Figures 2(a)) in
Cluster 1 compared with the other 2 subtypes, 1,855 DEGs
(1,107 up-regulated and 748 down-regulated; Figures 2(a))
between Cluster 2 and other two subtypes, and 1,748 DEGs
(854 up-regulated and 894 down-regulated; Figures 2(a))
between Cluster 3 and other two subtypes. By hierarchical
clustering the expression profiles of the prognostic gene, we
found no samples with outliers in the TCGA LUAD data sets
(Supplementary Figure 2(a)). To ensure that the coex-
pression network constructed by WGCNA is scale-free, we
set the soft threshold as 7 (Supplementary Figures 2(b)–
2(c)). Based on the expression of LMRGs in the TCGA

Table 2: RT-qPCR primer of seven genes.

Genes Primer

CHRDL1 F 5′- AGAGTGGGTGAGAGATGGCA-3′
R 5′-GGTAAGGAGTCTTCTGGGCA-3′

GAPDH F 5′- GTCTCCTCTGACTTCAACAGCG-3′
R 5′-ACCACCCTGTTGCTGTAGCCAA-3′

GNPNAT1 F 5′- CACTGGTGGGGGAGAGTC-3′
R 5′- CATTTTTCTAGTAAGGTCCGTAGAG-3′

HTATIP2 F 5′- AGGGAAGGTGGGATGCTCT-3′
R 5′- TGTTTCGGCCATGCTGGG-3′

MFI2 F 5′- GACAACACAAACGGCCACAA-3′
R 5′- TGTGGTCGTCTCCAAACAGG-3′

PKP2 F 5′- CTGAAGCTCGGAAGAGGGTTA-3′
R 5′- GCCATTCCTACTTCTTAAATTGACT-3′

RGS20 F 5′- CTTCCCACGAACTCAGAGCAGA-3′
R 5′- TCCTTCCTGCTGGAGTGACCAT-3′

β-actin F 5′-AGTCATTCCAAATATGAGATGCGTT-3′
R 5′- TGCTATCACCTCCCCTGTGT-3′
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LUAD data set, a total of 30 coexpression modules were
obtained after module fusion (Figure 2(b); grey modules
represent gene sets that could not be merged). Moreover, by
analyzing the correlation of the module and genes in the
module with phenotypes (Figure 2(c)), we found that orange
(contains 49 genes) module correlated with Cluster 1,
magenta (contains 404 genes) module correlated with
Cluster 2, and yellow (contains 1090 genes) module cor-
related with Cluster 3 (Figures 2(d)–2(f )). Further analysis of
these 4,390 DEGs revealed that there were 486 overlapping
DEGs among all three subtypes (Supplementary
Figure 2(d)).

To further investigate the biological functions of these
486 overlapping DEGs, gene ontology (GO) and pathway
analysis were performed. KEGG analysis has identified 27
significant pathways, such as p53 signaling pathway and
complement and coagulation cascades (Supplementary
Figure 2(e)). GO analysis results showed that the DEGs were
clustered in 93 significant cellular component (CC)

categories with kinesin complex ranked as the most sig-
nificant CC category (Supplementary Figure 2(f )); 87 sig-
nificant molecular function (MF) categories with motor
activity ranked as the most significant MF category (Sup-
plementary Figure 2(g)); and 620 significant biological
process (BP) categories with the regulation of mitotic cell
cycle phase transition ranked as the most significant BP
category (Supplementary Figure 2(h)).

3.3.ConstructionofPrognosisRiskModelBasedonDifferential
Coexpression Genes. To identify novel genetic biomarkers
associated with the clinical outcome of patients with LUAD,
univariate Cox proportional hazard regression was applied
to these 486 DEGs. And then 186 genes significantly cor-
related to OS (P< 0.01; Supplementary Table 4) were entered
into dimensional-reduction analysis by performing LASSO
regression analysis, and seven prognostic DEGs (including
CHRDL1, GAPDH, GNPNAT1, HTATIP2, MFI2, PKP2,
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Figure 1: Identification of molecular subtypes in LUAD: (a) consensus map of NMF clustering, (b) heat map of the expression profile of 740
lipid-metabolism-related genes (LMRGs) and the distribution of clinicopathological parameters in all three subtypes, (c) Kaplan–Meier
curves showed the overall survival (OS) curve of the three subtypes, and (d) Kaplan–Meier curves showed the overall survival (OS) curve of
every two subtypes.
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Figure 2: Continued.
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and RGS20) were confirmed with tenfold cross-validation
and the minimized error rate λ� 0.059 (Supplementary
Figures 3(a)–3(b)). By applying Kaplan–Meier analysis, we
confirmed that all these seven genes were significantly as-
sociated with the OS of patients in the training set (Sup-
plementary Figure 3(c)). Among them, CHRDL1 (P< 0.001)
showed a significant negative correlation with OS, while the
other six genes were positively correlated to OS (all
P< 0.001; Supplementary Figures 3(d)–3(i)). 4e final
seven-gene signature was calculated using multivariate Cox
survival analysis (Table 3), and a gene-based prognostic
model was established to evaluate the survival risk of each
patient as follows: RiskScore� −0.0103∗ expCHRDL1

+ 0.0001∗ expGAPDH + 0.0105 ∗ expGNPNAT1 + 0.0039
∗ expHTATIP2 + 0.0064 ∗ expMFI2 + 0.0085∗ expPKP2 +
0.0284∗ expRGS20.

Based on the risk score formula and the cut-off value of
normalized risk score (Z-score� 0), patients were divided
into a high- or low-risk group (Figure 3(a)). And a heatmap
showing the expression profile of the eight genes illustrated
that as the risk score of patients increased, the expression of
prognosis-risky genes (GAPDH, GNPNAT1, HTATIP2,
MFI2, PKP2, and RGS20) were distinctly up-regulated; in
contrast, the expression of prognosis-protective gene
CHRDL1 was down-regulated. ROC curve showed that the
accuracy of the prognostic seven-gene signature for 1-, 3-,
and 5-year survival was 0.72, 0.70, and 0.66, respectively
(Figure 3(b)). Finally, we divided the samples with Z-score-
based RiskScore greater than zero into the high-risk group
and the samples with less than zero into the low-risk group.

Kaplan–Meier curve analysis revealed that the OS time of
patients in the high-risk group was significantly shorter than
that in the low-risk group (HR� 2.122; 95% CI: 1.554–2.899;
P< 0.001; Figure 3(c)).

3.4. Validation of the Seven-Gene Signature in the Entire
TCGA Data Set and Two GEO LUAD Data Sets. 4e entire
TCGA LUAD data set (n� 490) was used for internal val-
idation, and the risk score of each sample was calculated,
which showed that the association between the gene ex-
pression and risk score was consistent with the training set
(Figure 4(a)). 4e ROC curve displayed that the accuracy of
the prognostic eight-gene signature for 1-, 3-, and 5-year
survival was 0.71, 0.68, and 0.67, respectively (Figure 4(b)).
Patients in the internal validation data set were classified into
high- and low-risk groups with the same cutoff as used in the
training set. As expected, patients in the validation set with
high risk scores had shorter OS than those with low risk
scores (HR� 2.229; 95% CI: 1.655–3.000; P< 0.001;
Figure 4(c)).

Subsequently, the prognostication efficiency of our
seven-gene signature was also calculated in the two external
validation data sets GSE31210 and GSE50081. 4e results
showed that the association between the gene expression and
risk score was consistent with that in the training and in-
ternal validation set (Figure 5(a) and 5(b)). In the GSE31210
data set, 4e ROC curve displayed that the accuracy of the
prognostic seven-gene signature for 1-, 3-, and 5-year
survival was 0.87, 0.67, and 0.72, respectively (Figure 5(c)).
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Figure 2: WGCNA coexpression analysis: (a) volcano map of differentially expressed genes (DEG) between each cluster and the other
subtypes, (b) gene dendrogram and module colors, and (c) relationship between the 30 modules and the clinical phenotypes and molecular
subtypes. 4e correlation of orange module with Cluster 1 (d), magenta module with Cluster 2 (e), and yellow module with Cluster 3 (f ) in
the TCGA data set.
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Table 3: Univariate Cox regression analysis result of seven genes in the training set.

Symbol Coefficient Hazard ratio Z-score P-value Low 95% CI High 95% CI
CHRDL1 −0.010 0.9898 −2.144 0.03200 0.9805 0.9991
GAPDH 0.000 1.0001 1.812 0.07000 1.0000 1.0002
GNPNAT1 0.011 1.0106 4.417 0.00001 1.0059 1.0153
HTATIP2 0.004 1.0039 2.445 0.01450 1.0008 1.0070
MFI2 0.006 1.0064 1.896 0.05800 0.9998 1.0132
PKP2 0.008 1.0085 2.016 0.04380 1.0002 1.0168
RGS20 0.028 1.0288 1.472 0.14110 0.9906 1.0683
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Figure 3: Evaluation of the performance of the seven-gene signature in the training data set: (a) risk score, survival time, survival status, and
expression of the seven-gene signature in the training set; (b) ROC curve of the seven-gene signature for 1-, 3-, and 5-year survival in the
training set; and (c) Kaplan–Meier survival analysis of overall survival for high- or low-risk group patients in the training set. ROC, receiver
operating characteristic; AUC, area under the curve; HR, hazard ratio; and CI, confidence interval.
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Figure 4: Internal validation of the seven-gene signature’s robustness in the entire TCGA cohort: (a) risk score, survival time, survival status,
and expression of the seven-gene signature in the internal validation set; (b) ROC curve of the seven-gene signature for 1-, 3-, and 5-year
survival in the internal validation set; and (c) Kaplan–Meier survival analysis of overall survival for high-risk or low-risk group patients in
the internal validation set. ROC, receiver operating characteristic; AUC, area under the curve; HR, hazard ratio; and CI, confidence interval.
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As expected, patients in the GSE31210 data set with high risk
scores had shorter OS than those with low risk scores
(HR� 5.113; 95% CI: 2.121–12.327; P< 0.001; Figure 5(d)).
In the GSE50081 data set, the ROC curve displayed that the
accuracy of the prognostic seven-gene signature for 1-, 3-,
and 5-year survival was 0.77, 0.72, and 0.73, respectively
(Figure 5(e)). As expected, patients in the GSE50081 data set
with high risk scores had shorter OS than those with low risk

scores (HR� 2.687; 95% CI: 1.549–4.662; P< 0.001;
Figure 5(f )). 4erefore, the seven-gene signature exhibited
steady effective prognostic classification performance in the
internal and two external validation sets.

3.5. Univariate and Multivariate Cox Regression Analyses of
the Seven-Gene Signature. In order to identify the inde-
pendence of the seven-gene signature model in clinical
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Figure 5: External validation of the seven-gene signature’s robustness in the GSE31210 and GSE50081 cohorts. Risk score, survival time,
survival status, and expression of the seven-gene signature in the GSE31210 (a) and GSE50081 (b) cohorts, respectively. (c) ROC curve of the
seven-gene signature for 1-, 3-, and 5-year survival in the GSE31210 cohort. (d) Kaplan–Meier survival curve based on the seven-gene
signature in the GSE31210 cohorts. (e) ROC curve of the seven-gene signature for 1-, 3-, and 5-year survival in the GSE50081 cohort.
(f ) Kaplan–Meier survival curve based on the seven-gene signature in the GSE31210 cohorts. ROC, receiver operating characteristic; AUC,
area under the curve; HR, hazard ratio; and CI, confidence interval.
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application, univariate and multivariate Cox regression
analysis was used to systematically analyze the clinical
outcome of patients in the entire TCGA LUAD data set.
Univariate analysis of survival revealed that the seven-gene
signature (P< 0.001), age (P � 0.038), N stage (P< 0.001), M
stage (P< 0.001), and TP53 mutation status (P< 0.001) were
prognostic indicators of OS (Supplementary Figure 4(a)).
However, multivariate Cox regression analysis showed that
only seven-gene signature (P< 0.001) in addition to TNM
stage (P � 0.001) were independent risk factors of OS
(Supplementary Figure 4(b)). Overall, these results suggest
that the seven-gene signature is a potential independent
prognostic factor for LUAD.

3.6. %e Performance of the Seven-Gene Signature in Com-
parison to Previous Signatures in TCGA LUAD Data Set.
To assess the predictive power of the seven-gene signature,
four published risk models for OS of patients with LUAD: a
three-gene signature developed by Shukla et al. [16], an
eight-gene signature developed by Li et al. [17], a three-gene
signature developed by Yue et al. [18], and a three-gene
signature developed by Liu et al. [19] were enrolled for
comparison. To improve the comparability of the models,
the risk score of each LUAD sample in the TCGA cohort was
calculated according to the corresponding genes in all four
models by applying the same method being reported
[20–22]. Kaplan–Meier curve analysis revealed that all four

modules showed significant prognostic value in predicting
OS (all P< 0.001; Supplementary Figures 5(a)–5(d)). 4e
ROC of each model was evaluated, and the area under the
curve (AUC) of all three models were larger than 0.6
(Supplementary Figures 5(a)–5(d)), while only the AUC of
2-year OS in Shukla’s three-gene signature and the AUC of
1-year OS in Li’s eight-gene signature were larger than 0.7
(Supplementary Figures 5(a) and 5(b)). Restricted mean
survival time (RMST) was applied to calculate and compare
the C-index of all signatures. Although the C-index of our
seven-gene signature was only significantly higher than that
of Yue’s module (P � 0.024) and Liu’s module (P � 0.008),
our seven-gene signature showed highest C-index (0.710;
Figure 6(a)). We also applied a DCA to evaluate our seven-
gene signature with these four signatures, in which the net
benefit together with a broader range of threshold proba-
bility of our seven-gene signature ranked as the highest one
(Figure 6(b)), indicating that the seven-gene signature in the
present study exhibited a best predictive performance. Taken
together, these results suggest that this seven-gene signature
is more suitable for predicting the prognosis of patients with
LUAD in clinical practice.

3.7. GSEA Analysis of Enriched Pathway Based on Risk Score.
ssGSEA was performed to determine the potential related
pathways according to patients’ prognostic risk in the TCGA
training data set, and pathways with Pearson correlation
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Figure 6: 4e performance of the seven-gene signature in comparison to previous signatures in the TCGA LUAD data set: (a) restricted
mean survival time (RMST) curve developed by integrating the signatures and (b) decision curve analysis (DCA) for the integrating the
signatures.

12 Journal of Oncology



coefficient >0.4 were derived. As shown in Figure 7(a), a total
of 23 pathways were identified, and most of the pathways
were positively correlated with samples’ risk score (red
color). By dividing samples into high- and low-risk groups

based on whether the risk score is greater than 0 and an-
alyzing the enriched pathway in both groups by using GSEA,
we found that four pathways were significantly enriched in
the high-risk group: other glycan degradation,
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Figure 7: ssGSEA result according to the risk score of LUAD samples in the TCGA data set: (a) clustering of KEGG pathways correlated
with RiskScore, with correlation coefficients greater than 0.40, and (b) enrichment pathways that were significantly correlated in the high-
risk groups.
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glycosaminoglycan degradation, biosynthesis of unsaturated
fatty acids, and PPAR signaling pathway (P< 0.05;
Figure 7(b)). 4us, the seven-gene signature may involve in
the development and progression of LUAD by participating
in these pathways.

3.8. Detection of Prognostic Gene Expression in Lung Ade-
nocarcinoma Tissue. We selected ten patient tissues who
underwent surgical treatment in the FUSCC in 2019 for the
determination of the expression level of these seven prog-
nostic genes in LUAD. According to the results of the H&E
staining of tumor tissues and the immunohistochemical
staining of CD4 and CD8 cells in tumor tissues, the tissues
were divided into two groups: the low-immune infiltration
group and the high-immune infiltration group (Figure 8(a)).
Subsequently, we applied RT-PCR to detect the expression
level of GAPDH, GNPNAT1, HTATIP2, MFI2, PKP2,
RGS20, and CHRDL1 in these 10 tumor tissues. As shown in

Figure 8(b), the mRNA level of GAPDH, GNPNAT1,
HTATIP2, MFI2, PKP2, and RGS2 showed higher expres-
sion tendency in the high-immune infiltration group than
the low-immune infiltration group, whereas the expression
level of CHRDL1 showed a lower expression tendency in the
high-immune infiltration group than the low-immune in-
filtration group.

4. Discussion

Cumulative evidences have been yielded in the field of lipid
metabolism within lung cancer cells [23]. Under abnor-
malities in vessels structure attributed to limited nutrient
supply and hypoxia, lung cancer cells present multiple
metabolic alterations in order to support cell growth, in-
cluding aerobic glycolysis and de novo lipogenesis [24]. De
novo lipogenesis provides intermediate materials to support
the phospholipid and triglyceride synthesis, lipid
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Figure 8: H&E staining, IHC staining, and mRNA levels of LUAD tissue: (a) representative H&E staining, CD4, and CD8 IHC staining
result of LUAD tissue and (b) mRNA levels of GAPDH, GNPNAT1, HTATIP2, MFI2, PKP2, RGS20, and CHRDL1 in LUAD measured by
RT-qPCR.

14 Journal of Oncology



modification of proteins, and fatty acid ß-oxidation in tumor
cells, including fatty acid synthase (FAS), stearoyl CoA
desaturase 1 (SCD1), adenosine triphosphate-binding cas-
sette family (ABC family), ATP citrate lyase (ACLY), and
fatty acids and thus augments the activation of growth-
promoting pathways [23]. Lung cancer cells have accelerated
lipid metabolism (mainly de novo lipogenesis) than normal
lung respiratory epithelium [25]. 4erefore, lipid meta-
bolism alteration may be a potential indicator of tumor
malignancy and thus prognosis.

In order to better understand the biological character-
istics of LUAD, we classified LUAD into three subtypes
based on a comprehensive analysis of LMRG expression
profiles in the TCGA LUAD data set. We demonstrated that
the Cluster 1 subtype is associated with the lowest infiltration
of immune cells, decreased immune scores, stromal scores,
and tumor purity. 4is immune-related difference in
LMRG-based molecular subtype may reflect the effects of
lipid metabolism on tumor immune microenvironment. It
has been reported that the lipid levels in DCs can influence
the ability of DCs to process antigen [26]. In addition,
immune cells can interact with various classes of lipids, and
altering lipid metabolism is capable of controlling the ac-
tivation, differentiation, plasticity, and function of immune
cells [27]. To some extent, our data indicate the potential
crosstalk between lipid metabolism and immune response
[28]. By “immunoediting,” tumor cells interact with the
human immune system in the origin and progression of
tumors, and infiltrating lymphocytes in the tumor micro-
environment have been found to mediate adaptive immu-
nity [29]. 4erefore, the lowest infiltration of immune cells
may pave the way for the worst clinical outcome of patients
in Cluster 1. Patients in the Cluster 2 subtype exhibited more
favorable clinical outcomes, whilst patients in the Cluster 1
subtype exhibited the worst overall survival. Functional and
signaling pathway enrichment analysis further showed that
overlapping DEGs among the three subtypes mainly par-
ticipated in the regulation of cell cycle and in some cancer-
associated pathways, indicating an interface between lipid
metabolism and tumor cell uncontrolled growth [4, 5]. Our
study, for the first time, stratified the LUAD patients based
on LMRG and provided novel insights into predicting the
efficacy of patients’ survival, as well as potential biomarkers
for the response to immunotherapy and targets for
immunotherapy.

Given that LMRGs could distinguish patients’ clinical
and molecular features, we further developed a seven-
LMRGs signature that could stratify patients with high or
low risk of poor overall survival. Among the seven bio-
marker genes (CHRDL1, GAPDH, GNPNAT1, HTATIP2,
MFI2, PKP2, and RGS20) discovered by the present study,
Chordin-like 1 (CHRDL1) is a bone morphogenetic protein
(BMP) antagonist. BMPs have emerged as important
modulators of cancer aggressiveness. As a tumor suppressor,
CHRDL1 is down-expressed in various cancer tissues
[30–32], and a high CHRDL1 expression level induced
decreased tumor progression [31, 33]. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) is a pivotal enzyme,
and it regulated cellular senescence phenotype in A549 cells

via modulating the AMPK network [34], a key pathway
implicated in cancer cell lipid metabolism. 4e relationship
between glucosamine 6-phosphate N-acetyltransferase 1
(GNPNAT1/GNA1) and cancer was seldom reported.
GNPNAT1 is a key enzyme in the biosynthesis of uridine
diphosphate-N-acetylglucosamine, which is an important
donor substrate for N-linked glycosylation and thus par-
ticipates in the regulation of cell growth [35]. HIV-1 Tat
interactive protein 2 (HTATIP2) is also a tumor suppressor;
by enhancing the HIF2α-regulated β-catenin/c-Myc/MCL-1
signaling, HTATIP2’s deletion increases tumor metabolic
plasticity, that is, enable tumor cells to exploit alternative
metabolic pathways for replenishing TCA cycle interme-
diates, to avoid dependence on carbon sources from glu-
tamine and fatty acid, thus inducing LUAD cell survival and
proliferation [36]. Plakophilin 2 (PKP2) encodes a plako-
philin protein that belongs to the member of desmosomal
proteins. PKP2 has been verified overexpressed in several
types of human cancers including lung cancer; it is an
unfavorable prognostic biomarker for LUAD patients but
not for LUSC patients [37]. In addition, it exhibits oncogenic
roles through activating EGFR signaling pathway in LUAD
cells [37]. Although melanotransferrin (MELTF, MFI2) [38]
and regulator of G protein signaling 20 (RGS20) [39] have
been reported as regulators in human malignancies, seldom
were known about the correlation of both genes with LUAD.
Although some of the previous studies have identified these
genes as prognostic markers in LUAD, they were limited by
just a single gene detected, small sample sizes, and lack of
independent validation. 4e use of the LASSO Cox re-
gression model [40] and nomogram [41] allowed us to in-
tegrate multiple genes into one tool, which has significantly
greater prognostic accuracy than that of a single gene alone
or even some previous reported gene signatures.

Some limitations of this study should be taken into
consideration. Although TCGA and two GEO data sets
enrolled both Caucasian and Japanese populations, this
present study may not include patients with LUAD from
other areas loading distinct genetic phenotypes and clinical
characteristics, making it susceptible to the inherent biases
of such a study format. Clearly, our results should be further
validated by a prospective study in some worldwide mul-
ticenter clinical studies. Moreover, its prognostic role in
early LUAD must be further evaluated. In addition, despite
growing studies that began focusing on the interaction of
tumor cells and associated lipid metabolism in human
malignancies, most LMRGs are not yet functionally anno-
tated in LUAD, and the biofunctions of our seven genes have
not yet been fully investigated in previous studies. Although
the biological functions of the predictive genes were an-
notated using computational methods, additional studies
should be performed to further reveal the mechanisms of the
genes involved in the tumorigenesis of LUAD. Furthermore,
more evidences are required to find out the biological
foundation of their dysregulation in LUAD.

Cancer is a complex disease, and the interaction between
the tumor and its microenvironment plays an important role
in the progression of cancer disease. 4e current clinical
stratification scheme focuses on tumor histopathology and
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molecular characteristics of tumor cells [42]. With further
research, people have found that different immune cells are
involved in different stages of tumor progression and strive to
explore how to use the immune environment determinants
that affect tumor development in treatment. Studies have
shown that lipid metabolism alteration may be a potential
indicator of tumor malignancy and thus prognosis.4erefore,
we established a seven-gene signature in LUAD, trying to
connect the immunity and lipid metabolism in series in order
to improve the accuracy of prognosis and prediction infor-
mation. Our research results show that in patients with
different levels of immune cell infiltration, the mRNA
expression levels of 7 genes were different. Our model
suggests that different expression levels indicate different
survival risks. 4e survival risk of the high infiltration
group is higher than the low infiltration group. 4e risk
model suggests that we cannot measure the survival risk
of patients solely by the infiltration level of certain types
of immune cells, which reflects the value of our 7-gene
signature model in risk prediction. Biomarkers can
represent the status of the tumor microenvironment. For
example, the high expression level of PD-1 in some cancer
may represent the immunosuppressive status. Bio-
markers can be used to assess the immune response status
of the tumor microenvironment of different patients and
find more suitable treatment options for the patients.

In summary, for the first time, we profiled the lipid
metabolism phenotype in LUAD, and our studymay provide
a better assessment of the LMRG-based classification of
LUAD. We uncovered the prognostic value of LMRG in
LUAD and identified a lipid metabolism-related signature
that could classify LUAD patients with high- and low-risk
groups of unfavorable survival. 4is method might, there-
fore, help with patient counselling and individualized
management of patients with LUAD.
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