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Osteosarcomas (OS) are the most common primary malignant bone tumor. Emerging evidence revealed that karyopherin alpha 2
(KPNA2) was strongly associated with the tumorigenesis and development of numerous human cancers. The aim of the present
study was to investigate the expression pattern, biological functions, and underlying mechanism of KPNA2 in OS. Bioinformatics
TFBIND online was applied to forecast transcription factor (TF) binding sites in the promoter region of KPNA2. The expression
profile of KPNA2 in OS tissues were firstly assessed. CCK8, colony formation, wound healing, and Transwell assays were used to
assess cell viability, proliferation, and migration in vitro, and in vivo experiments were performed to explore the effects of KPNA2
and interferon regulatory factor-2 (IRF2) on tumor growth. Furthermore, the correlation between IRF2 and KPNA2 was
investigated using chromatin immunoprecipitation (ChIP), RT-qPCR, western blot, and dual-luciferase assays. KPNA2 was
obviously upregulated, while IRF2 decreased significantly in OS tissues and cell lines, as well as negatively correlated with each
other. KPNA2 removal remarkably suppressed OS cell growth, migration, invasion in vitro, and tumor growth in vivo, while
IRF2 knockdown exerts an opposing effect. IRF2 binds to the KPNA2 promoter to modulate the malignant phenotypes of OS
cells by regulating epithelial-to-mesenchymal transition (EMT). The present study demonstrated that KPNA2 performed the
oncogenic function, possibly regulating tumor development through EMT. Importantly, it was confirmed that IRF2 serves as a
potential upstream TF of KPNA2 involved in the regulation of EMT progress in OS.

1. Introduction

Osteosarcoma (OS) is the frequent primary malignant bone
tumor, affecting mainly pediatric and adolescents [1], which
is composed of malignant mesenchymal cells producing
osteoid and/or immature bone [2]. It typically forms in
the metaphysis of long bones, specifically the proximal tibia,
the distal femur, and the proximal humerus, accompanied
by swelling and pain [3]. It is common that metastasis to
the lungs of OS [4]. Before the use of neoadjuvant and adju-
vant chemotherapy, approximately 90% of OS patients died
from lung metastases [5]. OS is characterized by high levels
of genomic instability. However, the molecular basis
involved in OS remains unclear and continuing to seek
new treatments is urgently needed to continue looking for
new treatments.

Karyopherin alpha 2 (KPNA2, 58 kDa) is one of seven
members of the karyopherin α-family [6, 7]; Dysregulation
of KPNA2 had been reported serving as a potential bio-
marker in several malignancies, including breast cancer [8],
gastric cancer [9], lung cancer [10], and glioma [11]. KPNA2
served as the adaptor to transfer p65 to the nucleus to iden-
tify the classic nuclear localization signal [7, 12]. Emerging
data suggest a role for the epithelial-mesenchymal transition
(EMT) in the regulation of cellular plasticity in normal adult
tissues and tumors, where they can generate multiple and
distinct cellular subpopulations that contribute to intratu-
moural heterogeneity [13]. EMT is important for invasion,
metastasis, and drug-resistance of cancer cells. A previous
study showed that KPNA2 silence may reduce ovarian carci-
noma migration and invasion by inhibiting Akt/GSK-3β/
Snail pathway and suppressing EMT [14]. In addition,
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KPNA2 was involved in the regulation of autophagy and the
EMT of glioblastoma cells [15]. However, the molecular
pathways regulated by KPNA2-mediated EMT in OS are
yet to be elucidated.

Transcription factors (TFs), could specifically recognize
DNA through consensus sequences, thus to control chroma-
tin and transcription, guiding expression of the genome [16].
To identify the TF of KPNA2 transcription, the online soft-
ware of TFBIND (http://tfbind.hgc.jp/) was employed to
identify putative binding sites in the promoter region of
KPNA2. Specifically, several canonical IRF2-binding sites
in the promoter region of KPNA2 were observed, and
IRF2 was then extracted from 147 candidate genes. IRF2,
belonging to the IRF family, was widely expressed in various
tissues [17]. Among several types of cancer, belong to the
IRF family, IRF1 signaling pathways may directly induce
p21-dependent G0/G1 cell cycle and p21-independent mod-
ulation of survival [18]. IRF2 was shown to serve as an
important regulator in acute myeloid leukemia by targeting
INPP4B [19]. A recent study has indicated that IRF2 was
able to suppress the strengthening of cell migration and
invasion in OS, which were mediated by miR-18a-5p [20].
Similarly, IRF2 was not expressed or at a low level in OS tis-
sues [21]. Intriguingly, IRF was already identified as a func-
tional TF in nonsmall cell lung cancer (NSCLC) that
suppressed KPNA2 expression [22]. Therefore, we speculate
that IRF2 may negatively regulated KPNA2 as its upstream
TF to modulate OS progression.

This study aimed to investigate the role of IRF2 in mod-
ulating KPNA2 expression, which may serve an important
role in p65 nuclear importation in the progression of OS.
Here, we found that KPNA2 deficiency suppressed the
malignant behaviors of OS cells, and that the underlying
mechanisms involved were regulated by IRF2 and associated
with EMT progress. Taken together, our findings demon-
strated that KPNA2 may serve as a new potential prognostic
indicator and therapeutic target for OS.

2. Materials and Methods

2.1. Cell Culture. Four human OS cell lines (Saos-2, HOS,
U2OS, and MG-63) and human fetal osteoblasts cell line
(hFOB 1.19) were obtained from the Cell Bank of Type
Culture Collection of the Chinese Academy of Sciences
(Shanghai, China). Cells were grown in Dulbecco’s modified
Eagle medium (DMEM; Gibco) harboring with 10% fetal
bovine serum (FBS) (Gibco). All OS cell lines were cultured
in a humidified incubator under 5% CO2 at 37°C, while
hFOB1.19 cells were grown at 34°C. Mycoplasma-microbial
contamination examination and STR profiling were checked
to confirm the genotypes.

2.2. Patients and Tissue Samples. Twenty-five paired tumor
samples and their adjacent nontumor tissues from patients
who had undergone surgery were obtained from Zhongshan
Hospital, Fudan University. This study was approved by the
Ethics Committee of Zhongshan Hospital, Fudan University
(Y2014-185) according to the Declaration of Helsinki, and
written informed consents were obtained from all the

patients. No patients had undergone chemotherapy, radia-
tion therapy, or other related targeted therapy before sur-
gery. The diagnosis of OS was confirmed by at least two
pathologists. All surgical tissue samples used in our study
were immediately placed in liquid nitrogen and then stored
at -80°C until use.

2.3. RT-qPCR. Total RNA was isolated from OS cell lines
and tissue samples with the TRIzol™ Reagent (Invitrogen)
according to the manufacturer’s protocol. Complementary
DNA (cDNA) synthesis was performed using the Prime-
Script RT reagent kit (Takara) for mRNA expression analy-
sis. The cDNA was applied to perform qRT-PCR assay with
SYBR Premix Ex Taq kit (TaKaRa) following the protocols.
The 2 − ΔΔCt method was used to analyze the difference in
the level of mRNA between different groups. Primers used
in this study were listed as follows: KPNA2, 5′-ATTGCA
GGTGATGGCTCAGT-3′ (forward) and 5′-CTGCTCAAC
AGCATCTATCG-3′ (reverse); IRF2, 5′-CATGCGGCTAG
ACATGGGTG-3′ (forward) and: 5′-GCTTTCCTGTATGG
ATTGCCC-3′ (reverse); The GAPDH was used as an inter-
nal control and was detected using the following primers: 5′-
AATCCCATCACCATCTTCC-3′ (forward) and 5′-AGTC
CTTCCACGACCAA-3′ (reverse).

2.4. Lentiviral Vector Encoding shRNA Plasmids. KPNA2
cDNA was cloned into the Lenti-OE vector (Genepharma,
Shanghai, China) to generate KPNA2-overexpressing lenti-
viral vectors. Short hairpin RNAs (shRNAs) were designed
by the RiboBio Co., Ltd. (Guangzhou, China). Lentiviral vec-
tors encoding KPNA2 and IRF2 were synthesized and pack-
aged by Genepharma company.

2.5. Cell Proliferation Assay. The cell proliferation assay was
performed using a Cell Counting Kit (CCK-8, Dojindo,
Japan) following the manufacturer’s instructions. Cells at a
density of 5 × 103 were added into the 96-well plate and 10
microliters of CCK-8 solution was added to each well at 1,
2, 3, 4 and 5 days at 37°C. An additional 1 h later, the absor-
bance at wavelength of 450nm was measured under a
microplate reader.

2.6. Colony Formation Assay. For the colony formation
assay, 500 cells were plated into each well of a 6-well culture
plate. The plates containing DMEM were incubated at 37°C
for 2 weeks. After being washed with PBS for three times,
cells were fixed with 4% paraformaldehyde for 10min at
room temperature, followed by staining with 0.5% crystal
violet solution for another 20min. Lastly, the visible colonies
of more than 50 cells were manually counted and imaged
under a microscope.

2.7. Transwell Invasion Assay. Cells at the density of 1 × 104
were seeded into a diameter Transwell plate with 8-μm
pores (Sigma-Aldrich). The upper chamber of the plate
was added with 50μl of Matrigel collagen and 600μL of
complete DMEM was added to the lower chambers, and
then the cells were incubated for 24 h. The cells on the
upper layer were removed and the invasive cells were fixed
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with 4% formaldehyde for 20min, and then stained with
crystal violet for 15min. Cells that had invaded the bottom
surface of the filter were counted to assess the invasive
capacity. Invaded cells were quantified by at least five fields
of view under light microscopy (Leica) to obtain the repre-
sentative images.

2.8. Wound Healing Assay. Cells were cultured in six-well
plates. After reaching 90% confluence, a 200μl pipette tip
was used to create scratch wounds in the cell monolayer.
Representative images of cell migration were photographed
under light microscopy (Leica) at 0 and 24 h after wounding.
Migration ability was assessed by measuring changes in
wound width or area with ImageJ software.

2.9. Western Blot Assay. The protein was lysed from tissues
and cells with RIPA buffer (Thermo Fisher Scientific). Pro-
tein concentration was assessed using the bicinchoninic acid
(BCA) assay kit (Thermo Fisher Scientific). Equal amounts of
protein samples were separated by 12% SDS-PAGE gels and
transferred to polyvinylidene difluoride (PVDF) membranes.
After incubation with 5% nonfat milk for 2 h at room tem-
perature, to hatch the blots with the primary antibodies
including anti-KPNA2 (ab6036), IRF2 (ab124744), E-
cadherin (ab1416), N-cadherin (ab18203), Vimentin
(ab92547), and GAPDH (ab9484) overnight at 4°C, which
were purchased from Abcam. Hatching of horseradish
peroxidase-conjugated secondary antibodies at room tem-
perature, the endogenous GAPDH is the internal reference
protein. The protein band signals were visualized on an
ECL detector (Pierce) and quantified by scanning the densi-
tometry using ImageJ software.

2.10. Chromatin Immunoprecipitation (ChIP) Assay. ChIP
assays were performed using a kit (Sigma-Aldrich) following
the protocol provided by the manufacturer. To hatch the
diluted DNA-protein complex, the antibodies of anti-IRF2
and mouse IgG (Sigma-Aldrich) were added in the presence
of protein A/G beads and incubated at 4°C overnight. The
RT-qPCR assay was applied to examine the ChIP DNA sam-
ples. IgG was the negative control.

2.11. Dual Luciferase Test.Wild (WT) and mutant (MUT) of
KPNA2 were inserted into the pGL3 promoter vector, which
was transfected into U2OS and MG-63 cells using Lipofecta-
mine 2000 (Invitrogen) together with plasmid of IRF2 over-
expression or empty plasmid (NC). 48 h later, luciferase
activity was measured using a dual-luciferase reporter assay
system (Promega) following the manufacture’s protocols.

2.12. Tumor Xenograft Assay. All animal experiments were
in accordance with the Institutional Animal Care and Use
Committee Guide (IACUC) of Zhongshan Hospital, Fudan
University (2018-014). The mice were placed in an environ-
mentally controlled pathogen-free isolation facility under a
12 h light-dark cycle and food and water were freely avail-
able. Subsequently, mice were randomly divided into four
groups (n = 3/per group). Equal number of indicated U2OS
cells (5 × 105) were subcutaneously implanted into the right
flank of 6-week-old female athymic nude mice. Tumors were

formed and the mice were anesthetized and sacrificed 24
days after tumor inoculation. After being removed, the
tumors were imaged and weighed, and the volume of tumors
was monitored every 3 or 5 days and calculated as follows:
Volume ðmm3Þ = ðlength × ðwidth2Þ/2Þ.
2.13. Histological Analysis and Immunohistochemistry.
Xenotransplant tumor samples were isolated and fixed in 4%
paraformaldehyde. Paraffin was used to embed tumor tissues
and then sectioned at a thickness of 5-μm. The paraffin
sections were dewaxed, hydrated, and then stained with hema-
toxylin and counterstained with eosin. Antigens were recov-
ered with citrate buffer and blocked with 3% H2O2,
immunohistochemistry (IHC) was performed with diluted
primary KI67 antibody overnight at 4°C, followed by incuba-
tion with secondary antibody at room temperature. The slides
were developed by diaminobenzidine (DAB) and stained with
hematoxylin. IHC staining pictures were obtained under a
light microscope. All results were determined by two patholo-
gists who were completely blinded to the grouping.

2.14. Function Enrichment Analysis Based on the TARGET-
OS Dataset. Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis were
performed on the upregulated genes in the high- and low-
IRF2 or KPNA2 subgroups based on the TARGET-OS data-
set, and deduced their functions by analyzing the gene set. In
our work, we explored whether differentially expressed genes
between these subgroups were enriched among OS-related
biological functions or pathways. Significant GO biological
process terms and KEGG pathways with p < 0:05 were col-
lected and visualized using the R package “ggplot2” (version
4.0.3).

2.15. Correlation Analysis of 22 Immune Cell Infiltration with
IRF2 and KPNA2. 22 tumor-infiltrating immune cells
(TIICs) in OS samples from the TARGET dataset were
assessed by applying the deconvolution algorithm (referred
to as CIBERSORT) in the osteosarcoma microenvironment.
Samples with p < 0:05 in CIBERSORT analysis result were
used in further analysis. The matrix of gene expression sig-
natures of 22 TIICs was obtained from the CIBERSORT
platform (https://cibersortx.stanford.edu) [23]. The matrix
data of IRF2 and KPNA2 levels were compared with those
of the signature matrix of 22 TIICs from the CIBERSORT
platform to generate a proportion matrix for the 22 TIICs
in OS tissues.

2.16. Statistical Analysis. All data obtained are expressed as
the mean ± standard deviation (SD). Differences Student’s t
-test or one-way ANOVA followed by a Tukey post hoc test
were used to compare data between two groups or among
multiple groups. Statistical difference was analyzed using
the GraphPad Prism 8.0 software. Followed by a Tukey’s
post hoc test.

3. Results

3.1. Overexpression of KPNA2 in the Osteosarcoma Tissues.
Based on the GSE36001 database, we discovered KPNA2
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expression was markedly upregulated in OS tissues when
compared to nontumor tissues (Figure 1(a)). To examine
whether KPNA2 altered clinical OS, qRT-PCR assay was
performed to examine KPNA2 levels in 25 pairs of cancer-
ous OS samples and their adjacent normal samples.
Figure 1(b) showed that the mRNA levels of KPNA2 were
obviously upregulated in OS samples compared to normal
samples. Representative IHC images showed similar results
(Figure 1(c)). Furthermore, the protein levels of KPNA2 in
8 cases of OS samples were obviously elevated as well
(Figure 1(d)). Furthermore, compared to hFOB1.19 cells,
a higher level of KPNA2 in four OS cell lines, including
U2OS, HOS, Saos2, and MG-63, was observed (Figure 1(e)).
KPNA2 expression was the highest in U2OS and MG-63,
which were chosen to use for subsequent analysis. These
results suggest that KPNA2 might play a vital role in the pro-
gression of OS.

3.2. The Transcription Factor IRF2 Specifically Regulates the
Expression of KPNA2 in Osteosarcomas. To better under-
stand the molecular mechanism of KPNA2 in OS, we first
applied the online databases to seek KPNA2-related factors.
Considering that the regulation of KPNA2 in OS was
focused on the transcriptional level, we performed a bioin-
formatic analysis to find a transcription factor (TF) in the
KPNA2 promoter region. Then, we extracted 147 KPNA2
TFs from online TFBIND dataset. Data from TARGET data-
sets showed that a total of 9792 genes were negatively asso-
ciated with KPNA2 in OS (R > 0:2, FDR < 0:05). We
further found that 5950 genes overlapped in downregulated
gens from the GSE157322 dataset, and 31 genes were over-
lapped in 147 KPNA2 TFs. Therefore, a total of 26 genes
were at the intersection of three (Figure 2(a)). Under the
same conditions, a total of 382 genes were positively corre-
lated with KPNA2 in OS. After the intersection of three gene
sets, only one gene, MYB, was located in the center circle
(Figure S1(a)). However, subsequent experiments showed
that MYB was not differentially expressed in OS and was
not regulated by KPNA2 (Figure S1(b) and 1(c)).

According to the correlation index of these 26 genes with
KPNA2, we have chosen the top 5 TFs of KPNA2, including
RFX1, STAT3, IRF2, PPARA, and MZF1. To assess whether
these five TFs could alter KPNA2 expression, we overex-
pressed these TFs in two OS cell lines. As shown in
Figure 2(b), these results demonstrated that only IRF2 over-
expression significantly suppressed KPNA2 expression in
two OS cell lines, while the other four TFs had no significant
effect on KPNA2 expression. Meanwhile, due to the fact that
KPNA2 was overexpressed in four OS cell lines, we also
determined the change of these five TFs after KPNA2 knock-
down using RT-qPCR. The silence of KPNA2 markedly
upregulated the mRNA levels of IRF2, while the other four
TFs did not obviously changed response to the elimination
of KPNA2 (Figure 2(c)). Therefore, we decided to use IRF2
for subsequent experiments.

Through the GSE36001 dataset, IRF2 expression was
mildly downregulated in OS tissues without significant dif-
ferences (Figure 2(d)), while IRF2 expression was strongly
negatively correlated with KPNA2 (Figure 2(e)). Consis-

tently, the mRNA level of IRF2 was significantly downregu-
lated in 25 cases of clinical OS tissue samples when
compared with adjacent normal tissues (Figure 2(f)).
Besides, a ChIP test was conducted in two OS cell lines
and hFOB1.19 to evaluate the binding relationship of IRF2
with KPNA2, and we found that the enrichment of IRF2
binding was prominently decreased in two OS cell lines
comparing to the hFOB1.19 cells (Figure 2(g)). The present
findings showed that IRF2 might be one of the major regu-
lators to regulate KPNA2 expression in OS. To further deter-
mine whether IRF2 bound to the KPNA2 promoter, a dual
luciferase assay revealed that IRF2 was able to dramatically
reduce the luciferase activity of KPNA2-WT, but not in
KPNA2-MUT (Figure 2(h)). Collectively, IRF2, as a func-
tional TF, could bind to KPNA2 in OS cells.

3.3. IRF2 Deficiency May Cooperate with KPNA2 to Regulate
Cell Proliferation and Tumor Growth of OS Cells In Vivo and
In Vitro. Since a negative correlation existed among KPNA2
and IRF2, we investigate their effects on cell proliferation,
migration, invasion, and cell cycle. Firstly, in four OS cell lines,
IRF2 protein and mRNA levels were lower than that in
hFOB1.19 cells (Figure 3(a)). Downregulation of IRF2 or
KPNA2 in U2OS cells was achieved by lentiviral transductions
of IRF2 or KPNA2 knockdown vectors (shKPNA2 and
shIRF2), as confirmed by western blot (Figure 3(b)). Regard-
ing the malignant phenotypes of OS cells, KPNA2 knockdown
inhibited cell viability, proliferation while IRF2 knockdown
had the opposite effects and partially rescued above-
mentioned malignant phenotypes suppressed by KPNA2
knockdown in vitro (Figures 3(c)–3(d)). In vivo, KPNA2
knockdown markedly reduced tumor weight and tumor vol-
umes while IRF2 knockdown promoted tumor growth, and
IRF2 knockdown could weaken KPNA2 knockdown-
medicated tumor growth inhibition (Figures 3(e) and 3(f)).
The KI67 expression was reduced by KPNA2 knockdown
while elevated by IRF2 knockdown (Figure 3(g)). These find-
ings demonstrated that IRF2 silence partially attenuates the
impact of KPNA2 knockdown on OS growth.

3.4. IRF2/KPNA2 Might Regulate Migration and Invasion of
Osteosarcoma Cells, as Well as Regulate EMT Process.
Regarding the malignant phenotypes of migration and inva-
sion, KPNA2 knockdown inhibited the abilities of migration
and invasion while IRF2 knockdown had the opposite effects
and partially rescued above-mentioned malignant pheno-
types suppressed by KPNA2 knockdown OS cells
(Figure 4(a) and 4(b)). To investigate whether IRF2/KPNA2
expression is correlated with other molecular alterations in
OS, we evaluated several molecules that are associated with
EMT in tumor progression [24]. Then, the EMT-related
proteins (E-cadherin, N-cadherin, and Vimentin) were
detected by Western blotting. As shown in Figure 4(c),
shKPNA2 significantly elevated E-cadherin while reduced
N-cadherin and Vimentin expression in both U2OS and
MG-63 cells. In contrast, shIRF2 had the opposite effect on
these EMT-related proteins. These findings indicated that
knockdown of KPNA2 may inhibite EMT progress while
IRF2 silence promoted EMT progress of OS cells.
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Figure 1: High expression of KPNA2 in osteosarcomas samples. (a) KPNA2 mRNA expression in OS and nontumor tissues based on data
from GSE36001 dataset. (b) KPNA2 mRNA levels were detected in 25 pairs of OS samples and their adjacent normal samples by RT-qPCR.
(c) Representative immunohistochemical (IHC) images of KPNA2 expression in OS tissues and normal tissues. (d) KPNA2 protein
expression in 8 pairs of clinical OS samples were examined by western blotting. (e) KPNA2 expression in four OS cell lines and one
normal hFOB1.19 cells using RT-qPCR and western blot assays. The data was presented as the mean ± SD from three independent
experiments. ∗p < 0:05, ∗∗p < 0:01 and ∗∗∗p < 0:001.
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Figure 2: Continued.
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3.5. Functions and Pathway Enrichments Related to KPNA2
and IRF2. GO and KEGG enrichment analysis of the upreg-
ulated genes in the high- and low-IRF2 subgroups were per-
formed. The results of the GO enrichment analysis showed
that the upregulated genes in the high-IRF2 subgroup
mainly played a major role in several biological processes,
such as the positive regulation of cell adhesion and the reg-
ulation of the immune effector process (Figure 5(a)). The
results of the KEGG enrichment analysis showed that these
upregulated genes were involved in osteoclast differentiation
and the NF-kappa B signaling pathway and others.
(Figure 5(b)). Similarly, GO analysis revealed that several
hallmarks of the tumor were enriched in the high-KPNA2
subgroup, such as DNA replication and cell cycle G2/M
phase transition, while genes in the low KPNA2 subgroup
was associated with immune response, bone resorption and
bone remodeling (Figure 5(c)). KEGG showed that KPNA2
was related to cell cycle, DNA replication, and osteoclast dif-
ferentiation (Figure 5(d)). These results are derived from the
enrichment of upregulated genes related to IRF2 and
KPNA2 based on the TARGET dataset, which is helpful
for researchers to find possible research directions when
studying the functions of IRF2/KPMA2 in OS progression.

3.6. The Key Infiltrating Immune Cell Related to IRF2/
KPMA2 in the Osteosarcoma Microenvironment. Based on
the TARGET dataset, all OS samples with low and high
immune score, respectively, were eligible for CIBERSORT
(p < 0:05). The correlations among the 22 TIICs ranged
from weak to moderate. Obviously, plasma cells showed
highly negative correlations with IRF2 expression, while pos-

itive correlations with KPNA2 expression (Figure 6(a)). Fur-
thermore, the Pearson correlation scatter plot further also
presented these findings (Figure 6(b)). These data suggested
that plasma cells might play a key role in the IRF2/KPNA2-
mediated osteosarcoma-immune interaction.

4. Discussion

Osteosarcomas are relatively rare but devastating [5]. Unfor-
tunately, the introduction of new adjuvant chemotherapy
after aggressive surgical resection has temporarily improved
overall 10-year survival but has not significantly improved
patient survival since the 1990s [25]. Therefore, it is of great
significance to identify new molecules, which further helps
to develop effective methods to diagnose and treat this
malignant bone tumor. Here, we propose a mechanism for
the role of KPNA2 in OS pathogenesis: KPNA2 may trans-
port IRF2 into the nucleus where it regulates transitivity,
triggering EMT and subsequent malignant biological prop-
erties of OS cells (Supplementary material, Graphical
Abstract). This evidence may provide new ideas for the diag-
nosis and treatment of osteosarcoma.

Recently, several studies have linked KPNA2 to various
cancers, such as lung, breast, colon, and pulmonary cancer.
High KPNA2 was positively related to cancer invasiveness
and poor prognosis, thus regarded KPNA2 as a potentially
relevant therapeutic target for patients with different cancers
[26]. KPNA2 was involved in several cellular biological pro-
cesses, including cell differentiation, development, viral
infection, immune response, and transcriptional regulation
[6]. Similarly, our study illustrated that KPNA2 was
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Figure 2: Identification of KPNA2 transcription factor (TF) (a) Venn diagram displayed the overlap among differentially expressed protein-
coding genes (DEGs) from GSE157322, KPNA2 negative-related genes from TARGET dataset and TF factors of KPNA2 from online
TFBIND dataset. (b) The mRNA expression of KPNA2 in response to overexpression of five candidate genes (RFX1, STAT3, IRF2,
PPARA, and MZF1) in U2OS and MG-63 cells. (c) The mRNA expression of five candidate genes (RFX1, STAT3, IRF2, PPARA, and
MZF1) in response to KPNA2 silence in U2OS and MG-63 cells. (d) Expression of IRF2 mRNA in OS and nontumor tissues based on
data from GSE36001 dataset. (e) The negatively correlation between KPNA2 and IRF2 was analyzed under a Pearson correlation analysis
according to TARGET database. (f) IRF2 mRNA expression in 25 pairs of OS and normal samples. (g) The enrichment of IRF2 bind on
the KPNA2 promoter was significantly reduced in two OS cell lines when compared to hFOB1.19 cells from ChIP and qRT-PCR assays.
(h) Luciferase assays were performed to detect the luciferase activity of KPNA2-WT and KPNA2-MUT after IRF2 overexpression in
U2OS and MG-63 cells. The data was presented as the mean ± SD from three independent experiments ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p <
0:001.
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dramatically elevated in OS samples compared to normal
samples. Although KPNA2 has been shown to be frequently
expressed in OS as a new marker for the diagnosis, as well as
in chondrosarcoma and Ewing sarcomas [27], the functions
of KPNA2 in osteosarcoma are unclear. In the present study,
data mining and bioinformatics analysis indicated that
KPNA2 was overexpressed in OS patients from GSE36001
dataset, and the experiments verified high KPNA2 level in
clinical OS samples and OS cell lines. Furthermore, KPNA2
knockdown inhibited the proliferation, migration, and inva-
sion in two OS cell lines, and remarkably reduced tumor
weight and tumor volumes in vivo. These findings revealed
that KPNA2 might play a crucial role in the biological prog-
ress of OS.

Interferon regulatory factor-2 (IRF2) exerted antitumor
effects in several human cancers. For example, IRF2 could
suppress cell proliferation and migration ability and promote
cell apoptosis in nonsmall cell lung cancer cells [28]. IRF2
might play as a tumor suppressor by regulating P53 signaling
in gastric cancer [29]. Furthermore, IRF2 was shown to serve
as a tumor suppressor in patients with hepatocellular carci-
noma, whose inactivation led to impaired TP53 function
[30]. The current study highlighted that KPNA2 could nega-
tively alter IRF2 expression in OS cells. Meanwhile, by data
mining in the GSE157322 and TARGET datasets, we discov-
ered that IRF2 could bind to the KPNA2 promoter and acti-
vate KPNA2 expression by bioinformatic analysis for TF
prediction. This underlying mechanism was consistent with
a previous report that IRF2 could bind to the miR-1227
promoter, thus inhibiting tumor growth [21]. Furthermore,
IRF2 was obviously downregulated, which was negatively
associated with KPNA2 in OS. More importantly, IRF2
knockdown promoted malignant behaviors, which were
seemingly suppressed by KPNA2 knockdown. These rescu-
ing effects of IRF2 on KPNA2 were also reflected in tumor
growth in vivo. These findings demonstrated that IRF2
silence might partially attenuate the impact of KPNA2
knock-down on osteosarcoma progressions.

EMT is regulated by various signaling pathways, includ-
ing NF-κB, Wnt, and transforming growth factor-β [13]. In
our study, the key outcome is that migration and invasion of
OS cells were significantly inhibited by deletion of KPNA2,
which also resulted in a decrease in the EMT characteristics
of OS cells; epithelial cell markers were increased, and mes-
enchymal markers were decreased. However, the opposite
results were found after IRF2 was knocked down. KPNA2
and IRF2 have opposite regulatory effects on the activation
of EMT progress of OS cells. Thus, KPNA2 might contribute
to the progression of OS by negatively regulating IRF2 via
promoting EMT.

KPNA2 is involved in the nucleocytoplasmic transport
pathway of multiple tumor-associated proteins and is
overexpressed in various cancers thereby being suggested
as a prospect in the diagnosis and treatment of cancer
[6]. Given that IRF2 has the ability to exert antioncogenic
activities, IRF2 overexpression led to a dramatic cell death
response by apoptosis in hepatocellular carcinoma [31].
These are consistent with our results of functional enrich-
ment, showing these genes are related to DNA replication
and cell cycle processes. Furthermore, it could be observed
that KPNA2 was positively correlated with plasma cell
level, while IRF2 had a negative relationship with plasma
cell level. Infiltrating immune cell subsets detected by
CIBERSORT analysis can reflect the time course of innate
and adaptive immune responses in OS. CIBERSORT may
have the potential to characterize the detail of infiltrating
immune cells in OS tissues and provide novel insights into
the pathogenesis of OS. To our knowledge, these two
genes are the first to link immune cell levels in the osteo-
sarcoma microenvironment in this study, with the hope of
providing guidance for the next study of relevant molecu-
lar mechanisms.

However, most of the experiments in our study are per-
formed using isolated tumor cell lines cultured in vitro or
immunodeficient nude mice with human U2OS xenografts,
which do not account for any tumor-extrinsic effects that

shKPNA2 + shIRF2

HE

KI67

shIRF2shCN shKPNA2

100 um
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(g)

Figure 3: Effects of IRF2 and KPNA2 on cell proliferation, colony formation, and tumor growth of OS cells in vitro and in vivo. (a) Western
blot and RT-qPCR analyses were performed to measure the relative mRNA and protein levels of IRF2 in four OS cell lines including U2OS,
HOS, Saos2, and MG-63 control to the hFOB1.19 cells. (b) U2OS cells were cotransfected with shKPNA2 or shIRF2 plasmids, and the
protein expression of KPNA2 and IRF2 was assessed using western blotting assay. (c) Cell viability was determined using an CCK-8 kit
at different time points. (d) Cells were seeded in plates and grown for 14 days. (Left) Cell colonies were stained with 0.1% crystal violet.
(Right) Colony numbers were quantified. (e–f) In vivo tumor growth. U2OS cells were injected into mice and tumor weight (e) and
tumor volumes (f) were measured every 5 or 3 days for 24 days posttumor inoculation. n = 3. (g) Tumor tissues were separated from
mice for HE and IHC staining for detecting KI67 expression. Scale bar = 100um. The data was presented as the mean ± SD from three
independent experiments ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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the candidate signaling pathway may have on immune cell
interactions with tumor cells. This limitation suggests that
studying tumor-immune interactions will be a potential
future direction that will extend from this study.

Taken together, our results illustrated that KPNA2 regu-
lated OS development, as well as IRF2 play a potential
upstream TF of KPNA2 in regulating EMT progress. This
may provide a novel target for OS therapy. Therefore, the

treatment of OS with restraint of KPNA2 or IRF2 overex-
pression may be extra to other therapeutic interventions
for the development of this disease.

Data Availability

All data in the results of this study can be obtained on a rea-
sonable request from the corresponding authors. Public data
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sources include GSE36001, GSE157322, and TARGET data-
base online.
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Supplementary Materials

Supplementary Figure 1. Identification of KPNA2 transcrip-
tion factor (TF). (a) Venn diagram displayed the overlap
among differentially expressed protein-coding genes (DEGs)
from GSE157322, KPNA2 positive-related genes from TAR-
GET dataset and TF factors of KPNA2 from online TFBIND
dataset. (b) Expression of IRF2 mRNA in OS and nontumor
tissues based on data from the GSE36001 dataset. (c) The
mRNA expression of MYB in response to KPNA2 silence
in U2OS and MG-63 cells. Data were presented as mean ±
SD from three independent experiments. ∗p < 0:05, ∗∗p <
0:01 and ∗∗∗p < 0:001. (Supplementary Materials)
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