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Objectives. Te most common subtype of renal cell carcinoma, clear cell renal cell carcinoma (ccRCC), has a high heterogeneity
and aggressive nature. Te basement membrane (BM) is known to play a vital role in tumor metastasis. BM-related genes remain
untested in ccRCC, however, in terms of their prognostic signifcance. Methods. BM-related genes were gleaned from the most
recent cutting-edge research. Te RNA-seq and clinical data of the ccRCC were obtained from TCGA and GEO databases,
respectively. Te multigene signature was constructed using the univariate Cox regression and the LASSO regression algorithm.
Ten, clinical features and prognostic signatures were combined to form a nomogram to predict individual survival probabilities.
Using functional enrichment analysis and immune-correlation analysis, we investigated potential enrichment pathways and
immunological characteristics associated with BM-related-gene signature. Results. In this study, we built a model of 20 BM-related
genes and classifed them as high-risk or low-risk, with each having its anticipated risk profle. Patients in the high-risk group
showed signifcantly reduced OS compared with patients in the low-risk group in the TCGA cohort, as was confrmed by the
testing dataset. Functional analysis showed that the BM-based model was linked to cell-substrate adhesion and tumor-related
signaling pathways. Comparative analysis of immune cell infltration degrees and immune checkpoints reveals a central role for
BM-related genes in controlling the interplay between the immune interaction and the tumor microenvironment of ccRCC.
Conclusions. We combined clinical characteristics known to predict the prognosis of ccRCC patients to create a gene signature
associated with BM. Our fndings may also be useful for forecasting how well immunotherapies would work against ccRCC.
Targeting BM may be a therapeutic alternative for ccRCC, but the underlying mechanism still needs further exploration.

1. Introduction

Approximately 2%–3% of all adult urinary malignancies are
renal cell carcinomas (RCC), which are cancers of the
kidneys [1]. By 2022, It is estimated that 79,000 additional
cases of RCC will be detected in the United States [2]. Clear
cell RCC (ccRCC), which accounts for approximately 70%, is
the most frequent subtype. Despite advancements in urology
technology, the prognosis of advanced RCC remains

unfavorable [3]. Terefore, exploring new biomarkers for
prognosis prediction and immunotherapy for ccRCC is
crucial.

Te tumor microenvironment (TME), which consists of
an extracellular matrix (ECM), is strongly associated with
cancer development [4]. Basement membrane (BM),
a widely distributed ECM, plays an important role in bi-
ological systems, such as resisting mechanical stress, dic-
tating tissue shape, and creating difusion barriers [5]. Te
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main structural backbone of BM is laminin, collagen IV,
nidogens, proteoglycans, and growth factors. As reported in
existing studies, abnormalities in the chemical and me-
chanical properties of the BMs are associated with various
diseases including malignant tumors [6–9]. Te efect of
ECM components on various RCC cell lines is heteroge-
neous [10], in which BM integrity can serve as a good
prognostic marker in RCC [11]. Jayadev R et al. defned and
created an extensive network of 224 BM-related genes and
further identifed their growing association with human
disease [12]. Although many studies have investigated
prognostic risk signatures of ccRCC previously, none have
attempted to develop a prognostic risk signature with BMs in
ccRCC, and it is still unclear if these BM-related genes afect
patient prognosis.

In this investigation, this bioinformatics analysis was
carried out in this work by creating a separate prognostic
BM-related gene signature in ccRCC utilizing Te Cancer
Genome Atlas (TCGA) database and confrming it in the
Gene Expression Omnibus (GEO) database. Ten, by
combining clinical data and prognostic signatures, a novel
nomogram was created to predict individual survival rates.
Using functional enrichment analysis and immune-
correlation analysis, we investigated potential enrichment
pathways and immunological characteristics linked with
BM-related-gene signature.

2. Methods

2.1. Data Collection. RNA-Seq data profles and corre-
sponding clinical information for kidney renal clear cell
carcinoma (KIRC) were downloaded from the TCGA
dataset (https://portal.gdc.cancer.gov/) [13]. We also
downloaded GSE29609 consisting of 39 KIRC tissues from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/) for
validation.Te RCC dataset contained 541 cancerous and 72
normal tissues, accompanied by clinical information. After
that, genes associated with BM were culled from the existing
literature [12] and listed in Supplementary Table S1.

2.2. Construction of a Prognostic BM-Related Gene Signature.
To identify BM-related DEGs in the TCGA cohort in tumor
and paracancer tissues, we used the limma package. To identify
potentially predictive genes associated with BM, we performed
a univariate Cox analysis of overall survival (OS) and displayed
the results with forest plots. By performing automatic feature
selection, LASSO Cox regression analysis, a method for
screening signatures with generally efective prognostication
performance, reduces estimated variance and avoids over-
ftting while providing an interpretable fnal model [14].Te R
package glmnet was utilized for the analysis, while LASSO
regression was utilized for feature selection. Using gene ex-
pression and the appropriate Cox regression coefcient,
a patient’s risk score was determined. Score� esum(expression of

each gene× corresponding coefcient) was the formula developed. Te
patients were then classifed into high- and low-risk categories
based on the median risk score. To further examine the dif-
ference in OS between high- and low-risk groups,

a Kaplan–Meier (KM) curve was constructed. To evaluate the
predictive power of the gene signature and risk score, the time
ROC (v0.4) analysis was performed.

2.3. Nomogram Establishment and Subgroup Analysis.
Te nomogram was built and calibrated using the survival
and rms packages in R version 4.1.0 using the multivar-
iable model coefcients. Harrell’s concordance index (C-
index) was used to evaluate the nomogram’s discrimi-
natory performance. To compile the clinical data, each
participant’s age, gender, race, pathological grade, T stage,
N stage, M stage, and survival information were docu-
mented. We performed dichotomies based on clinical
information for subgroup analysis. For continuous vari-
ables, the ROC curve is utilized to pick the appropriate
cut-of value. For categorical variables, we classifed them
based on the AJCC stage [15], WHO/ISUP classifcation
[16], and current research.

2.4. Protein-Protein Interaction (PPI) and Functional En-
richment Analyses. To learn more about the protein-protein
interactions among the shared prognostic DEGs, we con-
sulted the STRING database (http://www.string-db.org/).
Moreover, gene ontology (GO) and kyoto encyclopedia of
genes and genomes (KEGG) enrichment analyses were
performed on the DEGs using the cluster profler program.

2.5.CorrelationAnalysiswith Immune Infltration. Using the
TIMER, CIBERSORT, XCELL, and EPIC algorithms, we
explored the correlation between BM-related genes and the
degree of immune infltration. We also utilized violin plots
to assess the association between the expression of high- and
low-risk groups and immune checkpoints (PDCD1, CD274,
CTLA-4, TIGIT, LAG3, and CD28).

3. Results

3.1. Identifcation of Prognostic BM-Related Genes in the
TCGA Cohort. As part of the TCGA-KIRC cohort, 541
people with ccRCC were enrolled. We collected 224 BM-
related genes. 106 BM-related genes were identifed as DEGs
between ccRCC samples and paracancer samples (FDR< 0.05;
Figure 1(a)). Te univariate Cox regression analysis showed
that 30 BM-related DEGs were correlated with OS
(Figure 1(b)). Interactions of BM-related genes were visual-
ized with the PPI networks of the diferentially expressed BMs
comprising 30 nodes and 82 edges (Figure 1(c)).

3.2. Construction of a Prognostic Model for BM-Related Risk
Score. With the expression profles of the 30 genes men-
tioned above, we identifed a 20-gene prognostic model by
LASSO Cox regression analysis (Supplementary Figure S1
A-B). According to the median of the risk score (Risk
score � (0.0143) ∗ADAMTS2 + (0.0070) ∗ADAMTS4 +
(0.0135) ∗ADAMTS8 + (−0.0027) ∗COL15A1 + (−0.03)
35 ∗COL4A4 + (0.1376) ∗COL4A6 + (0.0038) ∗DCN + (0
.1922) ∗GPC2 + (−0.1173) ∗HMCN1 + (0.0026) ∗ ITGA5
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Figure 1: Identifcation of the candidate BM-related genes in the TCGA cohort. (a) Diferentially expressed genes associated with BM are
shown using a heatmap. (b) BM-related genes having signifcant predictive value based on OS are visualized in a forest plot. (c) Candidate
gene interactions are mapped out by the PPI network retrieved from the STRING database.
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Figure 2: Distribution and prognostic analyses of the 20-gene signature in the TCGA cohort and GSE29609 cohort. (a, b) Te distributions
of the risk scores and corresponding survival status of KIRC patients in the TCGA cohort. (c) KM curves for the OS of ccRCC patients in the
high- and low-risk group in the TCGA cohort. (d)Te AUC of time-dependent ROC curves confrmed the risk score’s prognostic efcacy in
the TCGA cohort. (e, f )Te distributions of the risk scores and corresponding survival status of the GSE29609 dataset. (g) KM curves for the
OS of patients in the high- and low-risk groups in the GSE29609 dataset. (h) Te AUC of time-dependent ROC curves confrmed the risk
score’s prognostic efcacy in the GSE29609 dataset.
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+ (0.0101) ∗ ITGAX + (0.0137) ∗MEGF6 + (0.2590)
∗MMP21 + (0.0003) ∗MMP7 + (0.0244) ∗NELL1 + (−0.0
181) ∗NPNT + (0.0109) ∗PXDN + (0.0022) ∗ SEMA3B +
(0.0013) ∗VCAN+ (−0.0048) ∗VWA1), patients were
stratifed into high-risk group (n � 263) and low-risk
groups (n � 264) (Figure 2(a)). As shown in
Figures 2(b)–2(c), prognosis and risk score were negatively
correlated (p< 0.001). Te defned 20-gene signature was
found to be highly efective at predicting the OS for ccRCC
patients, as shown by the AUC (AUC � 0.741, 0.715, and
0.720; at 1, 3, and 5 years, respectively, Figure 2(d)).
Te BM-related genes signature’s predictive signifcance
was further verifed in the GSE29609 dataset (Figures 2(e)–
2(h)). Te survival curve confrmed that patients at high
risk had a poor prognosis (p � 0.019; Figure 2(g)). Te
AUCs were 0.594, 0.683, and 0.766 at 1, 3, and 5 years,
according to the time-dependent ROC curve (Figure 2(g)).
Particularly, in the high-risk group, the expression of the
14 risk genes rose, whereas the expression of the six
protective genes increased in the low-risk group (Sup-
plementary Figure S2).

3.3. Independent Prognostic Value of the 20-Gene Signature
and Subgroup Analysis. Te independent predictive signif-
cance of the 20-gene signature for OS in the risk model was
evaluated using multivariate and univariate Cox regression
analysis. Univariate cox analysis revealed that risk score, age,
grade, and TNM stage are the prognosis-associated factors
(p< 0.001; Figure 3(a)). In the multivariable competing-risks
regression model predicting OS, the risk score is still an in-
dependent predictor for OS (Figure 3(b)). Moreover, we stared
into whether the prognostic signature was linked to the onset
and progression of KIRC. Grade, T stage, N stage, and M stage
were all signifcantly diferent between high- and low-risk
groups (all p< 0.001). However, age and gender were not
signifcantly diferent (p> 0.05) (Figures 3(c)–3(d)).Moreover,
their prognostic signifcance in subgroups was also examined
by a stratifcation study. Our research demonstrated that the
BM-based signature performed exceptionally well at predicting
outcomes in age≥ 60, age <60, male, female, white, Grade I-II,
Grade III-IV, T1-T2, stage T3-T4 stage, N0-NX stage,M0 stage,
and M1 stage (all p< 0.05). However, BM-related genes have
a poor predictive track record in the N1 and not-white
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Figure 3: Results of Cox regression for risk factors for ccRCC. (a) Outcomes from a univariate Cox regression study of OS in a cohort of
patients with ccRCC based on risk signature score and clinical factors. (b) Results of stepwise multivariate cox regression analysis. (c, d)
Correlation of risk group and clinical traits.
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populations (p> 0.05; Figure 4). All independent predictors of
OS in the training cohort were integrated to create the no-
mogram.Te inclusion criteria in the nomogram included risk
score, age, gender, race, grade, Tstage, N stage, and M stage, as
shown in Figure 5(a). Te C-indexes for the nomogram pre-
dictions were 0.776 (95% CI: 0.742–0.810) for the OS. As
indicated by the OS calibration plots, the nomogram might
accurately estimate the mortality (Figure 5(b)).

3.4. Functional Enrichment Analysis. 20 genes between the
high- and low-risk groups were used for GO and KEGG
analysis, which shed light on the relationship between risk
scores and biological pathways and functions. GO enrich-
ment analysis of the biological process (BP) and molecular
functions (MF) showed that DEGs were involved in the

tumor cell migration, including cell-substrate adhesion,
extracellular matrix structural constituent, and metal-
lopeptidase activity (p< 0.05; Figure 6(a)). Additionally,
KEGG enrichment analysis revealed that elements related to
tumor invasiveness and metastasis, such as ECM-receptor
interaction, focal adhesion, and PI3K-Akt signaling path-
way, were signifcantly enriched (p< 0.05; Figure 6(b)).

3.5. Association between BM-Related Genes and Immune
Cells. We used TIMER, CIBERSORT, XCELL, and EPIC to
investigate the correlation between 20 genes and immune
cell infltration (Figure 7(a)). By CIBERSORT, CD4+ Tcells,
CD8+ T cells, NK T cells, regulatory T cells (Tregs), B cells,
monocytes, macrophages, and dendritic cells had higher
immunocyte infltration degrees in the high-risk group,

Race

Points

N

Sex

Grade

Age*

T**

Riskscore***

M***

Total points

150 200 250 300 350 400 450 500

10.80.60.40.20

1.6 21.20.80.40

0.80.40

1.60.8

00.8

0.4 0.80

13

0

nomcox coxph

20 40 60 80 100

0

10.80.7 0.90.60.50.40.30.1 0.20

0.0050.030.10.20.40.60.8
Pr (survival_time > 5)

Pr (survival_time > 3)

Pr (survival_time > 1)

0.94 0.9 0.84

0.568

0.728

0.899
0.7 0.5 0.3 0.14 0.06

0.98 0.96 0.94 0.9 0.8 0.7 0.6 0.4

317

(a)

1.0

0.8

0.6

O
bs

er
ve

d 
O

ve
ra

ll 
su

rv
iv

al
 (%

)

0.4

0.2

0.0

1.00.8

1-year
3-year
5-year

0.60.4
Nomogram-predicted Overall survival (%)

0.20.0

(b)

Figure 5: Building a nomogram of 20 BM-related genes. (a) A predictive nomogram for predicting 1, 3, and 5 years OS in ccRCC patients.
(b) Te calibration plots for predicting 1, 3, 5 years OS.

external encapsulating
structure organization

extracellular matrix
structural constituent

glycosaminoglycan binding

metalloendopeptidase activity
extracellular matrix

structural constituent
conferring tensile strength

collagen binding

0.1 0.2 0.3 0.4
GeneRatio

0.5 0.6

2e−10

4e−10

6e−10

p.adjust

70

60
50
40
30
20
10

Count

M
F

CC
BP

cell-substrate adhesion

endodermal cell
diferentiation

collagen-containing
extracellular matrix

basement membrane

endoplasmic reticulum lumen

collagen trimer

complex of collagen trimers

extracellular matrix
organization

extracellular structure
organization

(a)

0.2

Hypertrophic cardiomyopathy

ventricular cardiomyopathy
Arrhythmogenic right

cytoskeleton
Regulation of actin

Small cell lung cancer

Amoebiasis

absorption
Protein digestion and

Human papillomavirus infection

Focal adhesion

PI3K-Akt signaling pathway

ECM-receptor interaction

0.3 0.4
GeneRatio

0.5

2.0e−05
1.5e−05
1.0e−05
5.0e−06

p.adjust

Count
10
15
20
25
30

(b)

Figure 6: Analyses of GO and KEGGwith typical fndings. (a) Top 5 signifcant BP, MF, and CC terms in GO analyses. (b) Top 10 signifcant
KEGG signaling pathways.

Journal of Oncology 7



whereas endothelial cells, mast cells, and hematopoietic stem
cells had lower immunocyte infltration degrees in the low-
risk groups. Blocking immune checkpoint pathways is
currently thought to be a promising approach to achieving
antitumor immunity. We discovered that the expression of
PDCD1, CD274, TIGIT, CTLA-4, LAG3, and CD28 was
signifcantly diferent between the two groups of ccRCC
patients (Figure 7(b)). Te fndings suggest that BM-related
genes are actively involved in controlling how the immune
system interacts with ccRCC and how their TME develops.

4. Discussion

Tere were 224 BM-related genes examined, and of those, 30
DEGs were shown to be connected with ccRCC prognosis.
We used LASSO Cox regression to examine data from the
TCGA dataset to identify a 20-gene signature (ADAMTS2,
ADAMTS4, ADAMTS8, COL15A1, COL4A4, COL4A6,
DCN, GPC2, HMCN1, ITGA5, ITGAX, MEGF6, MMP21,
MMP7, NELL1, NPNT, PXDN, SEMA3B, VCAN, and
VWA1) in ccRCC patients. In the meanwhile, we used the
GSE29609 dataset to validate our risk score and showed that

it was efective for predicting ccRCC patients’ outcomes.Te
most important takeaway from our research is the devel-
opment of a novel BM-based predictive risk profle for
ccRCC.Tis provides a more precise estimation method and
a more personalized treatment strategy for the prognosis of
ccRCC patients. Te risk score is closely related to some
clinical features, such as pathological grade and TNM stage.
In diferent subgroups, the vast majority of high-risk groups
had worse survival prognoses than lower-risk groups, which
refects the representativeness of BM-related risk scores and
has important guiding signifcance in clinical practice.

In our model, all 20 genes are involved in human cancer
occurrence and development, half of which are closely re-
lated to RCC (ADAMTS2 [17], COL15A1 [18], COL4A4
[19], DCN [19], ITGA5 [20], ITGAX [21], MMP7 [22],
NELL1 [23], SEMA3B [24], and VCAN [25]).Te remaining
10 genes still have some papers on their roles in other types
of tumors. Cancer development and progression are linked
to ADAMTS (a disintegrin and metalloproteinase with
thrombospondin motifs) family genes, among which
ADAMTS2, 4, and 8 have been shown to have antitumor
angiogenesis efects [26–28]. MMP-7 also afects progression
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by regulating angiogenesis, making it a potential target for
RCC [22]. Moreover, the depletion of VCAN also markedly
reduced the invasion and migration of cells, which was
correlated with MMP7 reduction [25]. It has been reported
that deletion of COL15A1 modulates the tumor ECM and
leads to increased tumor growth in the mouse mammary
carcinoma model [29]. Te transcript levels of COL4A4 and
6 could act as potential indicators for early disease pro-
gression in ccRCC [30]. Yongcan et al. defned that DCN
defciency promotes RCC growth and metastasis through
the downregulation of P21 and E-cadherin [19]. Guoming
et al. verifed that GPC2, associated with most immune-
infltrating cells, is highly expressed in pan-cancer [31].
ITGA5 and ITGAX are members of the integrin family,
commonly used as receptors for the ECM and can be used as
a predictor of the prognosis of the RCC in other models. In
vitro and in vivo experiments have revealed ccRCC in-
hibition of SEMA3B associated with methylation through
promoter and intronic CpG islands [24]. It is yet unknown
how 20-gene signatures play a role in ccRCC.

GO enrichment analysis uncovered that BM-related
genes were mainly related to tumor cell migration, such
as cell-substrate adhesion, extracellular matrix structural
constituent, and metallopeptidase activity. Te result of
KEGG enrichment analysis indicated that BM-related
genes were mostly implicated in focal adhesion, PI3K-
Akt signaling pathway, and ECM-receptor interaction.
Te epithelial-to-mesenchymal transition (EMT), tumor
angiogenesis, and changes in the TME are only a few of the
multiple mechanisms that contribute to the evolution of
mRCC, which is crucially characterized by tumor cell in-
fltration and metastasis. Cellular signaling pathways, such
as PI3K-Akt-mTOR, play a prominent role in pathological
conditions of ccRCC. Te PI3K-Akt-mTOR pathway could
regulate cell proliferation, growth, cell size, metabolism,
and motility [32]. EMT is a self-regulated biological process
essential for tissue healing in which cells shed their epi-
thelial cell identity and acquire properties of mesenchymal
cells. Not only is EMT essential for development and
wound healing but it also plays a key role in tumor for-
mation and metastasis.

Although the efects of tumors on the ECM, especially
the BM, have been the focus of research over the recent
decades, it remains unclear whether tumor immunity is
modulated by BM-related genes. We discovered that CD4+
T cells, CD8+ T cells, Tregs, and macrophages were highly
enriched in both groups using risk group-based immu-
nological annotation analysis, which may indicate a po-
tential fundamental regulation between tumor immunity
and BM. T cells are major players in immune-mediated
cancer control and response to immunotherapy. Endo-
thelial BM on the blood and lymphatic vessels is a limiting
step for T cell entry into the TME. Besides its well-
documented functions in promoting tumor neoangio-
genesis, BMs have also been proposed to regulate the
function of T cells. BM not only regulates T cell adhesion
and migration but also directly regulates T cell activation,
function, proliferation, and survival. Evidence suggests
that Tregs have antitumor immunity, and an increased

density of macrophages is related to poor clinical prog-
nosis in ccRCC. M2-like macrophages can degrade the
tumor ECM, destroy the BM, and recruit immunosup-
pressor cells, all of which further promote tumor pro-
gression and distal metastasis. Currently, a variety of
innovative immunotherapies based on targeting immune
checkpoint inhibitors (ICIs) are in clinical development
and are used to treat mRCC patients, which was consistent
with our results that the expression of PD-1, PD-L1,
CTLA-4, TIGIT, LAG3, and CD28 have a prominent
diference between the two groups. Despite multiple lines
of evidence elucidating the functions of diverse immune
cells and ICIs in cancer, the underlying mechanisms re-
main poorly characterized in ccRCC and are lacking in the
feld of BMs.

In the present study, we shed light on the involvement of
BMs in ccRCC and developed a promising risk-prognostic
signature. In both the derivation and validation cohorts, this
model was found to be independently linked with OS.
Research in the molecular underpinnings of tumor im-
munity in ccRCC has been hampered by a lack of knowledge
about the relationship between tumor-associated BM genes
and the immune system.
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