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Renal cell carcinoma (RCC) is one of the top ten tumors over the world. RCC is not sensitive to radiotherapy and chemotherapy.
Terefore, it is necessary to fnd new targets for the treatment. CircRNAs are a special type of noncoding RNAs, which play
important roles in many types of cancer. In this study, we found circ_000558 was upregulated in RCC cells, and it elevated the
proliferation ability of RCC cells. Te relationship between miR-1225-5p and circ_000558 or ARL4C was predicted via circBank
and circular RNA interactome and confrmed by dual-luciferase reporter assay. Ten, the efects of circ_000558/miR-1225-5p/
ARL4C on RCC cell proliferation and apoptosis were assessed by CCK-8 assay.Te results revealed that the knockdown of ARL4C
signifcantly reduced RCC cell proliferation and overexpression of circ_000558 could signifcantly induce RCC cell proliferation
after miR-1225-5p treatment further promoted the inhibitory ability of ARL4C knockdown. Overall, our study suggested that
circ_000558/miR-1225-5p/ARL4C network was related to the RCC cell proliferation. Tis fnding could provide new targets for
the treatment and prognosis of RCC.

1. Introduction

Renal cell carcinoma (RCC) is the most common malignant
tumor of renal parenchyma, which is one of the top ten
tumors in the world, accounting for 3.7% of all new cancer
cases in recent years [1–3]. Despite the continuous im-
provement of diagnostic techniques, one-third of the pa-
tients still exert local progression or distant metastasis at the
time of initial diagnosis, and about one-fourth of the patients
with localized lesions or with feasible organ resection
eventually developed metastatic disease [4–6]. Te median
time of recurrence after surgery was 1.9 years [7]. RCC is not
sensitive to radiotherapy and chemotherapy, and the current
treatment options include surgical resection, immunother-
apy, targeted therapy, radiotherapy, and chemotherapy.
Surgery is the main treatment strategy for RCC, especially
the localized renal cell carcinoma [8, 9]. For patients with
locally advanced and metastatic renal cell carcinoma [10],
systematic treatment is required in addition to surgery to
reduce the recurrence or prolong the survival of patients

[11, 12]. Terefore, it is very necessary to explore the novel
occurrence, development, and prognostic mechanism of
RCC and to develop new targets for the treatment and
prognosis assessment of RCC.

Noncoding RNAs are a group of RNAs with gene ex-
pression regulation functions and without gene coding
functions [13]. Noncoding RNAs mainly contain long
noncoding RNAs, such as circRNAs [14] and lncRNAs [15].
Short noncoding RNAs mainly refer to microRNAs (miR-
NAs) [16]. CircRNA is a special type of noncoding RNA,
which has no free end and is difcult to be degraded by
exonuclease. It has a covalently bonded 3′ and 5′ ends to
form a covalently closed circular structure [17, 18]. Many
studies have shown that circRNAs exist in large and stable
quantities in eukaryotes, are involved in various cell bi-
ological activities and functions such as protein synthesis,
gene expression, and post-transcriptional modifcation, and
play a very important regulatory role [19–21]. Besides, many
studies have reported that circRNAs play a crucial role in the
pathogenesis of various tumors [22, 23].
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MiRNAs are a group of short noncoding RNA [24].
CircRNAs are reported to exert their function via inhibiting the
regulation role of miRNAs on their target genes. MiRNAs have
been widely investigated in many tissues and diseases, such as
bone marrow stem cells [25], neurons [26], intervertebral disc
[14], and RCC [27]. In renal cancer, circ_001895 and
circ_RNRIP1 can regulate cell proliferation and promote the
occurrence of renal cancer [28, 29]. However, the mechanism
of circRNA in regulating the development of RCC is still
unclear. In this study, we focus on the mechanism of
circ_000558 on the proliferation of RCC cells.

2. Materials and Methods

2.1. Cell Culture and Transfection. Human RCC cells
(ACHN, 786-O, 769-P, and Caki-1) and human renal epi-
thelial cells (HK2) were purchased from the ATCC (Man-
assas, VA, USA). Cells were cultured in Roswell Park
Memorial Institute (RPMI) 1640 medium (Gibco, USA),
supplemented with 10% fetal bovine serum (FBS) (Gibco,
USA) and maintained at 37°C and 5% CO2 incubator
(Termo, USA).

Te plasmid for circ_000558 overexpression, the small
interference RNAs (siRNAs) for circ_000558 and ARL4C
knockdown, the miR-1225-5p mimics, inhibitor, and neg-
ative control (NC) were synthesized by RiboBio company
(Guangzhou, China). After seeded into plates, the cells were
transfected by using Lipofectamine 2000 reagent (Life
Technologies, Carlsbad, CA) according to the manufac-
turer’s protocol [30].

2.2. Quantitative PCR (qPCR). TRIzol reagent (Invitrogen,
Life Technologies, Grand Island, USA) was used to extract
total RNA of cells according to the previous study [31, 32].
After extraction, 5 μg of total RNAs were incubated with 15-
unit RNase R for 15min at 37°C. circRNAs, mRNA, and
miRNA expression was detected by SYBR™ Green PCR
Master Mix (Bio-red, USA) on the ABI 7900HT (Applied
Biosystems, Foster City, CA). We normalized and analyzed
the relative expression data by using the equation
2−ΔΔCt [33].

To identify the expression location of circ_000558, we
isolated the nuclear and cytoplasmic fractions by NE-PER™
Nuclear and Cytoplasmic Extraction Reagents (Termo,
USA) following the manufacturer’s instruction. Te ex-
pression of circ_000558 in nuclear and cytoplasmic was
measured and U6 snRNA and 18S rRNA were used as
positive control for nuclear and cytoplasmic fractions,
respectively.

2.3. Cell Viability. Cells were seeded at a density of
1500 cells/well in 96-well plates and transfected by oligo and
plasmid. Ten, we added 10 μL of Cell Counting Kit-8
(CCK-8, Beyotime, Nantong, China) reagent into each well,
and the cells were maintained at 37°C for 2 h.Te absorbance
(450 nm) was measured by an enzyme-linked immunosor-
bent assay reader (Tecan, Männedorf, Switzerland) [34].

2.4. Apoptosis Assay. Flow cytometry was used to detect the
cell apoptosis. Te cells were stained by Annexin V-FITC
Apoptosis Detection Kit (Beyotime, Hangzhou, China)
according to the manufacturer’s protocol. Te samples were
further measured by fow cytometer (FACScan, BD Bio-
sciences, USA). Te data were analyzed by Cell Quest
software (BD Biosciences).

2.5. Dual-Luciferase Reporter Assay. Te sequences of wild-
type of circ_000558 and ARL4C 3′-UTR and mutation of
circ_000558 and ARL4C 3′-UTR containing binding sites
for miR-1225-5p were constructed. MiR-1225-5p mimics or
miRNA NC with the plasmid were cotransfected into the
cells. After transfection for 48 h, we detected the frefy and
renilla luciferase activities using the Dual Glo Luciferase
Assay System (Promega, WI, USA) according to the man-
ufacturer’s protocol [35].

2.6. Western Blot Assay. Total proteins were extracted using
RIPA Lysis Bufer supplemented with PMSF (Beyotime,
Hangzhou, China) as previously described [36, 37]. Te
concentration of total proteins was determined by a Brad-
ford protein assay (Beyotime, Hangzhou, China). Equal
protein was loaded and separated by SDS-PAGE and
transferred onto a polyvinylidene difuoride (PVDF)
membrane (Millipore, USA), and then it was blocked with
5% nonfat milk. Te membrane was incubated with primary
antibodies (ARL4C, Bcl-2, Bax, and cleaved Caspase-3) at
4°C overnight. After washing with PBS, the membrane was
incubated with secondary antibodies at room temperature
for 1 h. Te band was exposed by BeyoECL Plus (Beyotime,
Hangzhou, China) and analyzed by Quantity One software
(Bio-Rad, San Diego, CA, USA).

2.7. Tumor Xenograft in Nude Mice. Male nude BALB/C
mice (4 weeks old) weighed 16–20 g were purchased from
the Laboratory Animal Centre, Wuhan University. ACHN
cells (1 × 106) were injected into the right axillary region of
the nude mice. Te mice were randomly divided into 3
groups: control, siRNA-circ_000558 (si-circ), and si-
circ +miRNA-mimics. 10 μg si-circ or miRNA-mimics
were directly administered via intragastric injection into
si-circ group or si-circ +miRNA-mimics group mice after
7, 9, 11, 14, and 16 days of tumor growth, respectively. PBS
was used as a vehicle control. Te tumor volume was
measured every two days for tumor formation using cal-
ipers. After four weeks, the mice were sacrifced by ex-
posure to carbon dioxide for 10min after they were
anaesthetized with isofurane. Tumors were weighted and
photographed. All animal experimental procedures were
conducted in accordance with Chinese laws on experi-
mental animals and approved by the Ethics Committee of
Wuhan University.

2.8. Statistical Analysis. Graphpad prism 8.0 software
(GraphPad Software Inc., La Jolla, CA) was used to analyze
the data. All experiments were repeated three times. Data

2 Journal of Oncology



were showed as mean± SD. Student’s t-test was used for
analyzing the diferences between two groups. When P

< 0.05, the data were considered as statistically signifcant.

3. Results

3.1. circ_000558 Was Highly Expressed in RCC Tissues and
Cells. We frst analyzed the diferential expression circRNAs
in RCC tissues and matched nontumor tissues in GSE100186
[38]. We found that hsa_circ_000558 (circ_000558, also
named as hsa_circEIF4G3_054) was signifcantly upregulated
in RCC (Figure1(a)). To confrm the results of microarray, we
measured the expression of circ_000558 in RCC cells (ACHN,
786-O, 769-P, and Caki-1) and human renal epithelial cells
(HK2) by qPCR analysis (Figure 1(b)). Compared with HK2
cells, the expression of circ_000558 was much higher in RCC
cells (ACHN, 786-O, 769-P, and Caki-1) (Figure 1(b)).
Further studies showed that circ_000558 was mainly
expressed in the cytoplasm (Figures 1(c) and 1(d)). To further
confrm the existence of circ_000558, we preformed the
RNase R resistant experiments (Figures 1(e) and 1(f)). Te
results showed that the circ_000558 was resistant to RNase R
digestion (Figures 1(e) and 1(f)). Te above results showed
that circ_000558 was highly expressed in RCC tissues
and cells.

3.2. Knockdown of circ_000558 Suppressed the Proliferation of
RCC Cells. We preformed the knockdown experiments by
the specifc siRNA targeting circ_000558 (si-circ)
(Figure 2(a)). Ten, CCK-8 assay was used to test the cell
inhibition rate, and fow cytometry was applied to analyzed
the cell apoptosis of RCC cells. CCK-8 assay showed that
knockdown of circ_000558 signifcantly inhibited the cell
proliferation of RCC cells (Figure 2(b)). Te results of ap-
optosis assay indicated that knockdown of circ_000558
signifcantly increased the apoptosis rate of RCC cells
(Figure 2(c)). Western blot assay showed that the expression
of Bax and cleaved Caspase-3 was markedly upregulated,
and the expression of Bcl-2 was downregulated by
circ_000558 knockdown (Figure 2(d)). Te above results
suggested that knockdown of circ_000558 suppressed the
proliferation of RCC cells.

3.3. circ_000558RegulatedRCCCell ProliferationbyTargeting
miR-1225-5p. In this study, we aimed to investigate the un-
derlying mechanism of circ_000558 in RCC. To fnd the po-
tential target of circ_000558, we analyzed the downregulated
miRNAs in RCC tissues in the public Gene Expression Om-
nibus (GEO) dataset GSE23085 [39] andGSE16441 [40], which
is available from the website (https://www.ncbi.nlm.nih.gov/
geo), and analyzed the predicted targetmiRNAs of circ_000558
by circBank and circular RNA interactome. Venn diagram
showed that miR-1225-5p overlapped among the four data-
bases (Figure 3(a)). qPCR results showed that the expression
level of miR-1225-5p in RCC cells was lower than that in HK2
cells (Figure 3(b)), and it was increased after circ_000558
knockdown by qPCR (Figure 3(c)). Ten, we further con-
frmed the relationship between circ_000558 andmiR-1225-5p

by dual-luciferase reporter assay. Te results showed that the
relative luciferase intensity was signifcantly reduced after
transfected with wild-type of circ_000558 and miR-1225-5p
mimics, and there was no signifcant alteration after mutation
type of circ_000558 and miR-1225-5p mimics transfection
(Figure 3(d)). Furthermore, we found that miR-1225-5p
mimics could suppress the cell proliferation of RCC cells and
miR-1225-5p inhibitor could signifcantly promote the cell
proliferation (Figure 3(e)). Overexpression of circ_000558
could reduce the inhibitory efects of miR-1225-5p mimics on
the cell proliferation of RCC cells (Figure 3(e)). Flow cytometry
results showed that overexpression of circ_000558 could re-
cover the apoptosis rate induced by miR-1225-5p mimics
(Figure 3(f)). Te results indicated that circ_000558 could
regulate RCC cell proliferation by inhibiting miR-1225-5p.

3.4. Te Efects of circ_000558/miR-1225-5p on In Vivo
Growth of RCC Cells. We further evaluated the efect of
circ_000558/miR-1225-5p on in vivo tumor growth in mice
(Figure 4(a)). Knockdown of circ_000558 signifcantly
inhibited tumor growth, and overexpression of miR-1225-5p
signifcantly enhanced the inhibitory efects of circ_000558
knockdown on tumor growth (Figures 4(b) and 4(c)). Te
results indicated that circ_000558 regulated the tumor
growth by targeting miR-1225-5p.

3.5. ARL4C Was a Potential Target of miR-1225-5p. To
further investigate the function of miR-1225-5p, the po-
tential target genes of miR-1225-5p were predicted by using
TargetScan7.2 and Targetprofler, and the upregulated genes
in RCC tissues were analyzed in GSE16441 [41] and
GSE100666. Te results showed that two potential target
genes (ARL4C and SEL1L3) were overlapped among the
four databases (Figure 5(a)). Ten, we analyzed the ex-
pression of ARL4C and SEL1L3 by TCGA analysis in
UALCAN.Te results showed that the expression of ARL4C
and SEL1L3 was upregulated in RCC tissues (Figures 5(b)
and 5(c)). ARL4C was signifcantly associated with overall
survival (p � 0.00074), while SEL1L3 was not signifcantly
associated with overall survival (p � 0.87) (Figures 5(d) and
5(e)). Tus, we chose ARL4C for further analysis. We
confrmed the relationship between ARL4C and miR-1225-
5p by using dual-luciferase reporter assay. Te results
showed that the luciferase intensity signifcantly reduced
after wild-type of ARL4C 3′-UTR and miR-1225-5p mimics
cotransfection, and there was no signifcant change after
mutation type of ARL4C 3′-UTR and miR-1225-5p mimics
(Figure 5(f)). Tese results revealed that ARL4C was a po-
tential target of miR-1225-5p in RCC cells.

3.6. circ_000558/miR-1225-5p/ARL4C Regulated RCC Cell
Proliferation. Ten, we further investigated the roles of
circ_000558/miR-1225-5p/ARL4C in cell proliferation of
RCC cells. First, western blot assay showed that ARL4C was
highly expressed in RCC cells (Figure 6(a)). Next, we found
that the expression of ARL4C was signifcantly decreased
after the cells transfected with si-ARL4C in RCC cells
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Figure 1: Te expression of circ_000558 in RCC cells. (a) Hot map showed the diferential expressed circRNAs between RCC tissues and
matched nontumor tissues in GSE100186. (b) Te expression of circ_000558 in RCC cells (ACHN, 786-O, 769-P, and Caki-1) and human
renal epithelial cells (HK2) was tested by qPCR. ∗p< 0.05 and ∗∗∗p< 0.001 compared to HK2 cells. (c, d) Te expression location of
circ_000558 in 769-P (c) and ACHN cells (d) was tested by qPCR analysis. (e, f ) Te expression of circ_000558 in 769-P cells (e) and ACHN
cells (f ) after RNase R digested was tested by qPCR assay. ∗∗p< 0.01; ns, no signifcant diference.
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Figure 2: Continued.

Journal of Oncology 5



(Figure 6(b)). Furthermore, we found that knockdown of
ARL4C signifcantly reduced cell proliferation and over-
expression of circ_000558 could signifcantly reverse the
reduced cell proliferation after ARL4C knockdown, which
was recovered by miR-1225-5p mimics (Figure 6(c)).
Meanwhile, knockdown of ARL4C signifcantly increased
the cell apoptosis and overexpression of circ_000558 could
signifcantly decrease the increased cell apoptosis after
ARL4C knockdown, which could be recovered by miR-
1225-5p mimics (Figure 6(d)). Te results showed that
circ_000558 could regulate the cell proliferation of RCC cells
via miR-1225-5p/ARL4C pathway.

4. Discussion

CircRNAs have been originally regarded as by-products of
aberrant splicing [42, 43]. Recently, a growing number of

studies have shown that circRNAs are usually diferentially
expressed in diferent cancers and exert important roles in
many cellular activities and exhibit a strong relationship
with the development of cancers [44, 45]. For example,
increasing evidences have demonstrated that circRNAs have
been demonstrated to play important roles in RCC devel-
opment [46–48]. In spite of several recent studies that have
suggested their circRNA-miRNA-mRNA regulatory net-
work in RCC, the current knowledge of circRNA-associated
ceRNA network in RCC is still inadequate, which needs to be
further investigated. In our study, hsa_circ_000558 was
signifcantly upregulated in RCC tissues and cells, and
knockdown of circ_0000558 signifcantly suppressed the cell
proliferation of RCC cells. Te result suggested that
circ_0000558 was related to the occurrence and develop-
ment of RCC. However, the roles of circ_000558 were still
unclear and need further investigation.
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Figure 2:Te efects of circ_000558 on cell proliferation and apoptosis in RCC cells. (a)Te expression of circ_000558 in 769-P and ACHN
cells after transfected with si-NC and si-circ_000558 (si-circ) was tested by qPCR analysis. (b)Te inhibitor rate of cell proliferation in 769-P
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Figure 3: circ_000558 regulated RCC cell proliferation by inhibiting miR-1225-5p. (a) Venn diagram showed the overlapped potential
target miRNAs in GSE23085, GSE16441, circBank, and circular RNA interactome. Te binding site between miR-1225-5p and circ_000558
was shown. (b)Te expression of miR-1225-5p in renal carcinoma cells (ACHN, 769-P, and Caki-1) and human renal epithelial cells (HK2)
was tested by qPCR analysis. (c) Te expression of miR-1225-5p in 769-P and ACHN cells after control and circ_000558 overexpression
plasmid transfection was measured by qPCR. (d) Te relative luciferase intensity in 769-P and ACHN cells after wild-type of circ_000558
(circ-WT) or mutation type of circ_000558 (circ-Mut) and miR-1225-5p mimics (miR-mimics) cotransfect was tested by dual-luciferase
reporter assay. (e) Te cell viability of 769-P and ACHN cells after miR-mimics, miR-inhibitor, or miR-mimics + ov-circ transfection was
tested by CCK-8 assay. (f ) Te cell apoptosis of 769-P and ACHN cells after miR-mimics, miR-inhibitor, or miR-mimics + ov-circ
transfection was tested by fow cytometry. (∗∗p< 0.01; ∗∗∗p< 0.001).
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Multiple studies have confrmed that CircRNAs always
act as miRNAs inhibitor by sponging miRNAs. Terefore,
potential miRNAs of circ_000558 were predicted in our
study. We found that circ_000558 could bind with miR-
1225-5p and then inhibit the expression of miR-1225-5p. In
our study, overexpression of circ_000558 could signifcantly
reduce the suppressive efects of miR-1225-5p on the cell
proliferation of RCC. Tus, miR-1225-5p might be a po-
tential target of circ_000558 on the cell proliferation of RCC.

miRNAs always act as a gene suppressor by binding to
the 3′-UTR of target mRNAs [49, 50].Tus, we predicted the
potential target genes of miR-1225-5p in RCC cells. We
found that miR-1225-5p could bind to the 3′-URT of
ARL4C, which was upregulated in RCC cells. ARL4C be-
longs to the ADP-ribosylation factor (ARF)-like 4 protein
subfamily (ARL4), which is a small GTP-binding (G) protein
[51]. Recent studies demonstrated that ARL4C promotes the
progression of lung cancers, colorectal cancers [52], and
gastric cancers [53]. In RCC, upregulated expression of
ARL4C is associated with poor prognosis and high possi-
bility of metastasis [54]. According to the TCGA analysis,
ARL4C was highly expressed in RCC tissues and signif-
cantly related with overall survival. Knockdown of ARL4C

could signifcantly reduce the RCC cell proliferation and
induce the cell apoptosis, which was restored by circ_000558
overexpression. Taking all these data together, we success-
fully constructed a novel circRNA-miRNA-mRNA network
in RCC, which provided new insight into the underlying
molecular mechanism of RCC. Our study proposed
circ_000558/miR-1225-5p/ARL4 network in RCC, which
might be applied to investigate the underlying mechanism of
circRNA-miRNA-mRNA network in the occurrence and
development of other cancers. However, more eforts need
to be taken to identify the functions of the established
network in RCC by performing further experiments. Be-
sides, the diagnostic and prognostic values of RNAs in the
established networks should be assessed by using plenty of
clinical data of patients in the future, which help to develop
potential diagnostic and prognostic biomarkers for RCC. In
conclusion, the abnormally expressed circ_000558 inhibited
the expression of miR-1225-5p and then upregulated the
expression of its target gene, ARL4C, to promote the pro-
liferation of RCC cells. Te mechanism of circ_000558/miR-
1225-5p/ARL4C might be associated with the development
and occurrence of RCC. However, this supposition needs
more experiments to demonstrate.
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Figure 4: Te efect of circ_000558/miR-1225-5p on RCC tumor growth in vivo. (a) Te tumor tissues of control, si-circ, and si-circ +miR-
mimics groups. (b) Tumor volume was measured every two days (n� 6). (c) Tumor weight was measured (∗∗p< 0.01, ∗∗∗p< 0.001).
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Figure 5: ARL4C was a potential target gene of miR-1225-5p. (a) Venn diagram showing the overlapped potential target genes in
TargetScan7.2, Targetprofler, GSE16441, and GSE100666. Te binding site between miR-1225-5p, ARL4C, and SEL1L3. (b, c) Te ex-
pression profle of ARL4C (b) and SEL1L3 (c) in RCC samples by TCGA analysis. Blue, normal samples; red, tumor samples. (d, e) Efect of
ARL4C (d) and SEL1L3 (e) expression levels on renal carcinoma patients’ survival; red, higher expression; blue, lower expression. (f ) Te
relative luciferase intensity in 769-P and ACHN cells after wild-type of ARL4C (ARL4C-WT) ormutation type of ARL4C (ARL4C-Mut) and
miR-1225-5p mimics (miR-mimics) cotransfect was tested by dual-luciferase reporter assay (∗∗∗p< 0.001).
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