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Background. Te tumor microenvironment (TME) has gradually entered the vision of researchers and is becoming a vital part of
the occurrence of cervical squamous cell carcinoma (CSCC). However, understanding the specifc composition of TME still
confront enormous challenges, particularly immune and stromal components. Methods. In this study, we performed an un-
supervised cluster analysis to determine the immunogenic cell death-associated subtype of CSCC patients. Te diferences in
immune status, genomic alteration, and clinical outcomes between each subtype were compared. Subsequently, we screened vital
prognostic factors.Te HPA database was employed to verify the protein localization and the expression level between cancer and
adjacent tissues. Results. CSCC patients were divided into three subtypes according to the expression of immunogenic cell death-
associated genes. Cluster C has the highest survival rate because of the lower activation of tumor-related pathways. Te immune
score and stromal score of patients with Cluster B were the highest, so it may be considered that stromal tissue inhibits the anti-
tumor efect of immunocytes. In addition, we constructed a risk score based on immunogenic cell death-associated genes to screen
for vital markers. We systematically revealed the genomic alteration of vital markers. Conclusions. We have established a novel
immunogenic cell death-associated risk scoring system in CSCC, and the expression of immunogenic cell death-associated genes
may be a valuable biomarker for immunotherapy strategies. Our work may contribute to the development of new immuno-
modulators and develop new precision immunotherapies for CSCC.

1. Introduction

Cervical squamous cell carcinoma (CSCC) is a common
gynecologic tumor worldwide that is regulated by many
mechanisms and progresses slowly. According to the global
cancer statistics in 2021, the incidence and mortality of
CESC ranked second, and it is still one of the main causes of
female death [1]. Nevertheless, the specifc tumor patho-
genesis has not yet been fully explained; existing studies
generally believe that cervical squamous cell carcinoma is
mainly caused by HPV infection and DNA methylation of
involved genes [2, 3]. In most countries, common preventive
measures for CESC patients include HPV vaccination and

screening. Nevertheless, these measures help to reduce the
incidence of cancer through early cancer prevention but
have no therapeutic efect on CESC. Te incidence of
postoperative recurrence or metastasis in CESC patients is
high, and the 5-year survival rate is as low as 10–20% [4, 5].
In short, there is no better treatment for cervical squamous
cell carcinoma at present, so it is urgent to fnd new
prognosis and treatment indicators.

Tumor tissue includes not only malignant cells but also
tumor-related stromal cells and immunocytes, which to-
gether with cancer cells constitute the tumor microenvi-
ronment (TME) [6, 7]. TME has recently received extensive
attention, which provides new clues for tumor diagnosis,
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treatment, and prognosis [8, 9]. Stromal cells in the tumor
microenvironment have the potential to maintain cell
stemness and promote the spread of tumor cells at the site of
metastasis [10–12]. Te tumor microenvironment can be
estimated and quantifed by using the “ESTIMATE” algo-
rithm for calculating stromal and immune cells of malignant
tumors based on gene expression values [13]. Many studies
have shown that stromal score, immune score, and tumor
purity measurement, which are calculated by the “ESTI-
MATE” algorithm, can be used as prognostic tumor bio-
markers. For CESC patients, the tumor microenvironment
immunomodulators can be used to predict responses to
immunotherapy against PD-1/PD-L1 molecules [14, 15]. In
addition, the risk score based on TME was proved to be an
efective prognostic predictor of CESC patients [16–18].
However, the composition of TME is complex, with multiple
innate and adaptive immunocyte populations that afect
tumor immune escape and response to immunotherapy [19].
In addition, TME is characterized by multiple immuno-
suppressive factors. Terefore, it is necessary to explore and
clarify the internal and external factors involved in the
malignant transformation of tumors.

Immunogenic cell death is regulated by a series of
immune-stimulatingdamage-associated molecules, referred
to as immunogenic cell death-associated genes (ICDGs),
such as protein disulfde isomerase family A member 3
(PDIA3), tumor necrosis factor (TNF), and high mobility
group Box 1 (HMGB1) [20–22]. Previous studies have
shown that HMGB1 derived from CESC cells enhanced
irradiation resistance by activated CD8+ T cells, which re-
veals the importance of immunogenic cell death in clinical
therapy for CESC [23]. Te sensitivity of ICDGs to ICI
strongly depends on the immune response time, in which
immunocytes play an important role in the clinical efect
prediction of CESC [24]. Oltean et al. obtained 38 patients
with locally advanced cervical cancer who received cisplatin
neoadjuvant chemoradiotherapy and detected the expres-
sion of cell death markers. Although these markers cannot
predict the outcome of patients in terms of recurrence or
survival, many markers were signifcantly associated with
immune cell infltration. Measuring ICDmarkers can refect
the efect of treatment on the tumor microenvironment
through immunocytes’ recruitment and infltration [25]. In
this regard, evaluating diferent tumor immune microen-
vironments is benefcial to understand the immune char-
acteristics of diferent subtypes, optimize immunotherapy,
and improve the prognosis of CESC patients [26]. Although
a large number of immune-related biomarkers and prog-
nostic models have been developed [27, 28], few articles use
immunogenic cell death as an actionable target.

In this study, we comprehensively analyzed the char-
acteristics of 31 ICDGs genes to explore the predictive
performance of immunogenic cell death on tumor immune
microenvironment and clinical outcomes of CESC patients.
In addition, we constructed a risk-scoring model based on 31
ICDGs to evaluate the prognostic value of immunogenic cell
death in CESC. In a word, HMGB1 as the subject of our
investigation may provide new clues for exploring the po-
tential molecular mechanisms of diferent responses to

immunotherapy in CESC patients, thus providing new in-
sights into immunotherapy strategies for CESC.

2. Materials and Methods

2.1.Acquisition andPreprocessingDatasets. In this study, the
samples with no survival status or PFI< 30 days were
eliminated to ensure the accuracy of the datasets. First, the
RNA-Seq data of CSCC patients were downloaded from the
TCGA database (formatted as TPM and log (x+ 1) con-
version), and fnally, a total of 243 tumor samples were
included. Te GSE44001 dataset was downloaded from the
GEO database and grouped with the same admittance
standard as the verifcation queue. A total of 299 samples
were included. Using the combat function in the “sva”
package to remove batch efects on GSE44001 and TCGA-
CSCC, the modifed queues were named as a meta-cohort.
Te GSE168652 dataset contains CSCC single-cell RNA
transcriptome data and clinical data; its annotation in-
formation was obtained from the TISCH database. Cellular
localization immunofuorescence staining and IHC images
were from the HPA database. Mutation data (copy number
variations, single-nucleotide variants) are processed based
on the GSCA database. In addition, 31 immunogenic cell
death-associated genes (ICDGs) were identifed from the
relevant literature [29].

2.2. Unsupervised Clustering Algorithm for Identifying Mo-
lecular Subtypes. In the meta-cohort, unsupervised consis-
tent cluster analysis was performed to classify samples into
diferent subtypes based on 31 ICDGs. Te R package
“consensus PlusterPlus” was employed to determine the
number of molecular subtypes; 100 replicates were per-
formed, and pltem� 0.8. Principal component analysis
(PCA) was performed to verify whether each molecular
subtype was relatively independent from each other. To
verify the stability of the subtypes, GSVA was used to
evaluate the diferences in biological pathways between
subtypes. C2.cp.kegg.v7.0. symbols as a reference gene set
and FDR< 0.05 as a screening threshold. In this paper, the
log-rank test was employed for analysis, and the
Kaplan–Meier curve displayed the clinical prognosis of
patients in the dataset.

2.3. Identifcation of the Immune Microenvironment among
Molecular Subtypes. In the analysis of tumor microenvi-
ronment immunocytes’ infltration, we used several algo-
rithms, such as TIMER, CIBERSORT, QUANTISEQ, MCP-
counter, XCELL, and EPIC, to evaluate the abundance of
immunocytes in diferent samples. In addition, the ESTI-
MATE algorithm was used to calculate the immune score
and stromal score to refect the tumor microenvironment
status. Torsson et al. defned six immune characteristic
subtypes based on transcriptome profles of 33 solid tumors,
including: wound healing (Immune C1), IFN-gamma
dominant (Immune C2), infammatory (Immune C3),
lymphocyte depleted (Immune C4), immunologically quiet
(Immune C5), and TGF-beta dominant (Immune C6). We
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compared the known immune subtypes with our predicted
risk score, trying to reveal the subtype types represented by
the score.

2.4. Construction and Validation of Risk Scores. To quantify
the immune microenvironment status of each sample, we
constructed the ICDGs-base risk score. In this paper,
according to the expression of ICDGs, we employed the
TCGA database for the training cohort, and the GEO
database as the validation cohort for external verifcation.
Te Least Absolute Shrinkage and Selection Operator
(LASSO) model was employed to remove redundant genes
of ICDGs in the training cohort, and then the integration
coefcient and gene expression value were calculated by
multivariate Cox regression, and the risk scoring formula
was established. According to the median risk score of each
cohort, patients were divided into high-risk and low-risk
subtypes. Te time-dependent receiver operating charac-
teristic curve was plotted to compare the prediction ac-
curacy of the risk score and traditional clinicopathological
parameters. Te “survivalROC” package was used to draw
the ROC curve and calculate the area under the curve
(AUC). A prognostic-related nomogram was constructed
using the “replot” package and validated using calibration
curves.

2.5. Statistics. Kruskal–Wallis analysis was performed for
diferences between groups; χ2 test was used for associations
between covariables; the Kaplan–Meier method was used to
compare survival diferences between diferent groups; a p

value <0.05 was considered statistically signifcant.

3. Results

3.1. Construction of Immunogenic Cell Death-Associated
Molecular Subtype. PCA analysis found that the sample
information of the GSE44001 dataset and the TCGA-CSCC
dataset was not consistent, so we used the combat function
in the “sva” package to efectively reduce the batch efects on
GSE44001 and TCGA-CSCC (Figures 1(a) and 1(b)). Ten,
we merged the TCGA-CSCC and GSE44001 datasets into
a meta-cohort. In this study, a total of 31 immunogenic cell
death-associated genes were collected for further analysis.
Te network diagram displayed the correlation between
these genes and their prognostic and predictive performance
(Figure 1(c)). Since the clinical outcomes of CSCC patients
with diferent levels of immunogenic cell death were diverse,
we then conducted an unsupervised clustering analysis to
identify diferent immunogenic cell death patterns and
stratifed the patients into three clusters (Figures 1(d) and
1(e)).Te results of the PCA analysis suggested that the three
molecular subgroups were independent of each other
(Figure 1(f )). Te abovementioned results suggest that the
patients can be efectively divided into diferent molecular
subgroups according to the expression level of immunogenic
cell death-related genes.

3.2. Te Transcriptome Data of Immunogenic Cell Death-
Associated Molecular Subtypes. In order to further verify
the accuracy of subtype classifcation based on ICDG ex-
pression, the heatmap was employed to display the ex-
pression levels of 31 ICDGs in diferent subtypes and clinical
subtypes. We found that the expression of genes was dif-
ferent among diferent subgroups. For example, the TNF
gene was higher in Cluster A than in the other two sub-
groups, and the FOXP3 gene was the highest in Cluster B. In
addition, 31 ICDGs were found to be generally higher in
clusters A and B than in cluster C (Figure 2(a)). Among these
molecular subtypes, cluster C had a signifcant survival
advantage, while cluster A represented the worst clinical
results in the meta-cohort (Figure 2(b)).

3.3. ICDGs-Based Molecular Subtypes Refect Immunological
Characteristics. In order to explore the alteration of
immunocytes’ infltration of three molecular subtypes,
ssGSEA was performed to draw a box diagram of the
relative content of immunocytes in diferent subtypes
(Figure 2(c)). Te results displayed that almost all
immunocytes increased in cluster B, and the infltration of
immunocytes in cluster A was lower. However, the K-M
analysis showed that the survival rate of cluster A was
higher than that of cluster B. We speculated that immu-
nocytes’ infltration, such as M2 macrophage infltration,
promoted the tumor’s malignant degree. In addition, the
tumor microenvironment consists of immune cells and
stromal tissues. Te level of immunocyte infltration is not
the only prognostic factor. Terefore, we further detected
the expression levels of immunomodulators in diferent
molecular subtypes. Immunomodulators, such as CD274,
PDCD1, IDO1, etc., have signifcant diferences among the
three molecular subgroups (Figure 2(d)). Second, the HLA
recognition function refers to the unique synergy in the
immune response that is used to transmit information. Te
HLA family also alters (Figure 3(a)). Terefore, the
abovementioned results demonstrated that ICDGs par-
ticipate in the regulation of the tumor immune response.

Te tumor environment was also assessed using the
“ESTIMATE” algorithm; the immune score was the lowest
in cluster C. Ten, the stromal purity (StromalScore) and
tumor cell purity (ESTIMATEScore) in three clusters were
also evaluated. Te results displayed that the StromalScore
and ESTIMATEScore of cluster B increased, while the
StromalScore and ESTIMATEScore of cluster C decreased
(Figure 3(b)). Terefore, as mentioned above, it is possible
that the stroma tissue inhibits the immunocyte efect, and
thus the prognosis of cluster B is poor.

A GSVA enrichment analysis was performed to identify
the biological process of immunogenic cell death pathway.
Te results displayed that cluster A was enriched in tumor
activation pathways, such as the MAPK signaling pathway
and the JAK-STAT signaling pathway. On the other hand,
cluster B is signifcantly associated with immune exclusion,
such as autoimmune thyroid disease, antigen processing and
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presentation, and the toll-like receptor signaling pathway.
Cluster C showed lower carcinogenicity (Figure 3(c)–3(e)).
It is concluded that cluster C has a better clinical prognosis
than other groups because of its insensitive carcinogenic
pathway.

3.4. Identifcation and Validation of an ICDGs-Based Risk
Score. We constructed risk scores to quantify individual
levels of immunogenic cell death. Te LASSO algorithm
fnally screened seven candidate prognostic genes from
ICDGs.Ten, the multivariate Cox regression algorithm was
used to construct the risk-scoring model (Figure 4(a)). Te
integration coefcient of each gene is shown in Figure 4(b).

Risk score � (0.5885∗HMGB1) +(0.6328∗PDIA3)

+(0.4023∗TNF) +(0.3740∗TLR4)

− (1.3290∗ FOXP3).

(1)

According to the median risk score, patients were
classifed as either a high-risk group or a low-risk group.Te
scatter plot showed that the mortality rate is proportional to
the risk score (Figures 4(c) and 4(d)).Te heatmap shows the
expression levels of fve prognostic genes in the risk group.
HMGB1, PDIA3, and TNF were highly expressed in the
high-risk group, while TLR4 and FOXP3 were highly
expressed in the low-risk group (Figure 4(e)). According to
Kaplan–Meier analysis, the OS rate of high-risk patients was
signifcantly reduced (p value <0.001, Figures 5(c) and 5(d)).
In addition, the 1-year, 3-year, and 5-year OSs of AUC
values based on the TCGA-CSCC and GSE44001 cohorts
were shown in Figures 5(a) and 5(b). We further studied
whether the risk model had similar or better predictive
validity with other clinical parameters of CSCC. We
established a nomogram to predict the OS of patients, in-
cluding FIGO_stage and risk score (Figure 5(e)). Te cali-
bration chart shows that the mortality rate can be accurately
estimated by the nomogram (Figures 5(f) and 5(g)).
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Figure 1: Landscape of immunogenic cell death-associated genes in cervical squamous cell carcinoma. (a–b) Principal component analysis
verifed the sample distribution of two databases. (c) In the correlation among immunogenic cell death-associated genes, the size of the circle
represented the efect of each gene on clinical outcomes. (d–e) Unsupervised clustering of CSCC samples based on their immunogenic cell
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3.5. ICDGs-Based Risk Score Refects Immune Microenvi-
ronment Status. Next, we explored whether the constructed
risk score could be used to evaluate the tumor’s microen-
vironment status.We found that cluster B had the lowest risk
score, followed by cluster C, and cluster A was the highest-
scoring group (Figure 6(a)). Six immune characteristic
subtypes were defned by Torsson et al. We compared
known subtypes with our constructed risk score model. C1
(wound healing) scored the highest, while C4 (lymphocyte
depletion) scored the lowest (Figure 6(b)). Second, in the
high-risk group, the proportion of the C2 subtype (IFN-
gamma dominant) was 87%, and the proportion of the C1
subtype (wound healing) was 12%. In low-risk patients, the
proportion of the C2 subtype (IFN-gamma dominant) was
69%, and the proportion of the C1 subtype (wound healing)
was 30% (Figure 6(c)). Our results showed that the risk score
was negatively correlated with the immune score, stromal

score, and ESTIMATE score while positively correlated with
the tumor score, which also revealed the cause of poor
prognosis in high-risk patients (Figures 6(d)–6(g)). In ad-
dition, the TIMER, CIBERSORT, QUANTISEQ, McP-
counter, XCELL, and EPIC algorithms were performed to
estimate the abundance of immunocytes in diferent groups.
Figure 6(h) shows high levels of immune cell infltration in
the low-risk group and the opposite in the high-risk group.
Figure 6(i) shows that risk scores were negatively correlated
with the majority of immune cell infltration. Here,
immunocytes mostly refer to B cells and T cells.

3.6. 5-ICDGs Emphasize Genomic Heterogeneity in Gyneco-
logical Oncology. Te abovementioned results indicate that
the 5-ICDGs gene can be employed to predict the clinical
outcomes of CSCC patients. Nevertheless, its upstream
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Figure 2: Immunological characteristics of diferent molecular subtypes. (a) Te heatmap was performed to display the expression level of
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mutation information has not been clearly interpreted.
Terefore, this section introduces the 5-ICDGs of genomic
heterogeneity in gynecological oncology. Figure 7(a) shows
the landscape of mutations in gynecological tumors. Variant
classifcation in gynecological tumors is mainly due to
missense mutations. Te variant type is mainly SNP, and the
SNV class is mainly C>T and C>A. Te most common
mutation gene in 5-ICDGs is TLR4. Figure 7(b) shows that
5-ICDGsmutation frequency is the highest in uterine corpus
endometrial carcinoma (UCEC), followed by OV. Te 5-
ICDGs mutation frequency was low in cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC).
Figure 7(c) displayed copy number variation of 5-ICDGS in
gynecological tumors. Te light red represents heterozygous
amplifcation; the light green indicates heterozygous de-
letion; the dark red represents homozygous amplifcation;

the dark green represents homozygous deletion; the gray
represents no CNV occurrence. HMGB1 and PDIA3 mainly
occur by a heterozygous deletion in CESC, while TNF occurs
by a heterozygous amplifcation.

A heatmap displayed the functional (inhibited or acti-
vated) genes in at least 5 cancer types. Results show that 5-
ICDGs can be employed to activate apoptosis, the MT
pathway, the PAS-MAPK pathway, etc., and inhibit cell cycle
and DNA damage (Figure S1A). Figure S1B is a list of
targeted drugs for 5-ICDGS based on the GDSC database. In
addition, we explored diferences in the survival of gyne-
cologic tumors between gene mutations and wild-type and
found that UCEC tumors were more susceptible to muta-
tions (Figure S1C). Te abovementioned analysis results
suggest that patients with CESC may be less afected by gene
mutation because there are other regulatory pathways.
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3.7. HMGB1 is a Hub ICDGs with Tumor Promotion.
Analyzing the relationship between 5-ICDGS and the
clinical stage of gynecological tumors, we found that
HMGB1 has a more profound infuence on the clinical stage
of CESC (Figure S1D). In addition, the expression level of 5-
ICDGS in tumors and adjacent tissues of cervical squamous
cell carcinoma is shown in Figure 8(a), and the expression
level of HMGB1 in tumor tissues was increased, suggesting
that HMGB1 plays an indispensable role in tumors as
a cancer-promoting factor. Te protein-protein interaction
(PPI) network suggested that HMGB1 had the highest
weight in 5-ICDGS, so we performed an analysis on HMGB1
(Figure 8(b)). Figure 8(c) shows the localization of HMGB1

protein in A231 cells; the HMGB1 protein is targeted for
nucleoplasm. HE staining showed that glandular cells
accounted for 10%, squamous epithelia cells accounted for
5%, smooth muscle cells accounted for 65%, and other cells
accounted for 20% (Figure 8(d)). Consistent with the pre-
dicted results, immunohistochemistry showed that the
HMGB1 protein was highly expressed in tumor tissues and
low expressed in Paracancer tissues (Figure 8(e)). After
preprocessing scRNA-seq data based on strict quality
control indicators, tSNE technology was performed to vi-
sualize high-dimensionalscRNA-seq data and successfully
classify cells into seven subtypes, which were then annotated
as identifable cell types according to TISCH database
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information (Figure 8(f)). Te following main cell types
were characterized: CD8+ T cells, endometrial stromal cells,
endothelial, fbroblasts, malignant, mono/macro, and SMC.
Te high expression of the HMGB1 gene in stromal cells is
fully consistent with our previous speculation that stromal
tissue limits the anti-tumor efect of immunocytes.

4. Discussion

In view of the serious menace of cervical cancer to women’s
health and the lack of public understanding of the genetic
basis of cervical cancer, continuous work should be carried
out to fnd remarks that have a causal relationship with

cervical cancer [30, 31]. Tis study is one of such eforts
aimed at detecting new possible pathogenic genes for cer-
vical cancer using integrated genomics information. With
the growth of high-throughput omics datasets in cancer
research in recent years [32], it is well known that the ap-
plication of a single level of genome measurement alone is
not sufcient to completely solve the etiology of cancer
prognosis [33, 34]. Based on the TCGA omics data measured
on multiple platforms, we carried out in-depth research on
gene expression and clinical outcomes.

Immunocyte infltration in TME is considered to be
a vital factor in the response to immunotherapy [35]. In
recent decades, combinatorial evaluation of biomarkers for
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predictive responses has been better investigated. A well-
developed biomarker tool that stratifes patients with the
same type of cancer into diferent molecular subtypes may
allow for more reasonable and personalized treatment. In
our investigation, we noted the discriminative power of risk
scores in patients with similar expression levels of immune
checkpoint genes. Tis phenomenon also reveals a complex
crosstalk of immunogenic cell death between immune cell
infltration, immune checkpoint genes, and patient clinical
outcomes.

On the other hand, we learned that preexisting studies
have developed some immune-related prognostic models to
prove the relationship between the immune landscape and
cervical cancer progression. For example, Chen et al. con-
structed six lncRNA immunoprognostic features to predict
the prognosis of cervical cancer, revealing the association
between the occurrence of cervical cancer and an anti-tumor
immune efect [36]. Qi et al. employed the ESTIMATE
algorithm to calculate an immune risk score and construct
a nomogram model combining clinicopathological features
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for subsequent analysis. Tis nomogram model can efec-
tively predict the clinical outcomes of cervical cancer [37].
However, the correlation between their models and immune
infltration was not clearly identifed. In a recently published
paper, researchers reclassifed cervical cancer cohorts and
established genetic characteristics derived from the ESTI-
MATE algorithm or constructed a specifc TMEscore based
on immunocytes’ infltration mode to evaluate the re-
lationship between immunocytes’ infltration and prognosis
[38, 39]. Considering the relatively enormous diference
between tumors and normal tissues, we aim to explore the
heterogeneity of the tumor immune landscape. Notably, we
want to fnd vital genes with prognostic value, which may
not necessarily be included in the list of known immune-

related genomes used in previous studies [29]. Terefore, we
analyzed the prognostic value of 28 immunocytes and de-
veloped a new risk score signature by multivariate Cox
analysis. We comprehensively expounded the characteristics
of this feature from the perspectives of immunocyte in-
fltration, immunomodulator gene expression, tumor mi-
croenvironment score, GSVA algorism, and so on. In
addition, we verifed the infuence of key genes on the
progression of cervical cancer.

Te advantage of this study was to highlight the carci-
nogenic efect of cell death-related genes in cervical cancer
and to predict the efect of immunotherapy and the degree of
immune cell infltration, which is unique in previous studies.
Our research had some limitations. For example, patients in

TLR4
PDIA3
FOXP3
HMGB1

TNF

50 75250

56%
30%

23%
16%

10%

Top 10
mutated genes

3

2

1

0

Variant Classifcation
summary

Variant Classifcation

Missense_Mutation

0 20 40 60 80 10
0

12
0

Nonsense_Mutation
Frame_Shift_Del

Splice_Site
Frame_Shift_Ins
In_Frame_Del

0 20 40 60 80 10
0

12
0

14
0

SNP

INS

DEL

Variant Type

8

5

2

0

Variants per sample
Median: 1

0.
00

0.
25

0.
50

0.
75

1.
00

T>G
T>A
T>C
C>T
C>G
C>A

7
2

15
61

2
52

SNV Class

(a)

39

24

18

11

6

1

2

2

3

1

0

1

7 2 0

TLR4

PDIA3

FOXP3

HMGB1

TNF

M
ut

at
io

n 
fre

q.
 (%

) 10
8
6
4
2
0

SNV percentage heatmap

UCEC (n
=53

1)

OV (n
=41

2)

CESC
 (n

=29
1)

(b)

HMGB1

PDIA3

TLR4

FOXP3

TNF

CNV percentage in gynecological cancer

CE
SC

U
CE

C

O
V

Hete. Amp.

Homo. Amp.

Hete. Del.

Homo. Del.

None

(c)

Figure 7: Genomic heterogeneity in gynecological oncology. (a) Te landscape of genetic mutations in gynecological tumors. (b) Mutation
frequency of 5-ICDGS in 3 gynecological tumor species. (c) Copy number variation of 5-ICDGS in gynecological tumors.

10 Journal of Oncology



the TCGA cohort lack detailed support information, which
hinders a more systematic investigation of the clinical and
pathological features of CSCC patients. In addition, on
account of the relative paucity of cervical cancer public
datasets, the risk pattern can only be externally verifed by
one separate cohort. We assume that, although there is
insufcient external verifcation, the signature may be re-
liable. In such a difcult environment, we verify the mod-
eling algorithm. In the future, we will attempt to collect
a multicenter, large sample dataset to better verify our
conclusions.

5. Conclusion

In summary, our study proposes an immunogenic cell
death-associated signature that predicts the immune land-
scape, clinical outcomes, and response to immunotherapy,
regardless of the divergence of assays and platforms.
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