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Background. Cancer-associated fbroblasts (CAFs) have reported widely involved in cancer progression. However, its underlying
mechanism in gastric cancer is still not clarifed. Methods. Te data used in this study were all downloaded from the Cancer
Genome Atlas database. R software and the R packages were used for all the analyses. Results. In our study, we frst quantifed the
CAFs infltration using the ssGSEA algorithm. Te clinical correlation result showed that CAFs were associated with a worse
prognosis and clinical features. Pathway enrichment also indicated several oncogenic pathways in GC patients with high CAFs
infltration, including epithelial-mesenchymal transition (EMT), myogenesis, allograft rejection, the infammatory response, and
IL2/STAT5 signaling. Furthermore, FNDC1 and RSPO3 were identifed as the characteristic genes of CAFs through two machine
learning algorithms, LASSO logistic regression and SVM-RFE. Te following analysis showed that FNDC1 and RSPO3 were
associated with more progressive clinical features and had a good prediction efciency of the CAFs infltration status in GC
patients. Pathway enrichment and genomic instability were performed to explore the underlying mechanisms of FNDC1 and
RSPO3. Immune infltration analysis showed that CAFs were positively correlated with M2 macrophages. Moreover, we found
that the GC patients with low CAFs infltration were more sensitive to immunotherapy. Also, the CAFs, FNDC1, and RSPO3
could generate a certain efect on the sensitivity of doxorubicin, mitomycin, and paclitaxel. Conclusions. In summary, our study
comprehensively investigated the role of CAFs in GC, which might be associated with immunotherapy sensitivity. Meanwhile,
FNDC1 and RSPO3 were identifed as the underlying targets of GC.

1. Introduction

Gastric cancer (GC) is the ffth most common cancer around
the world, with over one million new cases diagnosed an-
nually [1]. Tere has been a noticeable increase in the in-
cidence of GC worldwide, along with its high mortality and
metastasis rate [1]. At present, surgery is still the frst-line
therapy option for early-staged GC and can lead to persistent
prognosis benefts [2]. Meanwhile, combined therapies,
including chemotherapy and targeted therapy, have also
prolonged the overall survival (OS) of advanced GC patients
[3]. Despite this, however, the fve years survival rate of
advanced GC patients is still less than 20% [3]. Terefore,

early diagnosis and precise therapy of GC patients remain
the focus of research.

Tumor cells are continuously afected by the tumor
microenvironment (TME) they exist in, the components of
which mainly consist of immune and stromal cells [4].
Cancer-associated fbroblasts (CAFs) are one of the most
prominent cell types in TME that can infuence tumor
progression in multiple manners [5]. CAFs can secrete
specifc biological factors such as EGF, TGF-β, and IL6 to
facilitate tumor malignant phenotype, including tumor
neovascularization and immune escape, leading to tumor
deterioration [6]. Meanwhile, CAFs can regulate tumor
metabolism. CAFs can enhance glycolysis and excrete plenty

Hindawi
Journal of Oncology
Volume 2023, Article ID 1424589, 14 pages
https://doi.org/10.1155/2023/1424589

https://orcid.org/0000-0001-7243-8659
https://orcid.org/0000-0002-5424-9050
mailto:929813607@qq.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1424589


of lactic acid and hydrogen ions, forming an acidic mi-
croenvironment to inhibit the activity of immune cells. Also,
the metabolites of lactic acid and pyruvate produced by
CAFs can be used as nutrients for tumor cells to stimulate
their growth [7]. Recently, increasing attention has been
paid to the role of CAFs in cancers for its diverse biological
functions. For instance, Liubomirski et al. found that in
breast cancer, the interactions between cancer cells and
CAFs can signifcantly enhance the prometastatic pheno-
types of the TME, further resulting in the higher angio-
genesis, migratory, and invasive potential of cancer cells [8].
In esophageal squamous cell carcinoma, Jolly et al. revealed
that CAFs can secrete IL-6 and exosomal miR-21 to induce
the generation of monocytic myeloid-derived suppressor
cells, which not only suppressed immune function but also
enhanced drug resistance [9]. However, few studies have
focused on the role of CAFs in GC, and therefore, it is
meaningful to explore the underlying efect of CAFs to guide
the treatment of GC.

Advancements in bioinformatic analysis provide a great
convenience for researchers in investigating the underlying
biological mechanisms of diseases [10]. In our study, we
quantifed the CAFs infltration using the ssGSEA algorithm
and comprehensively explored its role in GC. CFNDC1 and
RSPO3 were identifed as the characteristic genes of CAFs
through two machine learning algorithms, LASSO logistic
regression and SVM-RFE. Further following analysis
showed that FNDC1 and RSPO3 were associated with more
progressive clinical features and had a good prediction ef-
fciency of the CAFs infltration status in GC patients.
Pathway enrichment and genomic instability were per-
formed to explore the underlying mechanisms of FNDC1
and RSPO3. Immune infltration analysis showed that CAFs
were positively correlated with M2 macrophages. Moreover,
we found that the GC patients with low CAFs infltration
were more sensitive to immunotherapy. Also, the CAFs,
FNDC1, and RSPO3 could generate a certain efect on the
sensitivity of doxorubicin, mitomycin, and paclitaxel.

2. Methods

2.1. Available Data Acquisition. Te public transcription
profles and clinical information of GC patients were
downloaded from Te Cancer Genome Atlas database-
TCGA-STAD project. Te expression profle was in TPM
form and was annotated based on the Homo sapi-
ens.GRCh38.107.gtf fle. Clinical information was in a “bcr-
xml” fle and extracted using the Perl code. Diferentially
expressed genes (DEGs) analysis was performed using the
limma package with the threshold of |logFC|> 1 and
adj.P< 0.05. Te basic information of enrolled patients is
shown in Table 1.

2.2. Single Sample Gene Set Enrichment Analysis. Single
sample gene set enrichment analysis (ssGSEA) was used to
quantify the relative enrichment score of CAFs [11]. Te
genes used for quantifcation were ACTA2, FAP, PDGFRB,
CAV1, PDPN, PDGFRA, ZEB1, FOXF1, SPARC, MMP2,

and FN1 from the CellMarker website (https://bio-bigdata.
hrbmu.edu.cn/CellMarker/). Te metabolism and immune-
related pathways were also quantifed using ssGSEA analysis.

2.3. Pathway Enrichment Analysis. Pathway enrichment
analysis was performed using the gene set enrichment
analysis (GSEA) algorithm, and the analyzed gene set was
the Hallmark signature. Te terms with |normalized en-
richment score (NES)|> 1 and adj.P< 0.05 were considered
statistically signifcant.

2.4. Characteristic Gene Identifcation. Two machine
learning algorithms, LASSO logistic regression and support
vector machine recursive feature elimination (SVM-RFE),
were utilized to identify the characteristic genes of specifc
features [12]. Receiver operating characteristic (ROC) curves
were used to evaluate the prediction efciency of charac-
teristic genes. Principal component analysis (PCA) was
performed using the ade4 package in R environments.

2.5. Immune Infltration and Genomic Analyses. Te quan-
tifcation of the immune microenvironment of GC was
conducted using the CIBERSORTalgorithm, and 22 types of
infltrating immune cells were extracted [13]. Te scores of
TMB and MSI were downloaded from the TCGA database.
Te tumor stemness index mRNAsi and EREG-mRNAsi
were calculated according to the one-class logistic regression

Table 1: Basic information of enrolled patients.

Features Numbers (n) Percentage (%)

Age
≤65 197 44.5
>65 241 54.4

Unknown 5 1.1

Gender Female 158 35.7
Male 285 64.3

Grade

G1 12 2.7
G2 159 35.9
G3 263 59.4

Unknown 9 2.0

Stage

Stage I 59 13.3
Stage II 130 29.3
Stage III 183 41.3
Stage IV 44 9.9
Unknown 27 6.1

T stage

T1 23 5.2
T2 93 20.9
T3 198 44.7
T4 119 26.9

Unknown 10 2.3

M stage
M0 391 88.3
M1 30 6.8

Unknown 22 4.9

N stage

N0 132 29.8
N1 119 26.9
N2 85 19.2
N3 88 19.9

Unknown 19 4.3
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(OCLR) machine learning algorithm of the previous
study [14].

2.6. Immunotherapy and Drug Sensitivity Analyses.
Tumor Immune Dysfunction and Exclusion (TIDE) analysis
(https://tide.dfci.harvard.edu/) and submap algorithm were
utilized to evaluate the immunotherapy response rate of GC
patients. Drug sensitivity analysis was conducted based on
the data from the Genomics of Drug Sensitivity in Cancer
(GDSC) database (https://www.cancerrxgene.org).

2.7. Statistical Analysis. R software was responsible for all
the analysis. Here, the comparison with P value less than
0.05 was considered statistically signifcant. Te ggplot2
package was utilized for most plots [15]. Te correlation of
continuous variables was compared using the Spearman
method. Te comparison of variables with a normal dis-
tribution was performed using the Student’s T-test.
Kaplan–Meier (KM) survival curves were used to evaluate
the prognosis efect of specifc index.

3. Results

3.1. Quantifcation of CAFs in TCGA Data. Te fowchart of
whole study is shown in Figure S1. First, based on themarker
genes mentioned above, the relative infltration of CAFs in
GC tissue was quantifed using the ssGSEA algorithm
(Figure 1(a)). KM survival curve showed that the patients
with higher CAFs infltration might have a worse overall
survival (OS) (Figure 1(b), HR� 1.41, P � 0.041). Further-
more, we explored the CAFs diferences in patients with
diferent clinical features. Te result showed that CAFs
might be associated with a more progressive grade and T
stage (Figures 1(c) and 1(d)). However, no signifcant dif-
ference was observed in M and N stages (Figures 1(e) and
1(f)). Pathway enrichment analysis showed that in the pa-
tients with higher CAFs infltration, the pathway of
epithelial-mesenchymal transition (EMT), myogenesis, al-
lograft rejection, infammatory response, and IL2/STAT5
signaling were remarkably enriched in (Figure 1(g)).

3.2. Identifcation of the Characteristic Genes of CAFs.
Ten, we performed the DEGs analysis with the threshold of
|logFC|> 1 and adj.P< 0.05. A total of 268 downregulated
and 1697 upregulated DEGs were identifed (Figure 1(h)).
LASSO logistic regression and the SVM-RFE algorithm were
used to identify the characteristic genes of CAFs
(Figures 2(a)–2(c)). LASSO logistic regression identifed
four genes, including FNDC1, SGCD, FGF7, and RSPO3.
Further, among these four genes, the SVM-RFE algorithm
screened two genes FNDC1 and RSPOS, as the characteristic
genes of CAFs (Figure 2(d)). ROC curves showed that
FNDC1 and RSPO3 had great prediction in the CAFs in-
fltration status of GC patients (Figures 2(e) and 2(f),
FNDC1, AUC� 0.890; RSPO3, AUC� 0.885). Ten, logistic
regression was performed based on the FNDC1 and RSPO3.
Te formula was “score� −6.691 + 0.9797 ∗

FNDC1+ 1.2415 ∗ RSPO3.” Te ROC curve showed that
the logistic score had an excellent prediction ability of the
CAFs infltration of GC patients (Figure 2(g)). PCA analysis
indicated that the genes FNDC1 and RSPO3 could efectively
distinguish the GC patients with high and low CAFs in-
fltration (Figure 2(h)).

3.3. Prognosis Efect and Clinical Correlation of FNDC1 and
RSPO3. KM survival curves showed that the patients with
high FNDC1 and RSPO3 expression might have a worse OS,
DSS and PFI (Figures 3(a)–3(f)). Also, we found that the
patients with higher CAFs infltration might have a higher
FNDC1 and RSPO3 expression (Figure 3(g)). Meanwhile,
the young patients (≤65 years old) tend to have a higher
RSPO3 expression (Figure 3(h)); the G3 GC patients might
have a higher FNDC1 and RSPO3 expression than G1-2
patients (Figure 3(i)); the stage III-IV patients might have an
higher RSPO3 expression (Figure 3(j)); the T3-4 GC patients
might have a higher FNDC1 and RSPO3 expression than T1-
2 patients (Figure 3(k)); the N1-3 GC patients might have
a higher RSPO3 expression than N0 patients (Figure 3(l)).

3.4. Biological Explorations of FNDC1 and RSPO3. CAFs
have been reported to afect tumor metabolism. Pathway
correlation analysis indicated that CAFs was negatively
correlated with TRN-α metabolism, KREBS cycle meta-
bolism, amino acid metabolism, vitamin metabolism, ab-
normal metabolism, and vitamin metabolism, yet positively
correlated with folate metabolism (Figure 4(a)). We next
explored the underlying pathways of FNDC1 and RSPO3.
Pathway enrichment analysis of RSPO3 showed that the
pathway of the apical junction, infammatory response,
KRAS signaling, and EMTwere signifcantly enriched in the
patients with high RSPO3 expression (Figure 4(b)). For
FNDC1, the pathway of NOTCH signaling, angiogenesis,
hedgehog signaling, TGF-β signaling, and IL6/JAK/STAT3
signaling were signifcantly enriched in (Figure 4(c)). Pan-
cancer analysis revealed the expression patterns of FNDC1
and RSPO3 in solid cancers. Te result showed that FNDC1
was upregulated, while RSPO3 was downregulated in GC
tissue (Figures 5(a) and 5(b)). Genomic instability analysis
showed that FNDC1 had no signifcant efect on TMB, MSI,
and tumor stemness index (Figures 5(c)–5(e)). However,
RSPO3 might be associated with a lower TMB, MSI and
stemness index (Figures 5(f)–5(h)). Immune analysis
showed that FNDC1 was positively correlated with NK cells,
macrophages, and iDC, while negatively correlated with
T17 cells (Figure S2A); RSPO3 was positively correlated
with NK cells, mast cells, and pDC yet negatively correlated
with T17 cells and T2 cells (Figure S2B).

3.5. CAFs Is Positively Correlated with M2 Macrophages.
Te crosstalk between diferent cells can signifcantly afect
the TME of GC. Te CIBERSORT algorithm was used for
immune cell infltration. Te correlation of CAFs and the
quantifed immune cells are shown in Figure 6(a). Te result
showed that CAFs was positively correlated with naı̈ve
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Figure 1: Exploration of CAFs in GC. (a) ssGSEA was performed to quantify the relative content of CAFs in TCGA database. (b) KM
survival curves showed that CAFs were associated with a worse prognosis. (c–f)Te diference of CAFs infltration in patients with diferent
clinical features. (g) Pathway enrichment analysis of CAFs. (h) DEGs analysis between high and low CAFs infltration with the threshold of |
logFC|> 1 and adj.P< 0.05.
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Figure 2: Identifcation of the characteristic genes of CAFs. (a, b) LASSO logistic regression was used to identify the characteristic genes of
CAFs. (c) SVM-RFE was used to identify the characteristic genes of CAFs. (d) FNDC1 and RSPOS were identifed as the characteristic genes
of CAFs. (e, f ) ROC curves to evaluate the prediction efciency of FNDC1 and RSPOS on CAFs infltration status. (g) A logistic regression
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analysis of FNDC1 and RSPO3 in diferent CAFs infltration patients.
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Figure 5: Further exploration of FNDC1 and RSPOS. (a, b) Pan-cancer analysis illustrates the expression pattern of FNDC1 and RSPOS.
(c–e)Te correlation between FNDC1 and TMB,MSI, and tumor stemness index. (f–h)Te correlation between RSPO3 and TMB,MSI, and
tumor stemness index.

B cells naive
B cells memory

Plasma cells
T cells CD8

T cells CD4 memory resting
T cells CD4 memory activated

T cells follicular helper
T cells regulatory (Tregs)

T cells gamma delta
NK cells resting

NK cells activated
Monocytes

Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells resting
Dendritic cells activated

Mast cells resting
Mast cells activated

Eosinophils
Neutrophils

CAF

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
m

em
or

y 
re

sti
ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r
T 

ce
lls

 re
gu

la
to

ry
 (T

re
gs

)
T 

ce
lls

 g
am

m
a d

el
ta

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tr

op
hi

ls
CA

F

*p < 0.05
**p < 0.01

Correlation
1.0
0.5
0.0
-0.5
-1.0

(a)

Naive B cells Monocytes

T cells follicular

M
ac

ro
ph

ag
es

 M
2

Den
dr

iti
c c

ell
s r

est
ing

Mast cells resting

Mast cells activated

Eosinophils

CA
F

T ce
lls

 C
D4

mem
or

y r
est

ing

M0 macrophage

0
0

0

0

0.8

0.8

0

0

0

0

0

0

0

0.
8

0.8
0.8

0.8

0.8

0.
8

0.8

1.6

1.6

1.6

1.6 0.8

Correlation

-1 1

(b)

0.5

0.4

0.3

0.2

M
2 

M
ac

ro
ph

ag
es

0.1

0.0

0.6 0.7 0.8
CAF

0.9 1.0

Spearman
r = 0.290
P < 0.001

(c)

0.5

0.4

0.3

0.2

M
2 

M
ac

ro
ph

ag
es

0.1

0.0

Spearman
r = −0.119
P = 0.022

0 1 2
FNDC11

3

(d)
Figure 6: Continued.

Journal of Oncology 9



B cells, resting CD4+ memory T cells, monocytes, M2
macrophages, resting dendritic cells, resting mast cells, and
eosinophils, yet negatively correlated with follicular helper
T cells, M0 macrophages, and activated mast cells
(Figures 6(b) and 6(c)). Moreover, we found that FDNC1
was negatively, while RSPO3 was positively correlated with
M2 macrophages (Figures 6(d) and 6(e)). Also, the KM
survival curve showed that M2 macrophages might be as-
sociated with a poor prognosis (Figure 6(f )). Meanwhile, the
characteristic makers and factors were all highly expressed in
the samples with high CAFs infltration (Figure 6(g)).

3.6. CAFs and Its Characteristic Genes Were Associated with
the Sensitivity of Immunotherapy and Chemotherapy.
Immunotherapy is a novel therapeutic option for advanced
GC. Tus, we explored the underlying diference in im-
munotherapy sensibility between high and low CAFs in-
fltration patients. Immune checkpoint correlation analysis

showed that CTLA4, HAVCR2, PDCD1LG2, PDCD1, and
TIGIT were diferentially expressed in high and low CAFs
infltration patients (Figure 7(a)). Te TIDE analysis was
then performed, in which the patients with TIDE a score >0
were defned as nonresponders and <0 were defned as
responders. Te result showed in low CAFs infltration
patients, the proportion of immunotherapy responders was
53.2%. However, in high CAFs infltration patients, the
proportion of immunotherapy responders was only 20.9%,
indicating that low CAFs infltration GC patients might be
more sensitive to immunotherapy (Figure 7(b)). Submap
analysis indicated that the patiens with low CAFs infltration
might be more sensitive to both PD-1 and CTLA4 therapies
(Figure S3). Considering the signifcant correlation between
CAFs andM2macrophages, we further explored the efect of
M2 macrophages on immunotherapy. Results showed
a positive correlation between the TIDE score and M2
macrophages (Figure S4A). Moreover, we found that the
patients with high M2 macrophages infltration tend to have
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a higher TIDE score, as well as a lower percentage of im-
munotherapy responders (Figures S4B and S4C). Moreover,
the immunotherapy responder had a low CAFs level (Fig-
ure 7(c)), as well as a lower FNDC1 and RSPO3 expression
(Figures 7(d) and 7(e)). Drug sensitivity analysis showed that
CAFs were negatively correlated with the IC50 of doxoru-
bicin, while positively correlated with the IC50 of mitomycin
and paclitaxel (Figures 8(a)–8(c)); FNDC1 was negatively
correlated with the IC50 of doxorubicin, while positively
correlated with the IC50 of paclitaxel (Figures 8(d)–8(f));
RSPO3 was negatively correlated with the IC50 of doxoru-
bicin, while positively correlated with the IC50 of mitomycin
and paclitaxel (Figures 8(g)–8(i)).

4. Discussion

A common cancer, GC poses one of the most serious public
health problems [1]. CAFs are an important part of the TME
in GC that can signifcantly afect cancer progression.
Terefore, a deep investigation of CAFs and their related
molecule targets would contribute to understanding the
intrinsic biological mechanism of GC. In medical research,
the investigation and analysis of the classifcation or pre-
diction of response variables in biomedical research are
often challenging due to the data sparsity generated by
limited sample sizes and a moderate or very large number of
predictors. Bioinformatic analysis can efectively solve this
contradiction and is a powerful tool for screening clinical
predictors [16].

In our study, we frst quantifed the CAFs infltration
using the ssGSEA algorithm. Te clinical correlation result
showed that CAFs were associated with a worse prognosis
and clinical features. Pathway enrichment also indicated
several oncogenic pathways in GC patients with high CAFs
infltration. Further, FNDC1 and RSPO3 were identifed as
the characteristic genes of CAFs through two machine
learning algorithms, LASSO logistic regression and SVM-
RFE.Te following analysis showed that FNDC1 and RSPO3
were associated with more progressive clinical features and
had a good prediction efciency of the CAFs infltration
status in GC patients. Pathway enrichment and genomic
instability were performed to explore the underlying
mechanisms of FNDC1 and RSPO3. Immune infltration
analysis showed that CAFs were positively correlated with
M2 macrophages. Moreover, we found that the GC patients
with low CAFs infltration were more sensitive to immu-
notherapy. Also, the CAFs, FNDC1, and RSPO3 could
generate a certain efect on the sensitivity of doxorubicin,
mitomycin, and paclitaxel.

Generally, in TME, the content of CAF is the most
abundant, and it can afect the occurrence and development
of cancer through intercellular contact, the release of various
regulatory factors, and the remodeling of the extracellular
matrix [17]. In colon cancer, Hu et al. indicated that CAFs
could secret the exosome miR-92a-3p that was engulfed by
colon cancer cells, further activatingWnt/β-catenin pathway
and inhibiting mitochondrial apoptosis, leading to

metastasis and chemotherapy resistance [18]. Su et al.
revealed that CD10+ GPR77+ CAFs could induce cancer
formation and chemoresistance through sustaining tumor
stemness [19]. Wen et al. indicated that CAFs-derived IL32
could promote breast cancer cell invasion and metastasis
through integrin β3-p38 MAPK signaling [20]. Pathway
enrichment analysis showed that CAFs could activate the
EMT, KRAS, and IL2/STAT5 signaling. In GC, Li et al.
found that cancer-associated neutrophils could induce EMT
through IL-17a to facilitate the invasion and migration of
cancer cells [21]. Also, Wang et al. indicated that the
downregulation of miRNA-214 in CAFs could enhance the
migration and invasion of GC cells by targeting FGF9 and
inducing EMT [22]. Our results were consistent with pre-
vious studies, which refect the validity of the analysis.

Trough machine learning algorithms, FNDC1 and
RSPO3 were identifed as the characteristic genes of CAFs.
FNDC1, whose full name is “fbronectin type III domain
containing 1”, has been reported to promote GC devel-
opment. Jiang et al. demonstrated that FNDC1 could fa-
cilitate the invasion of GC by regulating the Wnt/β-catenin
signaling and is correlated with peritoneal metastasis [23].
RSPO3 has been reported as being widely involved in
cancer progression. For example, Chen et al. revealed that
RSPO3 could enhance the aggressiveness of bladder cancer
through Wnt/β-catenin and Hedgehog signaling pathways
[24]. Fischer et al. found that in colon cancer with Wnt
mutations, RSPO3 antagonism could hamper the malig-
nant biological behavior of cancer cells [25]. However,
virtually no study explored the RSPO3 in GC. Our study
comprehensively investigated the underlying role of RSPO3
in GC, which can provide direction for future studies. In
clinical practice, detecting the relative expression levels of
FNDC1 and RSPO3 could indicate the CAFs infltration
level of patients, as well as their response on GC
immunotherapy.

Interestingly, immune infltration analysis showed that
CAFs were associated with M2 macrophages. Te in-
teraction between diferent cells can signifcantly afect the
remodeling efects of TME [26]. Previous studies have
shown the underlying crosstalk between CAFs and M2
macrophages. Based on a coculture system, Cho et al. found
that cancer-stimulated CAFs could promote M2 macro-
phage activation through secreting IL6 and GM-CSF [27].
Meanwhile, from a review summarized by Gunaydin, the
interaction between CAFs and tumor-associated macro-
phages in TME can enhance tumorigenesis and immune
escape [28]. Notably, our results also showed that in patients
with low CAFs infltration, the response rate to immuno-
therapy is higher (53.2% vs. 23.9%). Immunotherapy has
shown a promising efect for specifc advanced GC patients.

Although our research is based on high-quality bio-
informatics analysis, some limitations should be noticed.
First, the potential race bias is hard to ignore. Most patients
enrolled in our study were fromWestern populations, which
might decrease the credibility of our conclusions. Second,
detailed laboratory examinations are hard to obtain. If all the
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data from all examinations can be obtained, our conclusion
will be more abundant.
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Figure S1: the fowchart of whole study. Figure S2: immune
correlation analysis of FNDC1 and RSPO3. Notes: A: im-
mune correlation analysis of FNDC1; B: immune correlation
analysis of RSPO3. Figure S3: submap analysis was used to
indicate patients’ sensitivity to PD-1 and CTLA4 therapy.
Figure S4: efect ofM2macrophages on GC immunotherapy.
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infltration; C: the percentage of immunotherapy responders
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