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Hepatocellular carcinoma (HCC) is one of the most general malignant tumors. Ferroptosis, a type of necrotic cell death that is
oxidative and iron-dependent, has a strong correlation with the development of tumors and the progression of cancer.Te present
study was designed to identify potential diagnostic Ferroptosis-related genes (FRGs) using machine learning. From GEO datasets,
two publicly available gene expression profles (GSE65372 and GSE84402) from HCC and nontumor tissues were retrieved. Te
GSE65372 database was used to screen for FRGs with diferential expression between HCC cases and nontumor specimens.
Following this, a pathway enrichment analysis of FRGs was carried out. In order to locate potential biomarkers, an analysis using
the support vector machine recursive feature elimination (SVM-RFE) model and the LASSO regression model were carried out.
Te levels of the novel biomarkers were validated further using data from the GSE84402 dataset and the TCGA datasets. In this
study, 40 of 237 FRGs exhibited a dysregulated level between HCC specimens and nontumor specimens from GSE65372,
including 27 increased and 13 decreased genes. Te results of KEGG assays indicated that the 40 diferential expressed FRGs were
mainly enriched in the longevity regulating pathway, AMPK signaling pathway, the mTOR signaling pathway, and hepatocellular
carcinoma. Subsequently, HSPB1, CDKN2A, LPIN1, MTDH, DCAF7, TRIM26, PIR, BCAT2, EZH2, and ADAMTS13 were
identifed as potential diagnostic biomarkers. ROC assays confrmed the diagnostic value of the new model. Te expression of
some FRGs among 11 FRGs was further confrmed by the GSE84402 dataset and TCGA datasets. Overall, our fndings provided
a novel diagnostic model using FRGs. Prior to its application in a clinical context, there is a need for additional research to evaluate
the diagnostic value for HCC.

1. Introduction

According to the fndings of the Global Cancer Statistics
2018, there were around 841,000 newly diagnosed cases of
liver cancer and 782,000 deaths caused by liver cancer
around the world, with China alone accounting for about
50% of the total number of cases and deaths [1–3]. It is
estimated that between 75 and 80 percent of all occurrences
of liver cancer are caused by hepatocellular carcinoma
(HCC), which is an aggressive kind of malignant tumor that
is typically discovered at a later stage when treatment is no

longer efective [4, 5]. Although there have been signifcant
progresses and advancements in the treatment of HCC in
recent years, in terms of surgical procedures, chemothera-
peutic medications, and targeted drugs, HCC continues to
have a very high incidence and mortality rate, which poses
a serious threat to human health [6, 7]. Te most popular
blood biomarker for HCC, alpha-fetoprotein (AFP), dem-
onstrates subpar performance as a serological test in HCC
surveillance due to its low sensitivity being only 10%–20% in
early-stage HCC and its labile levels during hepatitis fares
[8, 9]. It is due to the fact that AFP levels fuctuate during
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hepatitis fares. Terefore, patients diagnosed with HCC at
an early stage who have a high chance of experiencing re-
currence need to be identifed as quickly as possible so that
tailored therapeutic options can be optimized and patient
survival can be improved.

In recent years, the technology of microarrays has been
employed in conjunction with integrated bioinformatics
analysis in order to locate novel genes that have been linked
to a range of diseases [10, 11]. Tese genes have the potential
to function as diagnostic and prognostic biological markers.
For instance, Lan et al. reported that the expressions of
KIAA1429 were distinctly increased in HCC specimens. In
individuals with HCC, having a high expression of
KIAA1429 was related with having a bad prognosis. Te
knockdown of KIAA1429 resulted in a reduction in cell
proliferation and metastasis both in vitro and in vivo. Tis
was accomplished through a post-transcriptional alteration
of GATA3 that was dependent on N6-methyladenosine [12].
Zhang et al. showed that DDX39 expression was positively
connected with advanced clinical stages, and survival assays
confrmed that patients with high-DDX39 levels exhibited
a poor outcome. DDX39 was increased in HCC tissues and
cells. According to the fndings of a functional analysis,
increased levels of DDX39 in HCC cells facilitated motility,
migration, growth, and invasion via regulating the Wnt/-
catenin pathway [13]. In addition, several genes in the blood
of HCC patients were also reported to show important
diagnostic values, such as serum IL27, HMMR, NXPH4,
PITX1, and THBS4 [14, 15].

Ferroptosis is a sort of regulated cell death (RCD) that is
triggered by the accumulation of harmful lipid peroxidation
and is dependent on the presence of iron [16]. In recent
years, the induction of ferroptosis has emerged as a prom-
ising therapeutic alternative to suppress tumor proliferation
and growth, especially for advanced tumors that are resistant
to surgical treatment, radiotherapy, and chemotherapy
[17, 18]. It has been shown that ferroptosis plays an im-
portant role in the regulation of metabolism and redox
biology, which has implications for the development of
cancer and its treatment, including HCC [19–21]. Shan et al.
showed that UBA1 contributed to the progression of HCC
by elevating the activity of the Nrf2 signaling pathway and
lowering the concentration of ferric ions, which triggered
ferroptosis-inhibiting bioactivities [22]. In addition, several
studies have reported the prognostic value of many
ferroptosis-related genes (FRGs). However, the diagnostic
model based on ferroptosis-related genes has not been in-
vestigated. In this study, we aimed to develop a diagnostic
model based on ferroptosis-related genes using machine and
deep learning methods.

2. Materials and Methods

2.1. Microarray Data Source. Te GEO database was
searched using the following keywords in order to retrieve
the mRNA expression datasets of HCC: “hepatocellular
carcinoma,” “homo sapiens” (porgn: txid9606),” and “ex-
pression profling by array.” Following an in-depth analysis,
two GSE profles (GSE65372 and GSE84402) were chosen,

and their respective downloads were initiated. GSE65372
and GSE84402 were based on GPL14951 and GPL570, re-
spectively. Te array data for GSE65372 were composed of
39 HCC specimens and 15 nontumor specimens, re-
spectively. For GSE84402, the array data also included 14
HCC specimens and 14 nontumor specimens. All data were
freely accessible, and the present study did not involve any
human or animal experimentation.

2.2. Diferential Expression Analysis. We began by retrieving
the expression data of 237 FRGs from the GSE65372 da-
tabase. Within this dataset, only 237 FRGs were found to be
expressed. Tese data were then applied to normal samples
and HCC samples. Following that, the Student’s t-test was
carried out in R in order to identify the FRGs that exhibited
diferent levels of expression in the two distinct samples.
Genes that had a p value of less than 0.001 were determined
to be signifcant.

2.3. Pathway Analysis. Te “clusterProfler,” “enrichplot,”
and “ggplot2” programs were used to conduct GO and
KEGG pathway enrichment analyses in order to determine
the biological characteristics of diferently expressed genes
(DEGs) linked to ferroptosis.Tese analyses were carried out
in order to identify the biological features of DEGs. En-
richment results with an FDR (false discovery rate) of <0.05
were recognized as signifcant functional categories.

2.4. Candidate Diagnostic Biomarker Screening. Two dif-
ferent machine learning methods were employed to make
predictions about the disease’s progression in order to fnd
meaningful prognostic variables. Te least absolute
shrinkage and selection operator (LASSO) is an approach for
regression analysis that makes use of regularization in order
to increase the accuracy of prediction. In order to determine
the genes that are signifcantly connected with the difer-
entiation of HCC samples from normal samples, the LASSO
regression algorithm was implemented in R and carried out
with the “glmnet” package. Support vector machine (SVM)
is a popular type of supervised machine learning approach
that may be used for both classifcation and regression. As
a result, support vector machine recursive feature elimi-
nation (SVM-RFE) was utilized in order to choose the
pertinent characteristics in order to fnd the group of genes
that had the capacity to diferentiate across groups the most
efectively.

2.5. Diagnostic Value of Feature Biomarkers in HCC. An
ROC curve was constructed by using the mRNA expression
data of 39 HCC samples and 15 nontumor samples. It was
done so that the predictive value of the selected biomarkers
could be evaluated. Te value of the area under the ROC
curve was used to measure the diagnostic efciency in
distinguishing HCC samples from nontumor specimens,
which was further confrmed using the GSE65372 dataset.
Assessing AUC, sensitivity, and specifcity were all parts of
the process that were used to evaluate the diagnostic
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Figure 1: Identifcation of diferential expressed FRGs in HCC. (a) Te expressing pattern of 44 diferential expressed FRGs was shown in
heatmap. (b) Te correlation of these genes.
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potential of the best gene biomarkers. In addition, the
predict function included within the “glm” package of the R
programming language was utilized to build a logistic re-
gression model that was based on 11 novel genes. Our model
was then used to make predictions regarding the sample
types found within the GSE65372 dataset. In a similar
manner, ROC curves were utilized in order to assess the
diagnostic capability of the logistic regression model. In
addition to this, the expressions of the essential genes were
verifed even further using the GSE84402 and TCGA
datasets.

2.6. Statistical Analysis. All statistical analyses were con-
ducted using R (version 3.6.3). p< 0.05 was considered as
statistically signifcant.

3. Results

3.1. Identifcation of Diferential Expressed FRGs in the
GSE65372 Datasets. 40 of the 237 FRGs exhibited

a dysregulated level between HCC specimens and nontumor
specimens, including 27 increased and 13 decreased genes,
which were identifed from the GSE65372 dataset. Te
clustering heatmap displayed the expression pattern of FRGs
that were diferentially expressed between the samples
(Figure 1(a)). Figure 1(b) illustrates the correlation between
these genes.

3.2. Functional Analyses for the Diferential Expressed FRGs.
To explore the functional efects of diferential expressed
FRGs, we performed GO and KEGG assays. As shown in
Figures 2(a) and 2(b), we found that the 40 diferential
expressed FRGs were mainly associated with responses to
oxidative stress, cellular response to oxidative stress, regu-
lation of autophagy, cellular response to chemical stress,
mitochondrial outer membrane, organelle outer membrane,
outer membrane, TOR complex, transcription coregulator
activity, DNA-binding transcription factor bindin, and
antioxidant activity. Te results of KEGG assays indicated
that the 40 diferential expressed FRGs were mainly enriched
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Figure 2: Functional analysis based on 44 diferential expressed FRGs. (a and b) Signifcantly enriched GO terms of DEGs in HCC. (c)
Signifcant KEGG pathway terms of DEGs in HCC.
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in the longevity regulating pathway, AMPK signaling
pathway, the mTOR signaling pathway, and hepatocellular
carcinoma (Figure 2(c)).

3.3. Diferential Expressed FRGsWere Identifed as Diagnostic
Genes for HCC. Estimating the diagnostic capability of
diferentially expressed FRGs was our goal in order to take
into account the diferences that exist between patients with
HCC and healthy individuals. Subsequently, we carried out
two separate machine learning algorithms in the GSE65372
datasets for the identifcation of the distinct diferentially
expressed FRGs in order to diferentiate HCC from normal
specimens. Tese algorithms were used to identify the FRGs
that was signifcantly diferent between the two groups. In
order to choose HCC-related features, the LASSO logistic
regression algorithm was utilized, and the penalty parameter
tuning process was carried out using 10-foldcross-validation
(Figures 3(a) and 3(b)). After that, we sorted through the 17
diferentially expressed FRGs using the SVM-RFE algorithm
in order to locate the best possible combination of feature
genes. In the end, seven genes were selected as the best
candidates for feature genes (Figures 3(c) and 3(d)). Fol-
lowing the intersection of the marker genes generated from
the LASSO and SVM-RFE models, 11 new markers (HSPB1,
CDKN2A, LPIN1, MTDH, DCAF7, TRIM26, PIR, BCAT2,
EZH2, and ADAMTS13) were identifed for further in-
vestigation (Figure 3(e)).

3.4. Te Identifcation of the Diagnostic Value of the New
Model for HCC. With the use of the glm R package, we
developed a logistic regression model. Subsequent ROC
curves demonstrated that the 11 marker gene-based logistic
regression model correctly diferentiated normal samples
from HCC samples with an area under the curve (AUC)
value of 1.000. Tis model was based on the 11 marker genes
mentioned earlier (Figure 4(a)). In addition, ROC curves
were constructed for each of the 11 marker genes in order to
provide light on the ability of individual genes to difer-
entiate normal samples from those containing HCC. AUC
was higher than 0.7 for every gene, as shown in Figure 4(b).
Based on the information shown above, it appears that the
logistic regression model provides a higher level of accuracy
and specifcity when compared to the individual marker
genes when it comes to discriminating HCC samples from
normal samples.

3.5. Expressions of Novel Diagnostic Genes in the GSE84402
and TCGA Datasets. In the fnal step of this process, we
checked the expression of marker genes using the GSE84402
dataset. We found that the GSE20680 dataset was consistent
with the patterns of expression for ADAMTS13, DCAF7,
EZH2, HSPB1, and CDKN2A (Figure 5). Among them, the
expressions of DCAF7, EZH2, HSPB1, and CDKN2A in
HCC specimens were distinctly increased compared with
normal specimens, while the expressions of ADAMTS13
were distinctly decreased in HCC samples. In addition, in

TCGA datasets, we found that the expression of 10 genes
showed a dysregulated level in HCC (Figure 6).

4. Discussion

HCC is the most prevalent primary malignancy of the liver,
accounting for about 90% of all malignant cases. It is also the
most curable form of primary liver cancer [23, 24]. Te fact
that the formation of HCC is a multistep process, as well as
a multigene alteration-induced malignancy with a high level
of heterogeneity, has been established via extensive research
and documentation [25, 26]. It has been determined that
hepatitis B, hepatitis C, alcoholism, steatohepatitis, and
obesity are all etiologic factors that contribute to the disease
[27, 28]. Recent studies at themolecular levels have indicated
that specifc gene mutations play an important part in the
progression of HCC. By controlling iron metabolism, amino
acid and glutathione metabolism, and reactive oxygen
species (ROS) metabolism, ferroptosis has shown promising
results in inducing cancer cell death in recent years, espe-
cially in the elimination of aggressive malignancies that are
resistant to conventional therapies [29, 30]. Terefore, fer-
roptosis can be a potential and powerful target for cancer
therapy. However, the relationship between ferroptosis-
related genes and HCC progression is still vastly un-
known, making it a challenge to develop ferroptosis therapy
for HCC.

Tanks to the development of high-throughput tech-
nologies, gene microarray analysis has emerged as a pow-
erful tool for detecting DEGs and, by extension, putative
biomarkers in a wide range of disorders. Gene microarray
analysis has been used in a number of studies to discover
crucial genes in the etiology of HCC. Tere is hope that
integrated multiple gene microarray analysis will help fnd
more reliable gene biomarkers. Machine learning algorithms
have been shown to ofer great potential for screening
sensitive diagnostic biomarkers in a variety of diseases, and
this research has only increased in the last few years [31, 32].
In this study, we screened diferential expressed FRGs, and
40 of 237 FRGs exhibited a dysregulated level between HCC
specimens and nontumor samples, including 27 increased
and 13 decreased genes. By eliminating cells from the en-
vironment that lack vital nutrients, ferroptosis has been
shown to play a crucial role in suppressing carcinogenesis, as
demonstrated by recent scientifc studies. Functional studies
of FRGs as tumor promoters or inhibitors have increased in
the feld of HCC. Te results of KEGG indicated that the 40
diferential expressed FRGs were manly enriched in the
longevity regulating pathway, AMPK signaling pathway, the
mTOR signaling pathway, and hepatocellular carcinoma,
highlighting their roles in HCC progression. Our fnding
suggested the 44 diferential expressed FRGs may play an
important role in the progression of HCC.

Based on the 40 diferential expressed FRGs, we carried
out LASSO and SVM and confrmed 11 novel marker genes
(HSPB1, CDKN2A, LPIN1, MTDH, DCAF7, TRIM26, PIR,
BCAT2, EZH2, and ADAMTS13). Te AUC for all 11 genes
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are more than 0.75, indicating that they can reliably and
accurately separate HCC specimens from nontumor spec-
imens. Among the 11 genes, some genes have been func-
tionally studied in HCC. For instance, He et al. reported that
the expressions of MTDH were found to be distinctly ele-
vated in HCC specimens. In HCC patients, the expressions

of MTDH were predictive of a short overall survival without
any heterogeneity. In addition, high-grade histological dif-
ferentiation, nonvascular invasion, and HCC metastases
were all found to be linked with MTDH expression. Te
results of in vitro investigations showed that MTDH has the
ability to limit cell growth in all four HCC cell lines, in
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addition to activating caspase-3/7 activity and death [33].
Wang et al. showed that, when compared with normal liver
tissue, the level of TRIM26 expression was much lower in
HCC tissue; this was found to be associated with an ad-
vanced T stage and a bad prognosis. In vitro studies with
HCC cells showed that inhibiting TRIM26 led to increased
cancer cell proliferation and metastasis [34]. Tese fndings
were consistent with our fndings. Our ROC curves showed
that the logistic regression model based on these 11 marker
genes successfully distinguished between normal and HCC
samples (AUC� 1.000) using the R package glm. Our
fndings suggested the novel diagnostic model based on 11
marker genes had great clinical reference values. Finally, we
demonstrated the expression of 11 marker genes in other
GSE84402 and TCGA datasets. Te expression of several
genes was on track. However, more samples were needed to
further confrm our fndings.

Several limitations could also be found in our study.
First, the sample size was low; despite the fact that our
fndings were constructed using and validated using two
separate datasets. Validation of this model in larger pro-
spective clinical studies is required in the future. Second, to
further understand the molecular functions of the 11 critical
genes, additional biological research is required.

5. Conclusion

We developed a novel diagnostic model based on 11 FRGs
for HCC. Tese eforts may also serve to further promote
patient compliance, assist healthcare providers in better

managing patients, and eventually improve their overall
health status and quality of life.
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