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Background. Te ethanolamine kinase 2 (ETNK2) gene is implicated in carcinogenesis, but its expression and involvement in
kidney renal clear cell carcinoma (KIRC) remain unknown. Methods. Initially, we conducted a pan-cancer study in which we
searched the Gene Expression Profling Interactive Analysis, the UALCAN, and the Human Protein Atlas databases to determine
the expression level of the ETNK2 gene in KIRC. Te Kaplan–Meier curve was then used to calculate the overall survival (OS) of
KIRC patients. We then used the diferentially expressed genes (DEGs) and enrichment analysis to explain the mechanism of the
ETNK2 gene. Finally, the immune cell infltration analysis was performed. Results. Although the ETNK2 gene expression was
lower in KIRC tissues, the fndings illustrated a link between the ETNK2 gene expression and a shorter OS time for KIRC patients.
DEGs and enrichment analysis revealed that the ETNK2 gene in KIRC involved multiple metabolic pathways. Finally, the ETNK2
gene expression has been linked to several immune cell infltrations.Conclusions. According to the fndings, the ETNK2 gene plays
a crucial role in tumor growth. It can potentially serve as a negative prognostic biological marker for KIRC by modifying immune
infltrating cells.

1. Introduction

Renal cell carcinoma (RCC) is characterized by the growth of
malignant tumors within the renal tubular epithelial cells.
Tis cancer accounts for nearly 90% of renal and 3% of all
adult cancers [1]. Te most prevalent kind of RCC is kidney
renal clear cell carcinoma (KIRC). Due to the high preva-
lence of asymptomatic KIRC patients, around one-third of
KIRC patients are diagnosed at an advanced stage. RCC is
gaining attention because it is the third most fatal urinary
system tumor, trailing only prostate and bladder cancer in
terms of mortality rate [2]. Every year, nearly 430,000 new
cases of RCC are diagnosed worldwide, with approximately
180,000 dying due to this disease. Te incidence and
mortality rates of RCC continue to rise, posing a signifcant
risk to human health. Because of its natural resistance to
chemotherapy and radiotherapy [3], the prognosis for ad-
vanced KIRC is dismal [4]. Terefore, identifying novel

biological markers that aid in the early detection and
treatment of this illness is critical.

Ethanolamine kinase 2 (ETNK2) is a protein-coding
gene. Spondylometaphyseal dysplasia with cone-rod dys-
trophy is one of the diseases linked to the ETNKT2 gene.
Glycerophospholipid biosynthesis and nuclear receptor
meta-pathways are two of the ETNK2-related pathways. Te
Gene Ontology (GO) annotations associated with this gene
include ethanolamine kinase and transferase activity and the
transfer of phosphorus-containing groups.Te ETNK1 gene
is a signifcant paralog of the ENTK2 gene [5]. Te ETNK2
gene is associated with a poor prognosis in gastric cancer
patients because it inhibits the p53-Bcl2 apoptotic pathway,
which promotes liver metastasis. Te ETNK2 gene has been
shown to beneft phosphatidylethanolamine production in
non-small-cell lung cancer signifcantly. In contrast, the
depletion of TET2-targeted demethylation is responsible for
the decreased expression of the ETNK2 gene in prostate
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cancer [6, 7]. Simultaneously, molecular research has
revealed that the ETNK2 gene is a novel molecular marker
for breast cancer (BRCA) pathogenesis [8].Te ETNK2 gene
is a novel molecular marker that provides insights into the
role of survival risk in several cancers. However, the function
of the ETNK2 gene in KIRC has not yet been thoroughly
investigated.

Moreover, the exact function of the ETNK2 gene in
patients with KIRC remains unknown. Terefore, we frst
collected RNA-sequencing and clinical data from KIRC
patients using the Cancer Genome Atlas (TCGA) datasets in
this study. Following that, we discovered that ETNK2 gene
expression was downregulated in KIRC patients and was
linked to highly aggressive clinical and pathological char-
acteristics. Furthermore, we investigated the diagnostic and
prognostic efcacy of the ETNK2 gene in KIRC and the
comprehensive relationship between the ETNK2 gene and
immune characteristics. We also conducted an enrichment
analysis to determine its potential signaling pathways and
pathophysiological mechanisms. Finally, we used tissues
from the patient’s tumors and surrounding normal tissues to
confrm the dysregulation of the ETNK2 gene in KIRC
patients.

2. Materials and Methods

2.1. Gene Expression Analysis of the ETNK2 Gene. We ob-
tained the study’s data from the UCSC database (https://
xenabrowser.net/). From the database, the unifed and
standardized pan-cancer dataset TCGA target Genotype-
Tissue Expression (GTEX) (PanCAN, n � 19,131,
g � 60, 499) was downloaded. Furthermore, the ETNK2
gene expression data were derived from various samples.
Finally, we eliminated cancer types with fewer than 3
samples within a single cancer type, leaving 34 cancer
types for which we collected expression data.

2.2. Survival Analysis. Te patients were divided into the
following two groups based on the median level of ETNK2
gene expression: the low and high-expression groups. Te
statistical analysis of survival data was carried out using the
R software’s “survival” function. Te Kaplan–Meier (K–M)
curves were created using the R package “survminer” to
visually display the results of the survival analyses.Tis study
investigated the prognostic signifcance of the ETNK2 gene
expression concerning overall survival (OS) was
investigated.

2.3. Immune Checkpoint Analysis. We extracted the ex-
pression data of the ETNK2 gene and 60 marker genes from
2 types of immune checkpoint pathway genes in each sample
from the dataset. Simultaneously, we fltered all normal
samples and transformed each expression value with log2
(x+ 0.001). Te Pearson correlation between the ETNK2
gene and 5 diferent immune pathway marker genes was
then computed.

2.4. Analysis and Validation of the ETNK2 Gene in KIRC.
We used the Gene Expression Profling Interactive Analysis
(GEPIA), a program for studying gene expression that is
provided in the form of an interactive online platform, with
9,736 tumors and 8,587 normal samples from the TCGA and
GTEX databases to provide additional evidence supporting
the robustness of the comparison between KIRC and normal
samples regarding the level of hub gene expression. Using
the GEPIA platform, we also assessed the potential prog-
nostic signifcance of hub genes. We calculated OS’s hazard
ratio (HR) and the 95% confdence intervals (CI). Te K–M
curve and boxplot from the TCGA database were used to
visualize the relationships between gene expression and
patient prognosis.

2.5. Identifcation ofDEGs. Te “limma” R package was used
to analyze the diferences in messenger RNA (mRNA) ex-
pression between the high and low ETNK2 groups. “Ad-
justed P< 0.05 and Log2 (fold change)> 1 or Log2 (fold
change)<−1” were selected as the cut-of points for dif-
ferentially expressed mRNAs.

2.6. Enrichment Analysis. Te data were analyzed using
functional enrichment to confrm the fundamental function
of prospective targets. GO is a widely used tool for the
annotation of genes with functions, particularly cellular
components (CC), biological processes (BP), and molecular
functions (MF). Te Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis is a useful tool for
investigating gene functions and the high-level genomic
functional data associated with those functions. Te clus-
terProfler tool (version: 3.18.0) in R was used to investigate
the GO function of potential targets and enrich the KEGG
pathway to better understand how mRNA contributes to
cancer progression. Te boxplot was generated using the R
software’s “ggplot2” program, and the heatmap was created
using the R software’s “pheatmap” tool in the R [9].

2.7. Immune Cell Infltration. We used immunedeconv to
evaluate the validity of the immune score assessment results.
It is an R software package that includes several recently
developed algorithms, such as single-sample gene set en-
richment analysis (ssGSEA), ESTIMATE, and EPIC. After
benchmarking, each of these algorithms had a distinct ad-
vantage. Simultaneously, SIGLEC15, IGIT, PDCD1LG2,
D274, AVCR2, DCD1, TLA4, and AG3 genes were chosen as
immune checkpoint transcripts, and their expression levels
were determined.

2.8. Single-Cell Analysis. Tabula Muris is a single-cell
transcriptomics platform that contains over 100,000 cells
from over 20 diferent organs and tissues. We investigated
the link between the ETNK2 gene expression levels and cell
types and tissues in kidney tissue.
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2.9. Immunohistochemistry (IHC) Analysis Using the Human
Protein Atlas (HPA) Database. Te HPA database (https://
www.proteinatlas.org), an Internet application for de-
termining the protein levels in clinical samples, was used to
screen the protein expression levels of hub genes in KIRC
tissues.

3. Results

3.1. Analysis of the ETNK2 Gene Expression. We used the R
package (version 3.6.4) to compute the diferences in ex-
pression patterns between normal and cancerous samples
within each tumor. We then performed a nonpaired
Wilcoxon rank sum test and a signed-rank test to de-
termine the signifcance of the diferences. We found that
the ETNK2 gene was signifcantly upregulated in 14 tu-
mors, including GBM (tumor: 3.46 ± 1.24, normal:
2.10± 1.40, P � 2.3e − 33), GBMLGG (tumor: 3.07± 0.99,
normal: 2.10 ± 1.40, P � 2.8e − 56), LGG (tumor:
2.95 ± 0.87, normal: 2.10 ± 1.40, P � 1.5e − 38), BRCA
(tumor: 4.48± 1.52, normal: 3.50± 1.13, P � 2.5e − 29),
LUAD (tumor: 2.43± 1.44, normal: 1.75 ± 0.80, P � 8.5e −

24), LUSC (tumor: 3.63± 1.16, normal: 1.75± 0.80,
P � 3.5e − 103), SKCM (tumor: 4.43 ± 1.35, normal:
3.79 ± 1.09, P � 1.7e − 9), THCA (tumor: 4.50 ± 1.16, nor-
mal: 3.31± 0.84, P � 4.9e − 58), PAAD (tumor: 2.44± 1.07,
normal: 1.65 ± 1.42, P � 5.7e − 14), UCS (tumor:
3.88 ± 1.14, normal: 3.73 ± 0.33, P � 5.4e − 3), and All
(tumor: −0.97 ± 1.79, normal: −2.51 ± 1.99, P � 8.8e − 15),
LAML (tumor: −1.83 ± 2.03, normal: −2.51± 1.99,
P � 4.4e − 5), PCPG (tumor: 3.29 ± 1.12, normal:
1.31± 0.46, P � 8.4e − 3), ACC (tumor: 3.93 ± 2.29, normal:
1.97 ± 1.34, P � 6.7e − 13), and others. At the same time, we
observed that the ETNK2 gene was signifcantly down-
regulated in 17 tumors, including UCEC (tumor:
2.81± 1.35, normal: 3.44 ± 0.70, P � 0.04), CESC (tumor:
2.50 ± 1.52, normal: 4.08 ± 0.73, P � 2.7e − 5), STES (tu-
mor: 1.25 ± 1.97, normal: 2.27 ± 1.70, P � 3.4e − 29), KIRP
(tumor: 3.59 ± 1.13, normal: 5.17± 1.71, P � 1.4e − 38),
KIPAN (tumor: 3.40 ± 1.43, normal: 5.17± 1.71, P � 1.5e −

46), COAD (tumor: 0.23 ± 1.44, normal: 1.56± 1.68, P �

2.0e − 32), COADREAD (tumor: 0.39± 1.42, normal:
1.54 ± 1.67, P � 3.7e − 31), PRAD (tumor: 2.17± 0.92,
normal: 3.76± 0.51, P � 9.8e − 63), STAD (tumor:
0.81± 1.76, normal: 1.31± 1.71, P � 6.8e − 5), KIRC (tumor:
3.59 ± 1.35, normal: 5.17± 1.71, P � 2.1e − 36), LIHC (tu-
mor: 5.29 ± 1.91, normal: 5.82 ± 1.18, P � 3.2e − 3), WT
(tumor: 3.38 ± 0.90, normal: 5.17± 1.71, P � 1.9e − 33),
BLCA (tumor: 2.81 ± 1.17, normal: 3.25 ± 0.75, P � 0.04),
OV (tumor: 3.10± 1.23, normal: 4.59 ± 0.47, P � 2.5e − 33),
TGCT (tumor: 4.17± 0.74, normal: 7.26 ± 0.67, P � 2.6e −

51), KICH (tumor: 1.11± 1.18, normal: 5.17 ± 1.71,
P � 5.3e − 31), and CHOL (tumor: 3.12± 1.16, normal:
6.33 ± 0.52, P � 7.8e − 6) (Figure 1(a)).

3.2. Low ETNK2 Gene Expression Predicts Poor Prognosis in
KIRC Patients. We used the Cox function from the R
software package (version 3.2-7) survival to investigate the

relationship between gene expression and patient prog-
nosis for each cancer type, we employed the Cox function
that is included in the R software package survival. Fol-
lowing that, a Cox proportional hazards expression model
was developed. Additionally, we conducted a statistical
analysis using the log-rank test to determine if the
prognosis was signifcant. Finally, we discovered that the
status of patients with KIRC corresponds to their prog-
nosis (Figure 1(b)).

3.3. Correlation between the ETNK2 Gene Expression and
Immunological Checkpoints in Pan-Cancer. Te fndings
illustrated that the multiple immune checkpoints, in-
cluding LAG-3, CTLA-4, PD-1, and PD-L1, signifcantly
improved the ETNK2 gene expression in KIRC
(Figure 1(c)).

3.4. ETNK2 Gene Expression and Survival Analysis in KIRC.
Figure 2(a) depicts the fndings of a GEPIA analysis of the
expression pattern of the ETNK2 gene in tumors and normal
tissues. Patients with KIRC with low ETNK2 expression had
a poor prognosis (Figure 2(b)). At the same time, the ex-
pression and survival analysis confrmed the above trend
(Figures 2(c) and 2(d)).

3.5. Identifcation of DEGs. Te limma package was used to
compare DEGs between the low- and high-ETNK2 ex-
pression groups. Te volcano plot of DEGs was then shown
in Figure 3(a). Te gene expression pattern in various tissues
is represented by diferent colors in the heatmap depicting
the diferential gene expression, each corresponding to
a specifc tissue. Figure 3(b) depicts the top 50 upregulated
and the top 50 downregulated genes.

3.6. Enrichment Analyses. Te enrichment of the analysis of
DEGs revealed that the ETNK2 gene dysregulation is mostly
associated with pathways such as valine, leucine, and iso-
leucine degradation and tryptophan metabolism and the GO
terms such as xenobiotic metabolic and small molecule
catabolic process (Figures 3(c) and 3(d)).

3.7. Immune Cells Infltration Analysis. According to the
results of ssGSEA, the ETNK2 gene expression is mostly
positively corrected with neutrophils and substantially
negatively corrected with T1 cells (Figure 4(a)). Te
fndings of the ESTIMATE algorithm revealed that lowering
the ETNK2 gene expression signifcantly reduced the
stromal score and immune score (Figure 4(b)). Te EPIC
algorithm validated the above immune cell infltration trend
(Figure 4(c)). Changes in immune checkpoint-related genes
were also caused by the abnormal expression of the ETNK2
gene (Figure 4(d)).

3.8. Single-Cell Analysis of the ETNK2 Gene Expression in
Diferent Cells. Te Tabula Muris database was used to
determine the relationships between the ETNK2 expression
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Figure 1: (a) Boxplot of the ETNK2 gene in pan-cancer. (b) Forest plot of the survival analysis for the ETNK2 gene in pan-cancer.
(c) Heatmap of correlations among immune checkpoints and the ETNK2 gene.
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Figure 2: (a) Boxplot of the ETNK2 gene expression using the GEPIA database. (b) Kaplan–Meier (K–M) curve of KIRC patients between
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and various cells.Te fndings revealed that the ETNK2 gene
is primarily expressed in cells such as kidney capillary en-
dothelial cells (Figure 5).

3.9. IHC Analysis. In this subsequent study, we examined
the hub genes protein levels in clinical KIRC tissue samples.
Te HPA database IHC staining results indicated signif-
cantly lower positivity for ETNK2 (Figure 6).

4. Discussion

Te fndings of this study suggest that the ETNK2 mRNA
level is a prognosis-related factor in determining the prog-
nosis of KIRC [10]. We found the distinct infltration levels of
various tumor-infltrating lymphocytes (TILs) are linked to
varying levels of ETNK2 expression. Furthermore, patients
with KIRC who had decreased expression of the ETNK2 gene
had distinct immunosuppressive gene expression profles.
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Te ETNK2 gene is located on human chromosome
1q32.1, and the product of this gene is expressed in all
human tissues. Te ETNK2 enzyme, a member of the
choline/ethanolamine kinase family, catalyzes the frst step
in synthesizing cytidine diphosphate ethanolamine. Tis
enzyme is critical in producing phosphatidylethanolamine,
a primary component of cellular membranes [11]. Only
a few studies have found a link between ETNK2 and cancer,
with one fnding claiming that increased CpGmethylation in
the ETNK2 gene promoter is associated with radiotherapy
resistance in laryngeal squamous cell carcinoma [12].
However, the ETNK2 mechanism underlying KIRC is un-
known. Huang et al. found a panel of dysregulated
metabolic-related genes in KIRC, including ETNK2,
MTHFD2, HOGA1, GLDC, ALDH6A1, AGXT2, and RRM2
[13]. Our study investigated the role of the ETNK2 gene in
KIRC further.

KIRC has long been known to be resistant to chemo-
therapy, and most patients with this cancer continue to
respond poorly to targeted antiangiogenic treatments and
immune checkpoint inhibitors [14, 15]. However, it remains
unknown if the ETNK2 gene can infuence immunotherapy
resistance. Terefore, it is worth investigating if the ETNK2
gene is involved in the modulation of the immunological
milieu and immune checkpoints in KIRC. TILs in cancer
patients’ tumor microenvironment (TME) can be used to
predict prognosis and immunotherapy efcacy [16, 17].
According to our fndings, ETNK2 gene expression levels
correlate with the expression levels of certain immune cell
subpopulations, including neutrophils, T17 cells, and T1
cells. CD8+ T cells are the efector cells used in cancer

immunotherapy. Generally, CD8+ T lymphocytes are acti-
vated to attack malignant cells via Fas-Fas ligand pathways
or perforin-granzyme synthesis [18]. Terefore, additional
research must be conducted to identify additional check-
points. In addition, we investigated the interaction between
the ETNK2 gene and genes involved in immune check-
points; SIGLEC15, IGIT, D274, AVCR2, DCD1, TLA4, AG3,
and PDCD1LG2 are the molecules with the strongest as-
sociation. Tese fndings imply that the ETNK2 gene is
linked to immune infltration in TME and could participate
in the immunomodulatory mechanisms of the KIRC.

We found that a dysregulated ETNK2 gene was asso-
ciated with valine, leucine, and isoleucine degradation and
the xenobiotic metabolic process. Te cause of metabolic
heterogeneity within tumors remains unknown. Further-
more, gene expression could not explain the clustering of
metabolic processes. A recent study illustrated that changes
in metabolic activity in clear cell RCC are not always linked
to changes in the expression of genes encoding metabolic
enzymes [19].Tis could be due to a noncanonical metabolic
fux, gene, and protein expression level diferences, or co-
factor regulation of enzymatic activities. Certain metabolic
changes have a link to the gene expression of metabolic
enzymes, such as pyruvate levels and the expression of the
PDHA1 and LDHA genes. Lower levels of the PDHA1 and
LDHA enzymes involved in pyruvate metabolism may be
linked to higher pyruvate levels in malignancies. Terefore,
the ETNK2 gene can be a useful biomarker for KIRC related
to metabolic activities.

Our research still has potential limitations. Our research
is based on the analysis of public databases. Our research

Figure 6: Immunohistochemistry analysis of the ETNK2 gene in kidney and KIRC tissue.
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analysis was retrospective. Terefore, we need more ex-
perimental verifcation and further multicenter, large
sample, and prospective research in the future to prove the
mechanism of ETNK2 in KIRC patients and develop more
efective treatment strategies.

5. Conclusion

We found that the ETNK2 gene has a lower expression level
in KIRC and that this expression level is linked to patient
survival and the progression of malignancies. Te level of
ETNK2 gene expression in KIRC tumor tissues was mod-
erately positively linked to the degree to which immune cells
such as neutrophils infltrated the tumor.Te ETNK2 gene is
a potential treatment target or prognostic indicator for KIRC
patients. However, the precise mechanisms through which
the ETNK2 gene afects the prognosis of KIRC patients have
yet to be thoroughly investigated.
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