
Research Article
Comprehensive Molecular Analyses of Notch Pathway-Related
Genes to Predict Prognosis and Immunotherapy Response in
Patients with Gastric Cancer

YinsenSong,1NaGao,2ZhenzhenYang,2SisenZhang,2TianliFan ,3 andBaojunZhang 4

1School of Basic Medical Sciences, Xi’an Jiaotong University, Translational Medicine Research Center,
Zhengzhou People’s Hospital, Zhengzhou, China
2Translational Medicine Research Center, Zhengzhou People’s Hospital, Zhengzhou, China
3School of Basic Medical Sciences, Xi’an Jiaotong University, Zhengzhou People’s Hospital, Zhengzhou University,
Zhengzhou, China
4Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University,
Xi’an, China

Correspondence should be addressed to Baojun Zhang; bj.zhang@mail.xjtu.edu.cn

Received 6 October 2022; Revised 6 November 2022; Accepted 24 November 2022; Published 24 January 2023

Academic Editor: Zhongjie Shi

Copyright © 2023 Yinsen Song et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gastric cancer (GC) is a highly molecular heterogeneous tumor with unfavorable outcomes. Te Notch signaling pathway is an
important regulator of immune cell diferentiation and has been associated with autoimmune disorders, the development of
tumors, and immunomodulation caused by tumors. In this study, by developing a gene signature based on genes relevant to the
Notch pathway, we could improve our ability to predict the outcome of patients with GC. From the TCGA database, RNA
sequencing data of GC tumors and associated normal tissues were obtained. Microarray data were collected from GEO datasets.
Te Molecular Signature Database (MSigDB) was accessed in order to retrieve sets of human Notch pathway-related genes
(NPRGs). Te LASSO analysis performed on the TCGA cohort was used to generate a multigene signature based on prognostic
NPRGs. In order to validate the gene signature, the GEO cohort was utilized. Using the CIBERSORTmethod, we were able to
determine the amounts of immune cell infltration in the GC. In this study, a total of 21 diferentially expressed NPRGs were
obtained between GC specimens and nontumor specimens. Te construction of a prognostic prediction model for patients with
GC involved the identifcation and selection of three diferent NPRGs. According to the appropriate cutof value, the patients with
GC were divided into two groups: those with a low risk and those with a high risk.Te time-dependent ROC curves demonstrated
that the new model had satisfactory performance when it came to prognostic prediction. Multivariate assays confrmed that the
risk score was an independent marker that may be used to predict the outcome of GC. In addition, the generated nomogram
demonstrated a high level of predictive usefulness. Moreover, the scores of immunological infltration of the majority of immune
cells were distinctly diferent between the two groups, and the low-risk group responded to immunotherapy in a signifcantly
greater degree. According to the results of a functional enrichment study of candidate genes, there are multiple pathways and
processes associated with cancer. Taken together, a new gene model associated with the Notch pathway may be utilized for the
purpose of predicting the prognosis of GC. One potential method of treatment for GC is to focus on NPRGs.

1. Introduction

Gastric cancer (GC) is one of the most prevalent malignant
tumors in the world [1]. GC was ranked as the ffth biggest
cancer burden in the world, according to data from the

World Health Organization (WHO) [2]. Tis was based on
the estimated occurrence of 1 million cases worldwide [3].
As a result of the late detection of the disease at a more
advanced stage, the mortality rate of gastric cancer is sig-
nifcant; for example, in 2020, it was 768,793, which places it

Hindawi
Journal of Oncology
Volume 2023, Article ID 2205083, 15 pages
https://doi.org/10.1155/2023/2205083

https://orcid.org/0000-0003-0920-4897
https://orcid.org/0000-0001-5972-1011
mailto:bj.zhang@mail.xjtu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2205083


as the ffth most prevalent cause of death due to cancer [4, 5].
Despite the fact that surgery is the primary treatment with
the intention of curing the disease, 40%–60% of those pa-
tients who undergo resection surgery show disease relapse
[6]. Te prognosis is not good for these individuals, who
have a survival rate of fewer than 10% over a period of
5 years [7, 8]. Patients with GC face an uphill battle when it
comes to their prognosis because of intratumoral, inter-
patient, and intrapatient heterogeneity of the disease [9]. In
addition, GC has a predisposition toward early metastasis,
and the majority of these metastases are discovered in severe
stages. Tis may be the single most important factor con-
tributing to the high fatality rate of GC patients [10, 11]. As
a result, it is essential to locate dependable predictors for the
purpose of prognostic estimation, which might provide an
incredible amount of guiding value to the administration of
the GC. Patients sufering from GC would especially beneft
from an improved prognostic prediction if a multiple-gene
signature could be constructed.

Te Notch signaling system is an intercellular signaling
pathway that has been largely conserved throughout evo-
lution. It is responsible for regulating cell proliferation and
diferentiation, determining cell fate decision, and partici-
pating in cellular activity in both embryonic and adult tissues
[12, 13]. It is essential to have a good understanding of the
structure of Notch proteins and the signaling pathways that
are associated with them, since they are involved in the
control of the promotion, proliferation, and development of
cancer [14, 15]. Transmembrane glycoproteins make up
Notch receptors, which range in the number from 1 to 4.
Notch receptors have three distinct regions: an extracellular
domain, a transmembrane domain, and an intramembrane
or cytoplasmic region [16]. Te extracellular domain is lo-
cated outside of the cell. Te activation of oncogenic sig-
naling pathways makes aggressive GC harder to treat. One
such pathway is the Notch signaling pathway. Notch sig-
naling is an important mechanism in the process of the self-
renewal of stem cells, the determination of cell fate and
diferentiation during embryonic and postnatal develop-
ment, and themaintenance of adult cell homeostasis [17, 18].
Until now, it is not clear whether each Notch component
acts as an oncogene or a tumor suppressor. Tis is a con-
tentious issue. Researchers also focused on the connection
between the Notch signaling pathway and stomach cancer
[19, 20]. Although a rapidly expanding number of linked
outcomes have been developed, conclusions are still de-
batable. For example, in contrast to conventional wisdom,
researchers found that the expression of Notch 1 was lower
in stomach cancers than that in normal tissue.

Tere is an increasing body of research studies sug-
gesting that the tumor microenvironment (TME) plays an
important part in the progression of tumors [21]. It is
possible to divide solid tumors into two categories: im-
munologically hot tumors and cold tumors [22]. Cancer
immunotherapy is successful in treating hot tumors,
whereas the treatment is inefective against cold tumors [23].
Cancers that are immunologically inert have a few muta-
tions, a limited invasion of cytotoxic immune cells, and
a substantial population of myeloid-derived suppressor cells

[24, 25]. As a consequence, reactions seen in clinical trials
involving immune checkpoint blockade (ICB) are poorer in
immunologically cold tumors [26]. However, preliminary
research has demonstrated that it is possible for cool tumors
to become heated ones. Terefore, it is of the utmost im-
portance to discover the comprehensive mechanism that lies
at the root of immunologically cold tumors, as this would aid
in the development of a method for bringing cold tumors up
to temperature and turning them into hot tumors.

In this study, we built a predictive signature using genes
related to Notch pathway-related genes (NPRGs), evaluated
its utility for determining outcomes, diagnosis, treatment
responses, and tumor immune infltration of GC patients,
and carried out internal verifcation. In addition, we ac-
complished functional enrichment analysis (GSEA) in order
to investigate possible mechanisms.

2. Materials and Methods

2.1. Raw Data. Te data on RNA sequencing and clinical
information related to STAD patients were received from the
TCGA data portal. For the purpose of developing the risk
model, the TCGA-STAD cohort served as the “training
cohort,” while the microarray data obtained from the GEO
database was applied to the “validation cohort.”We collected
RNA-sequencing data on the TCGA-STAD cohort using the
UCSC Xena browser (https://xenabrowser.net/datapages/)
in raw count format. We then normalized the data for
subsequent analysis by using Deseq2 software. GSE84437
included 433GC samples with available clinical information.
Downloads of gene sets relevant to the human Notch
pathway were received from the Molecular Signature Da-
tabase (MSigDB), and a total of 428 genes were retrieved
from seven diferent Notch-related pathways (Table S1).

2.2. Identifcation of Diferentially Expressed genes (DEGs) in
GC. Raw count data were frst transformed into log2 form
after being standardized with the transcript per million
(TPM) method. Te next step was the annotation of
19654 protein-coding genes. Limma, version 3.36.2 of the R
package, was utilized in the determination of DEGs [27].Te
detection of diferentially expressed genes (DEGs) worthy of
further investigation required both a log2 fold change (FC)
of larger than one and an adjusted P value of less than 0.05.

2.3. Construction of the Prognostic Model by LASSO Cox
Regression. To determine which candidate DEGs in the two
discovery sets were most strongly related to patients’ overall
survival times, we used univariate analysis with a signif-
cance level of P< 0.05. In order to perform univariate Cox
regression analysis, the “survival” R program was utilized
[28]. Least absolute shrinkage and selection operator
(LASSO) Cox regression, together with ten times of cross-
validation, was utilized in order to arrive at the value for the
penalty regularization parameter. Te coefcient of each
gene was decreased to zero by artifcial means, which got rid
of the connection that existed between the genes that were
chosen and stopped the model from being overft. Genes

2 Journal of Oncology

https://xenabrowser.net/datapages/


were chosen using a method called lamda.min, which stands
for minimum deviance. In order to perform LASSO Cox
regression analysis, the “glmnet” R program was utilized.
Multivariate Cox regression analysis was used to create the
coefcients for each gene, and then, the prognostic risk-
score model was constructed using those coefcients. In
order to carry out the multivariate Cox regression analysis,
the “survminer” R program was utilized [29]. Te risk score
for each patient was determined using the risk-score model
based on the expression of each gene that was found. After
that, the model of risk scores was utilized to determine the
prognosis of GC patients. Te TCGA cohort served as the
training set, whereas the samples from the GEO: GSE84437
project served as the test set.

2.4. Building Predictive Nomograms and Analyzing Gene Set
Enrichment for Functional Relevance. Te “rms R package”
was used in order to construct the nomogram and the
calibration plot [30]. Gene set enrichment analysis (GSEA)
was applied to GC patients in order to uncover associated
pathways. It was determined that an enriched gene set was
statistically signifcant if it had a false discovery rate of less
than 0.25 percent and a nominal P value that was lower than
0.05 percent.

2.5. Principal Component Analysis (PCA). In the feld of
computer vision, PCA is a method that is frequently used for
dimensionality reduction and feature extraction [31]. In
order to study the potential diferences that may exist be-
tween high-risk and low-risk groups, the “scatterplot3d” R
tool was used [32].

2.6. Immune Feature Analysis. A brand new deconvolution
algorithm known as CIBERSORT was used, which is based
on linear support vector regression [33]. Taking into con-
sideration the important roles that immune cells play in
TME, the CIBERSORT program was applied to determine
the scores of 22 immune cells in each tumor sample. Using
the ggplot2 R tool, all of the results were displayed on stacked
graphs, heatmaps, and box plots, respectively [34]. In ad-
dition, the Wilcoxon rank-sum test was utilized in order to
conduct an analysis of disparate scores exhibited by these
immune cells that were obtained from TCGA datasets.

2.7. Pathway Analysis. Te DEGs of low-risk and high-risk
groups were compared using the “edgeR” tool of the R
computer language. In this investigation, we compared the
DEGs of the two groups. Tis was performed in order to
perform functional annotation from the GO for DEGs. Te
KEGG database performs an analysis of metabolic pathways.
After that, GSEA was then performed to reveal signaling
pathways and BPs in which diferentially expressed genes
were enriched between high-risk and low-risk subgroups.

2.8. Statistical Analysis. All analyses used in this study were
performed by using R software (version 3.5.1, Boston,

Massachusetts, USA). Te Kaplan–Meier curve, which was
examined by the log-rank test, was utilized in the in-
vestigation of the connection between genes associated with
the Notch pathway and overall survival. For the purpose of
determining the sensitivity and specifcity of the prognostic
prediction model, time-dependent ROC curves were uti-
lized. Te performance of the nomogram was evaluated
using the c-index and the calibration curve. Te nomogram
was produced using the regression coefcients that were
derived from the Cox analysis. Statistical diferences between
the two groups were examined using the Wilcoxon test.
When the P value was less than 0.05, statistical signifcance
was considered.

3. Results

3.1. Identifcation ofDEGs betweenNormal Specimens andGC
Tissues. Seven gene sets associated with the Notch pathway
were obtained from the MSigDB database. Using data re-
ceived from TCGA-STAD, we were able to obtain in-
formation on the linked gene expression of GC.Te “limma”
R program was applied in order to locate genes that dis-
played diferential expression levels. TCGA-STAD was used
to analyze the diferential expression of 95 distinct NPRGs.
As shown in Figures 1(a) and 1(b), a total of 21 DEGs were
obtained: 16 genes (MIR302A, MIR200C, DLGAP5, E2F1,
CDK6, FABP7, MFAP2, TSPEAR, MESP2, SIX1, H3C12,
ONECUT1, DLL3, ADAM12, WNT2, and MAGEA1) were
signifcantly upregulated and 5 genes (KCNA5, TMEM100,
CFD, PLN, and FHL1) were signifcantly downregulated.

3.2. Establishment of the Prognostic Notch Pathway-Related
Gene Signature. For the purpose of predicting overall
survival in patients from TCGA datasets, LASSO and Cox
assays were employed to evaluate a gene signature
connected with 3 Notch pathways, and the formula cal-
culating the risk score was as follows: ADAM12 expression
∗0.2035+MFAP2 expression ∗0.1361+TMEM100 expression
∗0.1554 (Figures 2(a)–2(c)). To clearly diferentiate GC sam-
ples, the risk-score model was applied (low or high-risk)
(Figures 2(d) and 2(e)). According to the fndings of patient
survival, those patients who had a low-risk score had
a greater survival rate than those patients who had a high-
risk score (Figure 3(a)). In addition, these fndings were
reexamined and shown to be consistent for GSE84437
datasets (Figure 3(b)). According to the results of a time-
dependent ROC analysis, the Notch pathway-related gene
signature had a diagnostic accuracy of 0.586 after one year,
0.617 after three years, and 0.729 after fve years
(Figure 3(c)). Te area under the ROC curves (AUC)
demonstrated that the risk score (AUC � 0.729) had a better
prognostic value than a single indicator, such as age
(AUC� 0.606), gender (AUC� 0.559), grade (AUC� 0.548),
and stage (AUC� 0.606) (Figure 3(d)). Cox survival studies
were carried out so that we could fnd out whether or not
the risk score was an independent factor for determining the
outcome of GC. According to the results of a univariate
study, the clinical stage and the risk score were associated
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with the patients’ likelihood of survival with GC (Figure 4(a)).
Furthermore, multivariate analysis revealed that a patient’s
risk score was an independent predictor of a poor prognosis
for GC (HR� 2.336, 95% CI: 1.249–4.370). (Figure 4(b)).

3.3. Association between Clinicopathological Characteristics
and Risk Scores. Te potential link between the risk score
and clinicopathological features was then investigated. We
discovered no correlation between the risk score and either
age or gender (Figures 5(a) and 5(b)). In addition, we ob-
served that a higher risk score was associated with the ad-
vanced grade (Figure 5(c)), clinical stage (Figure 5(d)), and T
stage (Figure 5(e)). However, there was not a distinct dif-
ference in the risk score between theM and N stage (Figures
5(f) and 5(g)).

3.4. Construction of a Nomogram for Predicting Survival.
To better predict OS for GC data, a nomogram was con-
structed using age, gender, grade, pathological stage, T stage,
M stage, and N stage information, in addition to a predictive
risk-score model (Figure 6(a)). Te nomogram’s ability for
the prediction of the overall survival of GC patients was
demonstrated by calibration curves drawn at 1, 3, and 5 years
(Figure 6(b)). Cox assays illustrated that the nomogram is an
independent prognostic indicator for GC patients (Figures
6(c) and 6(d)). Te nomogram was more predictive than
a single indicator, as shown by AUC (Figure 6(e)).

3.5. Gene Set Variation Analysis (GSVA). To investigate
biological activities exhibited by the two groups, GSVA
enrichment was carried out with the gene sets of
“c2.cp.kegg.v7.2,” which were obtained from the Molecular
Signature Database (MSigDB). Interestingly, we found that
many tumor-related were enriched in the high-risk score,

such as TGF_BETA_SIGNALING_PATHWAY,
WNT_SIGNALING_PATHWAY, and KEGG_MAPK_-
SIGNALING_PATHWAY (Figure 7). Our fndings sug-
gested that the above genes may be involved in tumor
progression via regulating several diferent tumor-related
pathways.

3.6. Relationships between the Gene Signature and Immune
Cells. We estimated the presence of 22 immune cell types in
the TCGA cohort. Figure 8(a) displays the substantial dif-
ference in the presence of four types of immune cells be-
tween cases in the low-risk group and cases in the high-risk
group (plasma cells, T cells CD4 memory activated,
monocytes, and macrophages M2). Moreover, APC_-
co_inhibition, APC_co_stimulation, CCR, Check-point,
Cytolytic_activity, HLA, Parainfammation, T_cell_co-
inhibition, T_cell_co-stimulation, Type_I_IFN_Response,
and Type_II_IFN_Response were also activated in the high-
risk group, indicating that it is possible that immunotherapy
will be efective for people in the high-risk group who have
immune suppression (Figure 8(b)).

3.7. Enrichment Analyses. To isolate DEGs, we used the
“limma” R package and fltered for FDR 0.05 and |log2FC|
> 1. Tese steps were taken to delve deeper into how the risk
model’s categorization of individuals into subgroups afects
gene function and pathway analysis. We found that there
were a total of 686 DEGs that existed between the low-risk
and high-risk groups in TCGA datasets. Tere were 627
upregulated genes and 58 downregulated genes in the high-
risk group. As shown in Figures 9(a) and 9(b), we found that
627 genes were mainly associated with extracellular matrix
organization, extracellular structure organization, skeletal
system development, endoplasmic reticulum lumen, con-
tractile fber, myofbril, extracellular matrix structural
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Figure 1: Diferentially expressed NPRGs between GC specimens and nontumor specimens shown in the (a) volcano map and (b) heatmap.
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Figure 2: Construction of a prognostic signature in GC from TCGA. (a) Hazard ratios for three diferentially expressed NPRGs that were
implicated in overall survival plotted on a forest plot. (b)Tree-fold cross-validation for tuning parameter selection in the LASSOmodel. (c)
Profles of diferentially expressed NPRGs using the LASSO coefcient.Te value determined using a three-fold cross-validation is indicated
by the dashed line. (d) Principal component analysis based on NPRGs in GC. (e) In order to diferentiate tumor samples from normal ones
in the TCGA cohort, principal component analysis was performed based on a risk score. Patients who were considered to have a high risk
were represented by the group that was colored green, while patients who were considered to have a low risk were represented by the group
that was colored red.
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constituent, glycosaminoglycan binding, and sulfur com-
pound binding. In addition, the results of KEGG assays
revealed that 627 genes were mainly associated with focal
adhesion, PI3K-Akt signaling pathway, human papilloma-
virus infection, proteoglycans in cancer, and ECM-receptor
interaction (Figures 9(c) and 9(d)).

4. Discussion

GC is one of the most prevalent malignancies worldwide
[35]. Te most recent statistics available on the disease in-
dicated that GC is currently ranked as the world’s second
most prevalent cause of death from cancer-related causes
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[36, 37]. Te majority of GC is caused by Helicobacter py-
lori’s complicated interplay with the host’s components.
According to the fndings of a number of studies, a number
of environmental factors, including trace elements, are
thought to be contributors to the development of stomach
cancer [38, 39]. Even with the breakthroughs that have been
made in diagnosis and therapy over the course of the last few
years, the primary therapeutic option for GC patients

remains surgery. Te prognosis for individuals with GC is
still not favorable due to the fact that a signifcant number of
patients are still initially diagnosed at an advanced stage. As
a result, it is of the utmost signifcance to look for promising
prognostic indicators for early diagnosis and innovative
therapy targets.

Notch was identifed for the frst time in 1917 and was
given its name after the mutation that was found to cause
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Figure 9: Comparing the TCGA cohort’s two risk categories from the lens of functional analysis based on DEGs. (a, b) GO enrichment.
(c, d) KEGG pathways.
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malformations in the wings of fies [40].Te Notch signaling
pathway is an example of a chained signaling pathway. It is
made up of ligands, receptors, and DNA binding proteins
farther down the chain [41]. Notch1 and Notch2 are two
diferent types of receptors, and jagged1 is considered to be
a ligand [42]. In addition, the roles of the Notch signaling
pathway in GC have been verifed and proved. It has been
observed that the Notch and mTOR signaling pathways are
frequently activated in human stomach cancer, which
contributes to the proliferation of cells [43, 44]. It is possible
that a viable therapeutic strategy for treating GC would
involve targeting these pathways in combination with one
another. According to the fndings of Yang et al., the Notch
signaling pathway may play a key role in the course of GC as
well as the prognosis of the disease by regulating the function
of CD4+CD25+CD127-dim/- regulatory Tcells and T helper
17 cells [45].Te fndings brought attention to the signifcant
functions that the Notch pathway plays in the evolution of
GC. As a result, we were curious as to whether or not
a unique prognostic model that was based on NPRGs could
be utilized in the process of forecasting the prognosis of
patients who had GC. In this study, using TGCA datasets, we
were able to obtain a total of 21 NPRGs with diferential
expression in GC.Te expression of ADAM12, MFAP2, and
TMEM100 was then used to establish a diagnostic signature
for the disease. Based on the TCGA database, this prognostic
model displayed an outstanding performance for operating
system prediction. According to comprehensive research,
the Notch pathway-related prognostic model was shown to
be an independent prognostic indicator when other clinical
parameters were taken into account. Subsequently, a model
comprising nine NPRGs was efectively verifed as a pre-
dictive factor for an independent GEO dataset. Tis was
accomplished after the model was initially developed. In-
tegration with a subset of clinicopathological characteristics
in a risk-assessment nomogram further enhanced the pre-
dictive value of this prognostic risk-score model. Tis
resulted in the nomogram having a higher predictive ca-
pacity. All of these data pointed to the fact that the Notch
pathway-related prognostic model has the potential to serve
as an efcient marker for GC prognostic prediction.

Te landscape of cancer treatment is now being altered
as a result of the application of immunotherapy to the
treatment of a variety of malignancies [46, 47]. For instance,
inhibiting the interaction between PD-1 and PD-L1 can
restore the function of efector T cells, allowing them to
perform their intended role of eliminating tumor cells more
efectively. Te level of PD-L1 that was expressed in a pa-
tient’s tumor is the most important element in identifying
whether or not they are a candidate for PD-1/PD-L1 axis
immunotherapy. However, in practice, many PD-L1-posi-
tive patients have a poor response to PD-1/PD-L1 axis
treatment, whereas some PD-L1-negative patients have an
unexpectedly excellent response. Our study showed that
high-risk patients with up-regulated immunological
checkpoints had a worse response to immunotherapy, which
was the result that kept popping up. However, the existence
of immune cell infltration may be a predictor of how ef-
fectively immunotherapy works, as individuals in the low-risk

subgroup who had higher levels of immunological/in-
fammatory activity were more likely to beneft from the
treatment.

However, this study also had certain limitations. First,
the bioinformatic research for this work was only per-
formed on publicly available datasets. Next, we need to
make sure that the fndings of this investigation are ac-
curate by using clinical participants in a prospective study
design. Second, the three genes that make up the prognostic
signature are all known to be risk factors in patients di-
agnosed with GC. Teir downstream molecular pathways
require additional investigation through functional tests in
order to discover potential novel treatment targets. Overall,
our gene profle that is associated with the Notch pathway has
a fair chance of accurately predicting the immunotherapy
response; however, this hypothesis will need to be verifed in
the future using clinical studies that are carefully planned.

5. Conclusion

Overall, a strong Notch pathway-related prognostic model
was created, and the characteristics of the tumor immune
milieu were investigated; our fndings could be benefcial to
the diagnosis and treatment of patients with GC.
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