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Background. Acute myeloid leukemia (LAML) is the most widely known acute leukemia in adults. Chemotherapy is the main
treatment method, but eventually many individuals who have achieved remission relapse, the disease will ultimately transform
into refractory leukemia. Terefore, for the improvement of the clinical outcome of patients, it is crucial to identify novel
prognostic markers. Methods. Te Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were
utilized to retrieve RNA-Seq information and clinical follow-up details for patients with acute myeloid leukemia, respectively,
whereas samples that received or did not receive ultrasound treatment were analyzed using diferential expression analysis. For
consistent clustering analysis, the ConsensusClusterPlus package was utilized, while by utilizing weighted correlation network
analysis (WGCNA), important modules were found and the generation of the coexpression network of hub gene was generated
using Cytoscape. CIBERSORT, ESTIMATE, and xCell algorithms of the “IOBR” R package were employed for the calculation of
the relative quantity of immune infltrating cells, whereas the mutation frequency of cells was estimated by means of the
“maftools” R package. Te pathway enrichment score was calculated using the single sample Gene Set Enrichment Analysis
(ssGSEA) algorithm of the “Gene Set Variation Analysis (GSVA)” R package.Te IC50 value of the drug was predicted by utilizing
the “pRRophetic.” Te indications linked with prognosis were selected by means of the least absolute shrinkage and selection
operator (Lasso) Cox analysis. Results. Two categories of samples were created as follows: Cluster 1 and Cluster 2 depending on the
diferential gene consistent clustering of ultrasound treatment. Te prognosis of patients in Cluster 2 was better than that in
Cluster 1, and a considerable variation was observed in the immune microenvironment of Cluster 1 and Cluster 2. Lasso analysis
fnally obtained an 8-gene risk model (GASK1A, LPO, LTK, PRRT4, UGT3A2, BLOCK1S1, G6PD, and UNC93B1). Te model
acted as an independent risk factor for the patients’ prognosis, and it showed good robustness in diferent datasets. Considerable
variations were observed in the abundance of immune cell infltration, genome mutation, pathway enrichment score, and
chemotherapeutic drug resistance between the low and high-risk groups in accordance with the risk score (RS). Additionally,
model-based RSs in the immunotherapy cohort were signifcantly diferent between complete remission (CR) and other response
groups. Conclusion. Te prognosis of people with LAML can be predicted using the 8-gene signature.

1. Introduction

Acute myeloid leukemia (LAML) is a heterogeneous he-
matological cancer distinguished by the interruption of
myeloid diferentiation and the accumulation of mother cells
in the bone marrow. Its main feature is that the proliferation

of microleukoblasts or leukocytes cannot diferentiate
normally [1]. LAML, the most prevalent form of acute
leukemia in adults, is highly heterogeneous and prone to
recurrence [2, 3]. According to the latest data, it is estimated
that by 2022, there will be 20050 new cases of LAML and
about 11540 mortalities in the United States alone [4]. For
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decades, the conventional treatment of primary LAML has
been to induce chemotherapy frst in order to achieve
complete remission (CR), and then give consolidation and
intensive treatment after remission, or choose stem cell
transplantation at a selected time [5]. Among them, about
40–90% of LAML patients respond to the initial induction
chemotherapy and can undergo CR [6–9]. However, the
remission rate of young patients is only 40%–50% [9].
Chemotherapy resistance is one of the important obstacles
for patients with LAML to achieve long-term remission after
treatment [10, 11]. Terefore, for a better understanding of
the molecular characteristics involved in the occurrence of
LAML and for the improvement of a patient’s clinical
outcome, it is essential to explore new prognostic markers.

Te advantages of convenience and small side efects
make ultrasound the second most widely used imaging
method in the world. In addition to being widely used in
diagnostic imaging, ultrasound is also often used in the
treatment of various diseases [12]. With the development of
ultrasound molecular imaging technology in recent years
and its clinical application, this technology can be used to
provide more accurate diagnosis and treatment for tumor
patients, which is expected to improve the treatment failure
caused by chemotherapy resistance. Ultrasound-mediated
targeted delivery (UMTD) is a novel therapeutic material
delivery approach based on ultrasound that has enormous
potential for efective drug delivery and considerably en-
hancing drug treatment impact [13]. Increasing the distri-
bution and absorption of chemotherapy drugs through the
use of ultrasonic contrast agents (UCAs) as carriers is es-
sential for improving the chemotherapy efcacy of tumor
patients [12]. Advanced cervical cancer is treated with
brachytherapy, and using ultrasonography during brachy-
therapy signifcantly improves the prognosis for cervical
cancer patients [14]. Additionally, ultrasound combined
with micro/nanobubbles can transfer genes and antigens to
cells, which may efectively increase the response of tumors
to immunotherapy [15]. Simultaneously, studies have con-
frmed that ultrasound technology can also enhance the
therapeutic efect of radiotherapy and photodynamic ther-
apy (PDT) [16, 17]. Automated breast ultrasound (AUBS)
and digital breast tomosynthesis (DBT) can be used to assess
and track the efcacy of breast cancer patients in terms of
prognosis [18]. Ultrasound technology can also be used for
the prediction of a cancer patient’s response to chemo-
therapy and to evaluate its correlation with long-term
survival before treatment, helping to provide a more ac-
curate diagnosis and treatment for patients [19, 20]. In
a word, ultrasound diagnosis and treatment technology will
beneft more and more tumor patients. Studying the prin-
ciple and biological signifcance of its impact on prognosis
and survival in cancer can further play the role of this
technology in tumor diagnosis and treatment.

Diferential expression analysis was used in this study for
the identifcation of the diferential sensitive gene of LAML
before and after ultrasound treatment. Two ultrasound-
sensitive subtypes with signifcant prognostic diferences
were identifed based on this gene. Furthermore, an 8-gene
risk model including GASK1A, LPO, LTK, PRRT4,

UGT3A2, BLOCK1S1, G6PD, and UNC93B1 was con-
structed for the evaluation of the prognosis of patients with
LAML.Temodel has good and stable prognostic evaluation
efciency.

2. Materials and Methods

2.1. Data Set Source and Preprocessing. Te expression
profle data (FPKM value) and clinical data (Table 1) of
LAML were accessed from the Cancer Genome Atlas
(TCGA) database with the help of the “TCGAbiolinks” R
tool. Te FPKM value was log2-converted, and the unifed
survival time unit was used when processing survival in-
formation: days.

Both the expression profle and ultrasonic grouping data
for GSE10212 and the clinical information for GSE71014
were accessed from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/), and the fol-
lowing processing was followed: (1) the samples with no
clinical follow-up information were discarded; (2) the
samples with no records of survival time (<0 days) and no
survival status either were rejected, while the unifed unit of
survival time was days; (3) the probe was turned into a gene
symbol; (4) the probe that was associated with multiple
genes was eliminated; (5) the median value was calculated
for the expression having multiple gene symbols.

Te “IMvigor210CoreBiologies” R package was
employed to download the expression profle and survival
and response information of the IMvigor210 immuno-
therapy cohort (bladder cancer), and samples with survival
information and expression data were selected for analysis.
Table 2 illustrates the clinical information.

2.2. Diferential Expression Analysis. Te diferential ex-
pression analysis in this study was carried out with the help
of the “limma” R package. In the GSE10212 dataset, diferential
expression analysis was performed on samples that received
ultrasound treatment and those that did not receive ultrasound
treatment, and DEGs were identifed with a threshold p value
<0.01 (because no diferential gene met adjust.p value <0.05)
and |log2FC|> 0.585. For the diferential expression analysis of
TCGA ultrasound-sensitive subtypes, the Benjamini–Hoch-
berg (FDR) corrected adjust.p value <0.01 and |log2FC|> 0.585
were utilized to identify DEGs.

2.3.GOandKEGGEnrichmentAnalysis. TeGO and KEGG
enrichment analyses were conducted with the help of the
“clusterProfler” R package on the diferential genes obtained
from the two diferential expression analyses. p adjust
method was set as BH, and an adjust.p value <0.05 was used
as a cutof to identify substantially enriched pathways.
According to an adjust. p value <0.05, the top 10 pathways
with signifcant enrichment were selected for visualization.

2.4. Unsupervised Cluster Analysis. Consistent clustering
analysis was performed on TCGA-LAML samples by using
the “ConsensusClusterPlus” R package to identify

2 Journal of Oncology

https://www.ncbi.nlm.nih.gov/geo/


ultrasound-sensitive molecular subtypes. Te analysis pro-
cess adopted an 80% resampling rate and 1000 repetitions to
assure classifcation stability. Moreover, the survival curve of
KM was drawn by the “survival” R package, and the sig-
nifcance of the prognosis variation between typing was
verifed by the log-rank test. Finally, the clustering outcomes
with a good clustering efect and signifcant diferences in
survival among subtypes were selected as the subtype rec-
ognition results.

2.5. Weighted Gene Coexpression Network Analysis
(WGCNA). Te association pattern between gene expres-
sion in microarray or RNA-seq is commonly characterized
by utilizing WGCNA. Te gene coexpression network of
complex biological processes was divided by WGCNA into
a number of highly associated feature modules, which
represent various groups of highly synergistic gene sets.
Tese modules can be associated with specifc clinical fea-
tures for the identifcation of genes with key functions,
helping to study potential mechanisms underlying specifc
biological processes, and exploring candidate biomarkers.

“WGCNA” R package was used to identify the hyper-
variable gene of adjust.p value <0.01 in the ultrasound-
sensitive molecular subtype of the TCGA-LAML cohort.
Combined with clinical characteristics (age, sex, and survival
status), a gene coexpression network was constructed, and
key modules were identifed through the correlation co-
efcient between clinical characteristics and modules. Te
hub genes of key modules were then identifed according to
the GS andMM values, and the coexpression network of hub
genes was created by using Cytoscape software.

2.6. Construction of Prognostic Risk Model and Analysis of
Survival Diferences. As per the hub gene of the key
module, the univariate Cox analysis was conducted to
determine (p< 0.05) the indicators associated with the
prognosis of LAML. Simultaneously, the median

expression of a single signature was taken as the threshold point,
and two groups of LAML samples were created as follows: high
and low expression groups. Te KM method was employed to
build the prognosis analysis survival curve, and the log-rank test
was utilized to calculate the signifcance of the diference. Te
Lasso regression method of the “glmnet” R package was
employed to identify the important prognosis-related genes, and
the prognosis model was created. Te tumor samples were
divided into two groups as follows: high-risk and low-risk
groups using the median RS as the threshold, and the KM
method was employed to generate the survival curve of prog-
nosis analysis, whereas the log-rank test was employed to de-
termine the signifcance of the diference.Te receiver operating
characteristic (ROC) curve was created using the R package
“timeROC” to evaluate the scoring prediction by the disturbance
scoring model, while the “ggplot2” R package was utilized to
produce the scatter diagram of survival time and survival state,
and the scatter diagram of sample score as well. In addition, the
“pheatmap” R package was utilized to create the expression heat
map of model genes. Te expression value of each candidate
gene was added together and multiplied by the weight to de-
termine the model’s risk value. Te formula is as follows:
RS � n

i�0coef(i) × Exp(i).

2.7. Estimation of Proportion of Immune Infltrating Cells and
Immune Score. Tree algorithms from the “IOBR” R package,
CIBERSORT, ESTIMATE, and xCell, were employed to mea-
sure the degree of immune infltrating cells on the basis of the
expression profle of the TCGA-LAML dataset [21].

CIBERSORTalgorithm is a method used in complex tissues
for the characterization of cell composition depending on the
expression profles of genes. Te leukocyte characteristic gene
matrix LM22 evaluated 547 genes to determine the diferenti-
ation between 22 immune cell types, comprising myeloid
subpopulations, natural killer (NK) cells, plasma cells, immature
and memory B cells, and 7 diferent types of T cells. Te LM22
characteristic matrix and CIBERSORTwere used to estimate the
proportion of the 22 cell phenotypes in the sample, and when
added, the resulting sum of all immune cell types was 1 in each
sample.

Te ESTIMATE algorithm was employed to measure the
immune score, tumor purity, matrix score, and estimate score of
the tumor.

XCELL can carry out cell type enrichment analysis on
the basis of the gene expression data of 64 diferent
immune cell and stromal cell types. In order to reduce the
correlation between closely related cell types, the XCell
machine learns from thousands of diferent cell types
from diferent sources based on gene signature. Trough
extensive computer simulation of signature and cellular
immune typing, xCell can reliably describe the landscape
of cellular heterogeneity of tissue expression profle.

2.8. Genome Mutation Analysis. “Maftools” R package,
combined with clinical grouping information, was used to
draw a waterfall diagram to show the variation distribution
of genes with high somatic mutation frequency in LAML

Table 2: Clinical information table of IMvigor210 queue.

Clinical features Grouping information Number of samples

Status Dead 189
Alive 109

Response

CR 25
PR 43
SD 63
PD 167

Table 1: Clinical information table of TCGA LAML queue.

Clinical features Grouping information Number of samples

Age Age ≥60 55
Age <60 75

Gender Female 60
Male 70

Status Dead 78
Alive 52
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samples and to classify the samples with model grouping
information to draw a waterfall diagram.

2.9. HALLMARK Pathway Enrichment Analysis. With the
help of the ssGSEA algorithm of the “GSVA” R package, the
enrichment score of 50 hallmark pathways for each sample
was evaluated in accordance with the gene expression of
LAML samples. Te correlation of expression and enrich-
ment score of the RS and model genes were determined with
the cor function, and the “corrplot” R package was used to
visualize the results. Moreover, the statistical tests were
employed for calculating the enrichment score diferences
between the model groups, while the enrichment score heat
map was produced by combining the clinical characteristics
of the samples with the “pheatmap” R package.

2.10. Drug Sensitivity Analysis. Combined with the expres-
sion data of model genes, the sensitivity (IC50 value) of 138
drugs in the Genomics of Drug Sensitivity in Cancer (GDSC)
dataset was predicted by using the “pRRophetic” R package.
Te sensitivity of patients with LAML to drug treatment was
evaluated by the IC50 value. Te Wilcoxon test was
employed for comparing the IC50 values between both risk
groups, and the drugs that difered substantially between the
two groups were identifed.

2.11. Statistical Test. Te Wilcoxon test was utilized for
comparing variations between the two groups of samples when
marking the signifcance, and the Kruskal–Wallis test was
employed for the comparison of variations between various
groups of samples, where ns represents p>0.05, ∗ represents p

≤ 0.05, ∗∗represents p≤ 0.01, ∗∗∗represents p≤ 0.001, and ∗∗∗∗
represents p≤ 0.0001. Among them, p<0.05 was signifcant.

3. Results

3.1. Identifcation of Ultrasound-Sensitive Genes in the GEO
Dataset. Diferential expression analysis was performed on
ultrasound and nonultrasound samples of the GSE10212 dataset
to select ultrasound-related diferential genes. A total of 227
signifcantly diferent genes were obtained, including 133 dif-
ferentially overexpressed genes and 94 diferentially down-
regulated genes. A volcanicmap and heatmapwere generated to
show the expression and distribution of DEGs among subtypes
(Figures 1(a) and 1(b)). Moreover, KEGG enrichment analysis
and GO function enrichment analysis were carried out on the
identifed DEGs. Te results are shown in Figures 1(c)–1(f), for
the analysis results with enrichment entries greater than 10, the
TOP10 entries with signifcant enrichment results were selected
to draw a bubble diagram, Fig. C is the enrichment results of the
KEGG pathway, and Figures 1(d)–1(f) are the enrichment
results of GO’s molecular function, biological process, and cell
components, respectively. It demonstrated that these genes are
enriched in biological processes such as regulation of cell-cell
adhesion, T cell activation, negative regulation of immune ef-
fector process, and pathways related to neuroactive ligand-
receptor interaction and Staphylococcus aureus infection.

3.2. Identifcation of Ultrasound-Sensitive Subtypes in TCGA
Cohort. Ultrasound-sensitive DEGs were detected in the
GEO dataset, and the TCGA-LAML cohort was used for the
molecular subtypes identifcation by consistent clustering.
Te clustering efect was the best when the KM was the
clustering algorithm, whereas euclidean was the distance,
best K� 2 (Figures 2(a) and 2(d)). Te cumulative distri-
bution function (CDF) of consistent clustering is exhibited
in Figure 2(i), which shows the cumulative distribution
function when k took diferent values. Figure 2(j) shows
the change of the area under the CDF curve when k was
relative to k − 1. Furthermore, two independent
ultrasound-sensitive molecular subtypes with signifcant
survival diferences were identifed, and the prognosis of
cluster2 (C2) was substantially better than that of cluster1
(C1) (Figures 2(e)–2(h)).

3.3. Diferences in the Expression of Ultrasound-Sensitive
Molecular Subtypes and Immune Infltration. Te clinical
signifcance of ultrasound-sensitive subtypes was explored
by analyzing the expression diferences and immune mi-
croenvironment diferences among subtypes again. Firstly,
diferential expression analysis was carried out on subtypes
to identify DEGs, and a total of 1341 diferential expression
genes were obtained, including 375 overexpressed genes and
966 downregulated genes. Te volcanic map is shown in
Figure 3(a). Moreover, DEGs were subjected to KEGG
enrichment analysis and GO function enrichment analysis,
the top 10 pathways with enrichment signifcance were
selected to draw a bubble diagram. Te results are shown in
Figures 3(b)–3(e), and they were mainly enriched in items
related to immune regulation, such as leukocytes, hema-
topoietic cells, immune response, and MHC molecules.
Subsequently, by determining the degree of immune cell
infltration and the predicted immune-related score, the
diferences in the tumor immune microenvironment be-
tween subtypes were investigated. Te fndings demonstrate
that the CIBERSORT algorithm predicted 22 types of im-
mune cell infltration ratios, and 13 of those types had
substantial variances between subtypes (Figure 3(f)), the box
diagram of matrix score, immune score, estimate score, and
tumor purity, respectively (Figure 3(g)). Te diferences
between the four scores were statistically signifcant, with the
three C1 scores exceeding C2, while the tumor purity of C1
was lower than C2.

3.4. WGCNA in Identifying Key Modules and Hub Genes.
Te highly mutated genes among ultrasound-sensitive
molecular subtypes in TCGA-LAML were selected for
WGCNA analysis. 130 LAML samples were clustered
(Figure 4(a)), while cut height was set to 8000 to eliminate
outliers; fnally, 126 samples were used for subsequent
analysis. Figure 4(b) shows the clustering tree after removing
outliers. As shown in Figure 4(c), when the correlation
coefcient was greater than 0.9, the optimal soft threshold
was 14. Additionally, Figure 3(d) shows that K has a negative
correlation with p (k) (correlation coefcient: 0.9), which
indicates that a gene scale-free network can be established by
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the selected β value. Furthermore, in the module, the
minimum gene number was set to 30, the maximum dis-
tance of the module to 0.25, and the calculation methods of
coexpression correlation and module trait correlation were
Pearson. Figure 4(e) shows the module clustering tree and it
can be observed that brown is a more important module.Te
feature vector gene clustering tree and heat map were drawn,
and their results in Figure 4(f ) reveal the modules with
correlation coefcient >0.8 (dissimilarity coefcient <0.2)
would be merged in the subsequent analysis. Figure 4(g) is

the heat map of the correlation between modules and traits,
and it can be observed that the key traits are age and status,
and the key modules are brown and black. A scatter diagram
was drawn to show the linear relationship between GS and
MM in the module, and the results are illustrated in
Figures 4(h) and 4(j), revealing the correlation coefcients of
0.35 and 0.33, respectively. According to the distribution of
GS andMM values of genes in the module, the threshold was
set GS> 0.2&MM> 0.8, and hub genes were selected
according to the key modules of each key trait. Furthermore,
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Figure 1: GSE10212 dataset’s diferential expression and functional enrichment analyses results: (a) volcanomap of DEGs in ultrasound and
nonultrasound groups; (b) in the heat map of DEGs, high and low expressions are represented by red and green, respectively; (c–f) bubble
diagram of enrichment pathway of KEGG pathway, molecular function (MF), biological process (BP), and cell component (CC) of DEGs, in
which the number of enriched diferential genes is represented by the point’s size and the color characterizes the signifcance of enrichment
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Figure 2: Subtype identifcation results of TCGA-LAML queue: (a–d) clustering results when the classifcation number k� 2, k� 3, k� 4,
and k� 5; (e–h) survival curves among subtypes when classifcation number k� 2, k� 3, k� 4, and k� 5; (i) CDF curve distribution of
consistent clustering; (j) the distribution of the area under the CDF curve of consistent clustering.
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Figure 3: Continued.
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37 hub genes were selected from the age-brown module and
26 hub genes were selected in the status-black module, and
based on the edge fle and node fle obtained from the export
network to Cytoscape function in WGCNA, the hub genes
were screened and introduced into Cytoscape to construct
the module hub genes coexpression network diagram of
a key trait (Figures 4(i) and 4(k)).

3.5. Construction and Verifcation of the Ultrasound-Related
Prognostic Signature Recognition of Prognostic Signature
Based on Hub Genes. In TCGA-LAML, identifcation of 63
hub genes was done using univariate Cox analysis, while the
threshold p< 0.01 was set. Moreover, 45 prognosis-related
genes were obtained as well. Te median expression of each
gene was used as the cutof value for high and low groups,
and the KM survival curve was drawn. Subsequently,
through random sampling, 7/10 of the TCGA-LAML overall
set (n� 130) was selected as the training set (n� 91), and on
the basis of these 45 prognostic-related signatures, the seed
was set at 12110, while Lasso linear regression method was
used to remove redundant genes and build a risk model. Te
results are shown in Figures 5(a)–5(c). Conclusively, 8
prognostic signatures were selected. Figure 5(d) shows the
KM survival curves of 8 prognostic signatures.

3.6. Verifcation of Robustness of Risk Model by Internal
Verifcation Set. Further assessment of the model scores’
impact constructed by the eight signatures on the training

set’s OS, the median of RS was taken as the critical value, and
the samples were distributed into two groups: high-risk and
low-risk groups. Te scatter plots of survival time and
survival state of the training set and the scatter plot of
samples’ RS were then drawn, respectively. Combined with
these two scatter plots, the relationship between survival and
score can be observed (Figures 6(a) and 6(b)), whereas the
model gene expression of the training set is variable in both
risk groups (Figure 6(c)). Moreover, the model’s prognostic
efciency was checked by the construction of KM and ROC
curves (Figures 6(d) and 6(e)). Te prognosis of the samples
in the high-risk group was worse, and the p< 0.01 of the KM
curve of both groups indicates that there is a considerable
variation in the prognosis of the two groups.Te risk model-
based AUC values for the 1-, 3-, and 5-years periods were
0.772, 0.802, and 0.904, respectively, indicating that the
model score’s prediction efciency is excellent.

Additionally, the test set of TCGA-LAML was employed
to check the ability of RS for OS prediction. In accordance
with the same method as the TCGA training set, two sample
groups were created as follows: the high-risk group and the
low-risk group, and the survival diferences were compared.
Te scatter diagram of survival time and survival state of the
test set, the scatter diagram of sample RS, and the heat map
of model gene expression were studied in both risk groups of
the test set (Figures 7(a) and 7(c)). Te high-risk group’s
prognosis was observed to be worse than that of the low-risk
group, and substantial diferences were observed in the
prognosis of both groups (Figures 7(d) and 7(e)). In the
TCGA test set, the respective AUC values of 1-, 3-, and 5-

specifc granule

vacuolar lumen

lysosomal membrane

lytic vacuole membrane

phagocytic vesicle

vacuolar membrane

tertiary granule

endocytic vesicle

fcolin−1−rich granule

secretory granule membrane

3.0 3.5 4.0 4.5

Rich factor

count
50
60
70

80

15
18
21
24

−log10 (p.adjust)

GO Cellular Component

(e)

**** ns **** ** ns **** ** ns ns ns ns ** **** ns ns ns * ns **** ns ** ns **** **** ****

0.0

0.3

0.6

0.9

1.2

B_
ce
lls
_n

ai
ve

B_
ce
lls
_m

em
or
y

Pl
as
m
a_
ce
lls

T_
ce
lls
_C

D
8

T_
ce
lls
_C

D
4_
na
iv
e

T_
ce
lls
_C

D
4_
m
em

or
y_
re
sti
ng

T_
ce
lls
_C

D
4_
m
em

or
y_
ac
tiv

at
ed

T_
ce
lls
_f
ol
lic
ul
ar
_h

el
pe
r

T_
ce
lls
_r
eg
ul
at
or
y_
(T
re
gs
)

T_
ce
lls
_g
am

m
a_
de
lta

N
K_

ce
lls
_r
es
tin

g

N
K_

ce
lls
_a
ct
iv
at
ed

M
on

oc
yt
es

M
ac
ro
ph

ag
es
_M

0

M
ac
ro
ph

ag
es
_M

1

M
ac
ro
ph

ag
es
_M

2

D
en
dr
iti
c_
ce
lls
_r
es
tin

g

D
en
dr
iti
c_
ce
lls
_a
ct
iv
at
ed

M
as
t_
ce
lls
_r
es
tin

g

M
as
t_
ce
lls
_a
ct
iv
at
ed

Eo
sin

op
hi
ls

N
eu
tr
op

hi
ls

P_
va
lu
e

Co
rr
el
at
io
n

RM
SE

Fr
ac
tio

n

C1

C2

(f )
Wilcoxon, p < 2.2e−16

−1500

−1000

−500

0

C1 C2

St
ro

m
al

Sc
or

e

C1

C2

C1

C2

Wilcoxon, p < 2.2e−16

1500

2000

2500

3000

3500

4000

C1 C2

Im
m

un
eS

co
re

C1

C2

Wilcoxon, p < 2.2e−16

0

1000

2000

3000

4000

C1 C2

ES
TI

M
A

TE
Sc

or
e

C1

C2

Wilcoxon, p < 2.2e−16

0.3

0.4

0.5

0.6

0.7

0.8

C1 C2

Tu
m

or
Pu

rit
y

(g)

Figure 3: Diferential results of expression and immune infltration of ultrasound-sensitive subtypes: (a) a volcanic map of diferential
expression among subtypes. Upregulation is represented by red, downregulation is represented by green, and genes with no statistical
diference are represented by gray; (b) in the bubble diagram of the KEGG pathway enrichment analysis of DEGs, the number of genes
enriched is represented by the size of the dot, and the enrichment signifcance is represented by the color; (c–e) bubble diagram of GO
function enrichment analysis of DEGs, which are BP, MF, and CC; (f ) box diagram of immune infltration diference between ultrasound-
sensitive subtypes, red is C1 and green is C2; (g) box diagram of the distribution diference of matrix score, immune score, ESTIMATE score,
and tumor purity between ultrasound-sensitive subtypes, red is C1 and green is C2.
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years were 0.733, 0.914, and 0.888, respectively. Tese results
confrm that the prognostic efcacy of the TCGA test set
model is stable and good.

Finally, the whole set of TCGA-LAML was employed to
check the ability of RS for OS prediction. Similarly, based on
the same method of TCGA training set, two groups of
samples were created as follows: the high-risk group and the
low-risk group in the overall set. Moreover, the scatter di-
agram of the survival time and survival state of the whole set,
the scatter diagram of the RS sample, and the heat map of the
expression of model genes were studied in both risk groups
of the whole set (Figures 8(a)–8(c)). Additionally, it was
observed that the prognosis of the high-risk group is worse,
and considerable variation was observed in the prognosis of

the two risk groups (Figures 8(d) and 8(e)). In the overall
concentration of TCGA, the AUC of 1-, 3-, and 5-years was
0.763, 0.827, and 0.905, respectively. Te above results
confrm that the prognosis of the TCGA integrated model is
stable and good.

3.7. Te External Validation Set Verifying the Prognostic Ef-
fcacy of theModel. Te robustness of the model score can be
further verifed by the prediction of the OS of patients with
LAML. Tis study selected a GEO external data set for the
same analysis and verifcation. Figures 9(a) and 9(b) illus-
trate the results of the scatter plot of survival time and
survival state and the scatter plot of sample risk score.
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Figure 4: Te results diagram of weighted gene coexpression network analysis: (a, b) sample clustering tree before and after removing
outliers; (c) soft threshold distribution scatter diagram, the weight is represented by soft threshold (power), and the correlation and average
connectivity between connectivity k and p(k) is represented by the ordinate; (d) soft threshold inspection diagram; (e) the clustering tree
graph of genes in the module.Te upper part of the graph is the clustering tree of genes, and the lower part is the module gathered according
to similarity; (f ) feature vector gene clustering tree graph and module correlation heat map; (g) module character correlation heat map;
(h–k) the scatter diagram of GS and MM value distribution in the module. Te row represents the module, the column is the trait, and the
value is the correlation coefcient.
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Figure 5: Results of TCGA univariate Cox analysis and Lasso regression analysis: (a) the change track of the Lasso regression independent
variable, the logarithm of the independent variable Lambda is represented by the abscissa, and the coefcient of the independent variable is
represented by the ordinate; (b) the confdence interval under each Lambda in Lasso regression; (c) Lasso regression coefcient of key
prognostic genes; (d) KM curve of the prognostic signature obtained by Lasso regression analysis.
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Figure 6: TCGA training set verifying the prognostic efcacy of the model. (a–c) the risk triple plot of the TCGA training set, which is the
risk dispersion plot, the survival time scatter plot, and the expression heat map of model genes in the RS group, respectively. Yellow is the
high-risk group, while green is the low-risk group; (d-e) KM curve (yellow for the high-risk group and green for the low-risk group) and
ROC curve of TCGA training set.
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Figure 7: TCGA test set verifying the prognostic efcacy of the model: (a–c) the risk triple plot of the TCGA test set, which is the risk
dispersion plot, the survival time scatter plot, and the expression heat map of model genes in the RS group, respectively. Te yellow color is
for the high-risk group and the green color for the low-risk group; (d-e) KM curve (yellow for the high-risk group and green for the low-risk
group) and ROC curve of the TCGA test set.
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Figure 8: TCGA whole set verifying the prognostic efcacy of the model. (a–c) the risk triple plot of TCGA whole set, which is the risk
dispersion plot, the survival time scatter plot, and the expression heat map of model genes in the RS group, respectively. Te yellow color is
for the high-risk group, while the green color is for the low-risk group; (d-e) KM curve (yellow for the high-risk group and green for the low-
risk group) and ROC curve of TCGA whole set.
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Combined with these two scatter plots, the relationship
between survival and score can be observed. Fig. C illustrates
the genes’ expression model in the GSE71014 dataset in both
risk groups. Figure 9(d) shows the KM curve of GSE71014.
Te samples in the high-risk group had a worse prognosis,
while the KM curve of the two risk groups (p< 0.05) in-
dicates substantial variations in the prognosis of both
groups. In Fig. E, the AUC values of 1-, 2-, and 3-years are
0.616, 0.654, and 0.651, respectively, indicating that the
prognostic efciency of the model score is good.

3.8. Prognostic Risk Models Associated with Multiple Tumor
Characteristics RS, an Independent Prognostic Factor. Te
constructed risk model in this analysis shows good prog-
nostic efcacy in the TCGA dataset and GEO external
validation set. Additionally, for verifcation of RS to be
served as an independent prognostic factor, the age and
gender of LAML were combined to conduct univariate and
multivariate Cox regression analyses. Te univariate Cox
analysis was performed frst, followed by the selection of
independent prognostic factors for multivariate Cox anal-
ysis. Te univariate Cox regression revealed signifcant
variations between the prognostic model group and age
group compared with the reference, which proves that they
are independent prognostic factors (Figure 10(a)). Fur-
thermore, based on survival time and survival status, no-
mograms (Figure 10(b)) were constructed in combination
with clinical indicators. Age and RS were clinical factors that
contributed signifcantly. Te construction of the calibration
curve was performed (Figure 10(c)) to assess the nomo-
gram’s accuracy. Te calibration curve revealed that the
prediction accuracy of the model in the 1st and 3rd years is
high. DCA decision curves of diferent classifcation features
were constructed to assess the prognosis accuracy of mul-
tiple clinical features. Te results are illustrated in
Figure 10(d).

3.9. Te Model Risk Score Related to the Clinical Character-
istics of the Tumor. Based on the clinical features of age and
gender of the TCGA-LAML dataset, the distribution dif-
ferences of RS among diferent clinical feature groups are
shown. As shown in Figures 11(a) and 11(b), there are
substantial variations in RS in the age group. In addition,
according to the grouping information of age, cluster, and
gender, the TCGA dataset was divided into two subdatasets,
and the KM curves of the subdatasets were drawn, re-
spectively, in accordance with the median value of RS. Te
KM curves revealed substantial variations in each of the
subdataset, and the prognosis of the high-risk group was
observed to be worse (Figures 11(c)–11(h)).

3.10. Te Risk Model Related to the Expression of Immune
Checkpoints. A group of molecules known as immune
checkpoints are expressed in immune cells and have the
ability to regulate the level of immune activation while
playing a signifcant role in the occurrence of human au-
toimmunity as well. Te correlation between fve types of

immune checkpoints was analyzed (from TISIDB, re-
spectively: chemokine, Immunoinhibitor, Immunostimula-
tor, MHC, and receptor) and the expression of eight model
genes, and the correlation heat map was constructed as well.
Te Immunoinhibitor gene is the most commonly used
immune checkpoint, and its correlation with model gene
expression is shown in Figure 12(a), the model genes
generally have a strong correlation with the expression of
immune checkpoints. In addition, the box diagram of four
common immune checkpoints was drawn, and the varia-
tions in the expression of immune checkpoints in model
groups were shown through statistical verifcation. As shown
in Figures 12(b)–12(e), there are considerable variations in
the gene expression levels of CD274, BTLA, and CTLA4, and
the expression level of genes is increased in the high-
risk group.

3.11. Association betweenModel Grouping and the Proportion
of Immune Infltrating Cells. Te two primary categories of
nontumor constituents in the tumor microenvironment are
immune and stromal cells, and they both have the potential to
be extremely helpful for tumor diagnosis and prognosis
evaluation. Tree algorithms were used for calculating the
proportion of immune infltrating cells: immune score, matrix
score, tumor purity, and ESTIMATE score. While the tumor
purity was reduced in the high-risk group, the fndings of the
three scores in the high-risk group were noticeably greater in
comparison to the low-risk group (Figure 13(a)). Simulta-
neously, the diference in the proportion of immune cell in-
fltration in high-risk and low-risk groups was measured using
CIBERSORT and xCell algorithms. Te immune infltration
diference results of the CIBERSORTalgorithm (Figure 13(b)),
in which substantial variations were observed in the proportion
of immune infltration of 6 cell types in the high-risk and low-
risk groups, whereas the heat map of immune infltration
proportion was constructed based on xCell algorithm
(Figure 13(c)), and the infltration proportion of 24 cell types is
considerably variable in high-risk and low-risk groups.

3.12. Te Expression of Model Genes is Linked with the Pro-
portion of Immune Cell Infltration. Te grouping of risk
models depends on the expression of model genes. We can
explore the prognosis of cancer afected by the expression of
genes by studying the association between the immune mi-
croenvironment and model gene expression. According to the
proportional analysis of immune cell infltration by the
CIBERSORT algorithm, the signifcance of gene expression in
clinical immunology is represented by calculating the correla-
tion coefcient between the expression ofmodel genes in LAML
samples and the proportion of immune cell infltration. Between
the 8 model genes and the proportion of 23 immune cell in-
fltration, the correlation was illustrated as a heat map (Fig-
ure 14(a)). Additionally, a scatter diagram showing the
relationship between the ESTIMATE score and the expression
of model genes was created, and two model genes with high
correlation coefcients were selected for display (Figures 14(b)
and14(c)). See the annex for other results.
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Figure 9: GEO dataset verifying the prognostic efcacy of the model: (a-c) the risk triple plot of the GSE71014 dataset, which is the risk
dispersion plot, the survival time scatter plot, and the expression heat map of model genes in the RS group, respectively. Yellow color for the
high-risk group, while green for the low-risk group; (d-e) KM curve (yellow for the high-risk group and green for the low-risk group) and
ROC curve of the GSE71014 dataset.
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3.13. Diferences in Genomic Mutations. Gene mutations
can promote and lead to the occurrence of cancer or
coordinate to drive the malignant value-added of cancer.
Te investigation of genome-level mutations is crucial
for the development of novel tumor therapies and tumor-
targeted drugs. In order to show the distribution of

somatic variation among samples between high-risk and
low-risk groups and the gene mutation distribution
among samples with diferent clinical characteristics, the
TOP30 genes with the highest mutation frequency in the
high-risk and low-risk groups were selected to draw
a waterfall diagram (Figures 15(a) and 15(b)): the
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Wilcoxon, p = 0.0029

−1.0

−0.5

0.0

0.5

Age<60 Age>=60
Age

Ri
sk

sc
or

e

Type

Age<60

Age>=60

(a)

Wilcoxon, p = 0.98

−1.0

−0.5

0.0

0.5

Female Male
Gender

Ri
sk

sc
or

e

Type

Female

Male

(b)
++++++++++

++++
+ ++++

+ + ++++ ++ + +

+++

+
+

+ +
+

+
+

p < 0.001
HR = 3.48
95%CI (1.62−7.43)0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

46 18 4 0
29 3 0 0

0 1000 2000 3000
DaysLA

M
L 

w
ith

 A
ge

<6
0

Number at risk

LAML with Age<60
+ Group=Low
+ Group=High

(c)

+ ++
++ + + ++ +

+
+

p = 0.0053
HR = 2.65
95%CI (1.44−4.86)0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
Days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

19 8 4 3 0
36 9 1 0 0

0 500 1000 1500 2000
DaysLA

M
L 

w
ith

 A
ge

>=
60

Number at risk

LAML with Age>=60
+ Group=Low
+ Group=High

(d)
Figure 11: Continued.
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frequency of gene mutation was observed to be sub-
stantially higher in the high-risk group than that in the
low-risk group.

3.14. Model Scores Correlated with Hallmark Pathway
Enrichment. Based on the expression profle of LAML
samples, the hallmark pathway enrichment score results
were calculated. Combined with the model score in-
formation, the correlation between RS and enrichment score
was explored, and the pathway enrichment variation be-
tween high and low-risk groups, which is helpful to analyze
the association between cancer characteristic pathways and
prognosis. Te RS was observed to have a signifcantly
positive correlation with the hallmark pathway score

(Figure 16(a)), whereas the enrichment scores of 30 path-
ways (Figure 16(b)) have signifcant diferences among
model groups.

3.15. Model Score Predicting theTerapeutic Efect of Patients
Analysis of Chemotherapeutic Drug Resistance. Te expres-
sion profle data of TCGA-LAML was used to predict the
sensitivity IC50 values of 138 drugs in the GDSC database. A
signifcant diference in IC50 values of 60 drugs between
high-risk and low-risk groups was observed (Figure 17(a)).
According to the model grouping results and IC50 values,
a box diagram was drawn to show the distribution variations
of IC50 of drugs between high-risk and low-risk groups, and
6 drugs with considerable variations were selected for
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display.Te results revealed that the IC50 values of high-risk
groups are generally higher than those of low-risk groups
(Figures 17(b)–17(g)), whereas the results of other drugs are
illustrated in the annex.

4. Discussion

Acute myeloid leukemia (LAML) is a rapidly developing ma-
lignant tumor of the hematopoietic system. It is believed to
originate from a single hematopoietic stem cell or progenitor

cell. After the normal diferentiation process is blocked due to
various reasons, it still grows rapidly and divides continuously.
Tese cells are immature and lack normal function, thus af-
fecting the hematopoietic function of the body [22]. Chemo-
therapy is a crucial therapy for the treatment of tumors, and the
main cause of its failure is the development of resistance in
tumor cells to chemotherapy [23, 24]. Te drug resistance of
LAML patients to chemotherapy often manifests in relapse after
remission and transformation into refractory leukemia [25]. At
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Figure 12: Correlation analysis between model and immune checkpoint: (a) the heat map of the correlation coefcient between the
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Figure 13: Variation in the proportion of immune infltrating cells between model groups: (a) box diagrams of matrix score, immune score,
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****

**

***

****

****

**

***

*

***

**

****

**

****

****

****

****

****

**

*

**

**

*

**

****

****

****

**

*

**

*

**

*

* ****

*

***

***

****

****

****

****

****

****

*

**

*

**

**

*

**

***

****

****

****

****

****

****

****

****

****

*

*

**

**

*

*

**

**

***

*

**

*

***

****

****

***

****

**

***

****

****

GASK1A

LPO

LTK

PRRT4

UGT3A2

BLOC1S1

G6PD

UNC93B1

RiskScore

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P_
va

lu
e

N
eu

tr
op

hi
ls

Eo
sin

op
hi

ls

M
as

t_
ce

lls
_a

ct
iv

at
ed

M
as

t_
ce

lls
_r

es
tin

g

D
en

dr
iti

c_
ce

lls
_a

ct
iv

at
ed

D
en

dr
iti

c_
ce

lls
_r

es
tin

g

M
ac

ro
ph

ag
es

_M
2

M
ac

ro
ph

ag
es

_M
1

M
ac

ro
ph

ag
es

_M
0

M
on

oc
yt

es

N
K_

ce
lls

_a
ct

iv
at

ed

N
K_

ce
lls

_r
es

tin
g

T_
ce

lls
_g

am
m

a_
de

lta

T_
ce

lls
_r

eg
ul

at
or

y_
(T

re
gs

)

T_
ce

lls
_f

ol
lic

ul
ar

_h
el

pe
r

T_
ce

lls
_C

D
4_

m
em

or
y_

ac
tiv

at
ed

T_
ce

lls
_C

D
4_

m
em

or
y_

re
sti

ng

T_
ce

lls
_C

D
4_

na
iv

e

T_
ce

lls
_C

D
8

Pl
as

m
a_

ce
lls

B_
ce

lls
_m

em
or

y

B_
ce

lls
_n

ai
ve

(a)
Figure 14: Continued.
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present, the molecular mechanism that mediates the trans-
formation of LAML cells from chemotherapy sensitivity to drug
resistance is still not completely clear. Terefore, fnding bio-
markers with prognostic values for LAML is very important for
determining the relevant drug targets of treatment intervention
and overcoming treatment resistance.

Ultrasound examination can quickly and accurately
assess the size and depth of tumors and clarify the extent of
involvement of deep tissues [26]. Recently, ultrasonic
medicine has broken through the limitations of traditional
ultrasonic imaging diagnosis and entered the “nano” era
[27, 28].Te deep drug delivery of tumors is also given a new
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Figure 14: Association between the expression of model genes and the proportion of immune cell infltration. (a) Heat map of the
correlation between gene expression and the proportion of immune infltrating cells in the model and (b, c) scatter plot of the correlation
coefcient between the expression of model genes block1s1 and G6PD and the proportion of immune cell infltration.
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Figure 15: Genomemutation diferences amongmodel groups. (a) SNVwaterfall plot of TOP30 (mutation frequency) gene in the high-risk
group and (b) SNV waterfall plot of TOP30 (mutation frequency) gene in the low-risk group.
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Figure 16: Hallmark pathway enrichment analysis results: (a) correlation heat map of RS and hallmark pathway enrichment analysis, a positive
correlation is represented by red, a negative correlation is represented by blue, depth represents high and low correlation, and ∗represents signifcance;
(b) the enrichment score heatmap ofHallmark pathway, ∗represents the signifcant diference in the enrichment score of this pathway in the high-risk
and low-risk groups.
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Figure 17: Drug sensitivity diferences betweenmodel groups: (a) IC50 heat map between high and low-risk groups in TCGA-LAML cohort,
high drug sensitivity is represented by red, and low sensitivity is represented by green; (b–g): the distribution diference of IC50 values of six
chemotherapeutic drugs between high-risk and low-risk groups.Te red color is for the high-risk group while the green color is for the low-
risk group.
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direction by ultrasound-assisted tumor diagnostics and
treatment, enhancing local drug concentration to achieve
targeted therapeutic goals, and minimizing side efects [29].
Compared with the commonly used response evaluation
criteria in solid tumors (RECIST), ultrasound can evaluate
the efcacy of antiangiogenesis drugs in tumor patients
earlier and more conveniently [30]. In conclusion, ultra-
sound plays a signifcant role in the diagnosis, treatment, and
prognosis of tumors.

In this study, two ultrasound-sensitive molecular subtypes
with signifcant survival diferences were identifed based on the
diferential genes of ultrasonic treatment of LAML, and the
prognosis of patients with cluster2 was signifcantly better than
that of cluster1. Ten, the immune cell infltration between
diferent subtypes was further analyzed. Te results revealed
substantial variations in the immune microenvironment be-
tween the two subtypes, whichmay be the reason for the survival
diferences between the two subtypes. Ten, WGCNA analysis
of the disturbed genes between subtypes identifed two key
modules of the twomain clinical features associated with LAML
was performed. Finally, based on the prognostic factors sig-
nifcantly related to LAML, we constructed an 8-gene signature
RSmodel composed of GASK1A, LPO, LTK, PRRT4, UGT3A2,
BLOCK1S1, G6PD, and UNC93B1 to evaluate the prognosis of
patients with LAML. As a secretory protein kinase, GASK1A is
expressed in basal epithelial cells, which is not only related to the
occurrence and development of tumors but also may cause
chemotherapy resistance in some tumor patients [31, 32]. Since
polyunsaturated fatty acids and oxygen free radicals react in the
body to form lipid peroxide (LPO), and its expression level is
correlated with the poor prognosis and disease invasiveness in
breast cancer patients [33], studies have revealed that inducing
the outbreak of LPO and ferroptosis in tumors can induce the
death of drug-resistant cancer cells and efectively improve the
efcacy and prognosis of chemotherapy-resistant patients [34].
CLIP1-LTK fusion gene can be used as a therapeutic target of
loratinib in patients with non-small cell lung cancer [35]. Ab-
normal activation andmutation of LTK regulate the growth and
apoptosis of tumor cells and afect the occurrence and pro-
gression of many types of tumors [36]. LTK is a common up-
regulated target gene in stages I-IV of hepatocellular carcinoma,
which is mainly involved in tumor immunity and signal
transduction [37]. LTK mutations may cause myeloma and can
be used as biomarkers to detect specifc targets of myeloma [38].
In addition, LTK is closely related to the pathogenesis of LAML
[39]. PRRT4 is considered a new prognostic biomarker for
gastric cancer [40]. UGT3A2 may be the antidote to polycyclic
aromatic hydrocarbons in the human body, and its mutation
increases the carcinogenic risk of polycyclic aromatic hydro-
carbons [41, 42]. Te expression level of UGT3A2 is related to
DNA methylation and afects the occurrence and development
of LAML [43]. An 11-gene signature, including UGT3A2,
established based on the immune microenvironment can be
employed for the prediction of the prognosis of thymoma
patients [44]. BLOCK1S1, also known as GCN5L1, is a new
molecule homologous to the sequence of nuclear acetyl-
transferase GCN5, which is involved in the regulation of mi-
tochondrial autophagy, fatty acid oxidation, and other
mitochondrial biological processes [45–47]. BLOCK1S1 can also

regulate the occurrence and development of hepatocellular
carcinoma through glutamine metabolism, and the expression
level is related to the prognosis of patients [48]. G6PD plays
a role in cell cycle regulation (cell growth and death) and is
related to tumorigenesis andmalignant progression; in addition,
it is an indicator of poor tumor prognosis [49, 50]. According to
various studies, G6PD can promote the proliferation of LAML
cells and patient resistance [51]. Furthermore, the role and
mechanism of UNC93B1 in tumors are still unknown and there
is no substantial study available. In conclusion, nearly every one
of the eight genes examined in this study is strongly linked to the
development, progression, and prognosis of diferent cancers,
with LTK, UGT3A2, and G6PD, particularly thought to be
crucial in LAML.

Tis study is the frst to develop a prognosis model for
LAML based on the diferential genes of subtypes that are
sensitive to ultrasound therapy, which ofers a fresh
perspective on the disease’s molecular mechanism and
prognosis prediction. Te model we established is ob-
tained through the comprehensive analysis of multiple
datasets, which has high reliability, and the multigene
aggregation model has a higher prognostic value than
a single gene. However, there are still some limitations to
this study. Firstly, the sources of clinical information
obtained in this study are TCGA and GEO databases,
most of which are white, African, or Latin American,
thus, when applying our fndings to patients of other
races care must be taken. Secondly, because this is
a retrospective study, there is no way to avoid some data
loss and selection bias. Finally, the model is still in the
theoretical stage, and more experiments are needed in
the future to further verify the clinical prognostic value
of the model.

5. Conclusions

In this study, the ultrasound-sensitive subtype of TCGA--
LAML was identifed based on the ultrasound-sensitive gene
for the frst time, and fnally, an RS model composed of 8
signatures was constructed to evaluate the prognosis of
patients with LAML.
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