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Background. Acute myeloid leukemia (LAML) is the most widely known acute leukemia in adults. Chemotherapy is the main
treatment method, but eventually many individuals who have achieved remission relapse, the disease will ultimately transform
into refractory leukemia. Therefore, for the improvement of the clinical outcome of patients, it is crucial to identify novel
prognostic markers. Methods. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were
utilized to retrieve RNA-Seq information and clinical follow-up details for patients with acute myeloid leukemia, respectively,
whereas samples that received or did not receive ultrasound treatment were analyzed using differential expression analysis. For
consistent clustering analysis, the ConsensusClusterPlus package was utilized, while by utilizing weighted correlation network
analysis (WGCNA), important modules were found and the generation of the coexpression network of hub gene was generated
using Cytoscape. CIBERSORT, ESTIMATE, and xCell algorithms of the “lOBR” R package were employed for the calculation of
the relative quantity of immune infiltrating cells, whereas the mutation frequency of cells was estimated by means of the
“maftools” R package. The pathway enrichment score was calculated using the single sample Gene Set Enrichment Analysis
(ssGSEA) algorithm of the “Gene Set Variation Analysis (GSVA)” R package. The ICs, value of the drug was predicted by utilizing
the “pRRophetic.” The indications linked with prognosis were selected by means of the least absolute shrinkage and selection
operator (Lasso) Cox analysis. Results. Two categories of samples were created as follows: Cluster 1 and Cluster 2 depending on the
differential gene consistent clustering of ultrasound treatment. The prognosis of patients in Cluster 2 was better than that in
Cluster 1, and a considerable variation was observed in the immune microenvironment of Cluster 1 and Cluster 2. Lasso analysis
finally obtained an 8-gene risk model (GASK1A, LPO, LTK, PRRT4, UGT3A2, BLOCK1S1, G6PD, and UNC93B1). The model
acted as an independent risk factor for the patients’ prognosis, and it showed good robustness in different datasets. Considerable
variations were observed in the abundance of immune cell infiltration, genome mutation, pathway enrichment score, and
chemotherapeutic drug resistance between the low and high-risk groups in accordance with the risk score (RS). Additionally,
model-based RSs in the immunotherapy cohort were significantly different between complete remission (CR) and other response
groups. Conclusion. The prognosis of people with LAML can be predicted using the 8-gene signature.

1. Introduction of microleukoblasts or leukocytes cannot differentiate

normally [1]. LAML, the most prevalent form of acute

Acute myeloid leukemia (LAML) is a heterogeneous he-  leukemia in adults, is highly heterogeneous and prone to
matological cancer distinguished by the interruption of  recurrence [2, 3]. According to the latest data, it is estimated
myeloid differentiation and the accumulation of mother cells  that by 2022, there will be 20050 new cases of LAML and
in the bone marrow. Its main feature is that the proliferation about 11540 mortalities in the United States alone [4]. For
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decades, the conventional treatment of primary LAML has
been to induce chemotherapy first in order to achieve
complete remission (CR), and then give consolidation and
intensive treatment after remission, or choose stem cell
transplantation at a selected time [5]. Among them, about
40-90% of LAML patients respond to the initial induction
chemotherapy and can undergo CR [6-9]. However, the
remission rate of young patients is only 40%-50% [9].
Chemotherapy resistance is one of the important obstacles
for patients with LAML to achieve long-term remission after
treatment [10, 11]. Therefore, for a better understanding of
the molecular characteristics involved in the occurrence of
LAML and for the improvement of a patient’s clinical
outcome, it is essential to explore new prognostic markers.

The advantages of convenience and small side effects
make ultrasound the second most widely used imaging
method in the world. In addition to being widely used in
diagnostic imaging, ultrasound is also often used in the
treatment of various diseases [12]. With the development of
ultrasound molecular imaging technology in recent years
and its clinical application, this technology can be used to
provide more accurate diagnosis and treatment for tumor
patients, which is expected to improve the treatment failure
caused by chemotherapy resistance. Ultrasound-mediated
targeted delivery (UMTD) is a novel therapeutic material
delivery approach based on ultrasound that has enormous
potential for effective drug delivery and considerably en-
hancing drug treatment impact [13]. Increasing the distri-
bution and absorption of chemotherapy drugs through the
use of ultrasonic contrast agents (UCAs) as carriers is es-
sential for improving the chemotherapy efficacy of tumor
patients [12]. Advanced cervical cancer is treated with
brachytherapy, and using ultrasonography during brachy-
therapy significantly improves the prognosis for cervical
cancer patients [14]. Additionally, ultrasound combined
with micro/nanobubbles can transfer genes and antigens to
cells, which may effectively increase the response of tumors
to immunotherapy [15]. Simultaneously, studies have con-
firmed that ultrasound technology can also enhance the
therapeutic effect of radiotherapy and photodynamic ther-
apy (PDT) [16, 17]. Automated breast ultrasound (AUBS)
and digital breast tomosynthesis (DBT) can be used to assess
and track the efficacy of breast cancer patients in terms of
prognosis [18]. Ultrasound technology can also be used for
the prediction of a cancer patient’s response to chemo-
therapy and to evaluate its correlation with long-term
survival before treatment, helping to provide a more ac-
curate diagnosis and treatment for patients [19, 20]. In
a word, ultrasound diagnosis and treatment technology will
benefit more and more tumor patients. Studying the prin-
ciple and biological significance of its impact on prognosis
and survival in cancer can further play the role of this
technology in tumor diagnosis and treatment.

Differential expression analysis was used in this study for
the identification of the differential sensitive gene of LAML
before and after ultrasound treatment. Two ultrasound-
sensitive subtypes with significant prognostic differences
were identified based on this gene. Furthermore, an 8-gene
risk model including GASKI1A, LPO, LTK, PRRT4,
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UGT3A2, BLOCKI1S1, G6PD, and UNC93B1 was con-
structed for the evaluation of the prognosis of patients with
LAML. The model has good and stable prognostic evaluation
efficiency.

2. Materials and Methods

2.1. Data Set Source and Preprocessing. The expression
profile data (FPKM value) and clinical data (Table 1) of
LAML were accessed from the Cancer Genome Atlas
(TCGA) database with the help of the “TCGAbiolinks” R
tool. The FPKM value was log2-converted, and the unified
survival time unit was used when processing survival in-
formation: days.

Both the expression profile and ultrasonic grouping data
for GSE10212 and the clinical information for GSE71014
were accessed from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/), and the fol-
lowing processing was followed: (1) the samples with no
clinical follow-up information were discarded; (2) the
samples with no records of survival time (<0 days) and no
survival status either were rejected, while the unified unit of
survival time was days; (3) the probe was turned into a gene
symbol; (4) the probe that was associated with multiple
genes was eliminated; (5) the median value was calculated
for the expression having multiple gene symbols.

The “IMvigor210CoreBiologies” R package was
employed to download the expression profile and survival
and response information of the IMvigor210 immuno-
therapy cohort (bladder cancer), and samples with survival
information and expression data were selected for analysis.
Table 2 illustrates the clinical information.

2.2. Differential Expression Analysis. The differential ex-
pression analysis in this study was carried out with the help
of the “limma” R package. In the GSE10212 dataset, differential
expression analysis was performed on samples that received
ultrasound treatment and those that did not receive ultrasound
treatment, and DEGs were identified with a threshold p value
<0.01 (because no differential gene met adjust.p value <0.05)
and [log2FC]| > 0.585. For the differential expression analysis of
TCGA ultrasound-sensitive subtypes, the Benjamini-Hoch-
berg (FDR) corrected adjust.p value <0.01 and [log2FC| > 0.585
were utilized to identify DEGs.

2.3. GO and KEGG Enrichment Analysis. 'The GO and KEGG
enrichment analyses were conducted with the help of the
“clusterProfiler” R package on the differential genes obtained
from the two differential expression analyses. p adjust
method was set as BH, and an adjust. p value <0.05 was used
as a cutoff to identify substantially enriched pathways.
According to an adjust. p value <0.05, the top 10 pathways
with significant enrichment were selected for visualization.

2.4. Unsupervised Cluster Analysis. Consistent clustering
analysis was performed on TCGA-LAML samples by using
the “ConsensusClusterPlus” R package to identify
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TaBLE 1: Clinical information table of TCGA LAML queue.

Clinical features Grouping information ~Number of samples

Age 260 55
Age Age <60 75
Female 60
Gender Male 70
Dead 78
Status Alive 52

TaBLE 2: Clinical information table of IMvigor210 queue.

Clinical features Grouping information Number of samples

Dead 189

Status Alive 109
CR 25

Response PR 43
P SD 63
PD 167

ultrasound-sensitive molecular subtypes. The analysis pro-
cess adopted an 80% resampling rate and 1000 repetitions to
assure classification stability. Moreover, the survival curve of
KM was drawn by the “survival” R package, and the sig-
nificance of the prognosis variation between typing was
verified by the log-rank test. Finally, the clustering outcomes
with a good clustering effect and significant differences in
survival among subtypes were selected as the subtype rec-
ognition results.

2.5. Weighted Gene Coexpression Network Analysis
(WGCNA). The association pattern between gene expres-
sion in microarray or RNA-seq is commonly characterized
by utilizing WGCNA. The gene coexpression network of
complex biological processes was divided by WGCNA into
a number of highly associated feature modules, which
represent various groups of highly synergistic gene sets.
These modules can be associated with specific clinical fea-
tures for the identification of genes with key functions,
helping to study potential mechanisms underlying specific
biological processes, and exploring candidate biomarkers.

“WGCNA” R package was used to identify the hyper-
variable gene of adjust.p value <0.01 in the ultrasound-
sensitive molecular subtype of the TCGA-LAML cohort.
Combined with clinical characteristics (age, sex, and survival
status), a gene coexpression network was constructed, and
key modules were identified through the correlation co-
efficient between clinical characteristics and modules. The
hub genes of key modules were then identified according to
the GS and MM values, and the coexpression network of hub
genes was created by using Cytoscape software.

2.6. Construction of Prognostic Risk Model and Analysis of
Survival Differences. As per the hub gene of the key
module, the univariate Cox analysis was conducted to
determine (p<0.05) the indicators associated with the
prognosis of LAML. Simultaneously, the median

expression of a single signature was taken as the threshold point,
and two groups of LAML samples were created as follows: high
and low expression groups. The KM method was employed to
build the prognosis analysis survival curve, and the log-rank test
was utilized to calculate the significance of the difference. The
Lasso regression method of the “glmnet” R package was
employed to identify the important prognosis-related genes, and
the prognosis model was created. The tumor samples were
divided into two groups as follows: high-risk and low-risk
groups using the median RS as the threshold, and the KM
method was employed to generate the survival curve of prog-
nosis analysis, whereas the log-rank test was employed to de-
termine the significance of the difference. The receiver operating
characteristic (ROC) curve was created using the R package
“timeROC” to evaluate the scoring prediction by the disturbance
scoring model, while the “ggplot2” R package was utilized to
produce the scatter diagram of survival time and survival state,
and the scatter diagram of sample score as well. In addition, the
“pheatmap” R package was utilized to create the expression heat
map of model genes. The expression value of each candidate
gene was added together and multiplied by the weight to de-
termine the model’s risk value. The formula is as follows:
RS = Y7 coef (i) x Exp (i).

2.7. Estimation of Proportion of Immune Infiltrating Cells and
Immune Score. Three algorithms from the “IOBR” R package,
CIBERSORT, ESTIMATE, and xCell, were employed to mea-
sure the degree of immune infiltrating cells on the basis of the
expression profile of the TCGA-LAML dataset [21].

CIBERSORT algorithm is a method used in complex tissues
for the characterization of cell composition depending on the
expression profiles of genes. The leukocyte characteristic gene
matrix LM22 evaluated 547 genes to determine the differenti-
ation between 22 immune cell types, comprising myeloid
subpopulations, natural killer (NK) cells, plasma cells, immature
and memory B cells, and 7 different types of T cells. The LM22
characteristic matrix and CIBERSORT were used to estimate the
proportion of the 22 cell phenotypes in the sample, and when
added, the resulting sum of all immune cell types was 1 in each
sample.

The ESTIMATE algorithm was employed to measure the
immune score, tumor purity, matrix score, and estimate score of
the tumor.

XCELL can carry out cell type enrichment analysis on
the basis of the gene expression data of 64 different
immune cell and stromal cell types. In order to reduce the
correlation between closely related cell types, the XCell
machine learns from thousands of different cell types
from different sources based on gene signature. Through
extensive computer simulation of signature and cellular
immune typing, xCell can reliably describe the landscape
of cellular heterogeneity of tissue expression profile.

2.8. Genome Mutation Analysis. “Maftools” R package,
combined with clinical grouping information, was used to
draw a waterfall diagram to show the variation distribution
of genes with high somatic mutation frequency in LAML



samples and to classify the samples with model grouping
information to draw a waterfall diagram.

2.9. HALLMARK Pathway Enrichment Analysis. With the
help of the ssGSEA algorithm of the “GSVA” R package, the
enrichment score of 50 hallmark pathways for each sample
was evaluated in accordance with the gene expression of
LAML samples. The correlation of expression and enrich-
ment score of the RS and model genes were determined with
the cor function, and the “corrplot” R package was used to
visualize the results. Moreover, the statistical tests were
employed for calculating the enrichment score differences
between the model groups, while the enrichment score heat
map was produced by combining the clinical characteristics
of the samples with the “pheatmap” R package.

2.10. Drug Sensitivity Analysis. Combined with the expres-
sion data of model genes, the sensitivity (IC50 value) of 138
drugs in the Genomics of Drug Sensitivity in Cancer (GDSC)
dataset was predicted by using the “pRRophetic” R package.
The sensitivity of patients with LAML to drug treatment was
evaluated by the IC50 value. The Wilcoxon test was
employed for comparing the IC50 values between both risk
groups, and the drugs that differed substantially between the
two groups were identified.

2.11. Statistical Test. The Wilcoxon test was utilized for
comparing variations between the two groups of samples when
marking the significance, and the Kruskal-Wallis test was
employed for the comparison of variations between various
groups of samples, where ns represents p >0.05, * represents p
<0.05, **represents p <0.01, ***represents p <0.001, and ****
represents p <0.0001. Among them, p <0.05 was significant.

3. Results

3.1. Identification of Ultrasound-Sensitive Genes in the GEO
Dataset. Differential expression analysis was performed on
ultrasound and nonultrasound samples of the GSE10212 dataset
to select ultrasound-related differential genes. A total of 227
significantly different genes were obtained, including 133 dif-
ferentially overexpressed genes and 94 differentially down-
regulated genes. A volcanic map and heat map were generated to
show the expression and distribution of DEGs among subtypes
(Figures 1(a) and 1(b)). Moreover, KEGG enrichment analysis
and GO function enrichment analysis were carried out on the
identified DEGs. The results are shown in Figures 1(c)-1(f), for
the analysis results with enrichment entries greater than 10, the
TOPI0 entries with significant enrichment results were selected
to draw a bubble diagram, Fig. C is the enrichment results of the
KEGG pathway, and Figures 1(d)-1(f) are the enrichment
results of GO’s molecular function, biological process, and cell
components, respectively. It demonstrated that these genes are
enriched in biological processes such as regulation of cell-cell
adhesion, T cell activation, negative regulation of immune ef-
fector process, and pathways related to neuroactive ligand-
receptor interaction and Staphylococcus aureus infection.
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3.2. Identification of Ultrasound-Sensitive Subtypes in TCGA
Cohort. Ultrasound-sensitive DEGs were detected in the
GEO dataset, and the TCGA-LAML cohort was used for the
molecular subtypes identification by consistent clustering.
The clustering effect was the best when the KM was the
clustering algorithm, whereas euclidean was the distance,
best K=2 (Figures 2(a) and 2(d)). The cumulative distri-
bution function (CDF) of consistent clustering is exhibited
in Figure 2(i), which shows the cumulative distribution
function when k took different values. Figure 2(j) shows
the change of the area under the CDF curve when k was
relative to k-1. Furthermore, two independent
ultrasound-sensitive molecular subtypes with significant
survival differences were identified, and the prognosis of
cluster2 (C2) was substantially better than that of clusterl
(C1) (Figures 2(e)-2(h)).

3.3. Differences in the Expression of Ultrasound-Sensitive
Molecular Subtypes and Immune Infiltration. The clinical
significance of ultrasound-sensitive subtypes was explored
by analyzing the expression differences and immune mi-
croenvironment differences among subtypes again. Firstly,
differential expression analysis was carried out on subtypes
to identify DEGs, and a total of 1341 differential expression
genes were obtained, including 375 overexpressed genes and
966 downregulated genes. The volcanic map is shown in
Figure 3(a). Moreover, DEGs were subjected to KEGG
enrichment analysis and GO function enrichment analysis,
the top 10 pathways with enrichment significance were
selected to draw a bubble diagram. The results are shown in
Figures 3(b)-3(e), and they were mainly enriched in items
related to immune regulation, such as leukocytes, hema-
topoietic cells, immune response, and MHC molecules.
Subsequently, by determining the degree of immune cell
infiltration and the predicted immune-related score, the
differences in the tumor immune microenvironment be-
tween subtypes were investigated. The findings demonstrate
that the CIBERSORT algorithm predicted 22 types of im-
mune cell infiltration ratios, and 13 of those types had
substantial variances between subtypes (Figure 3(f)), the box
diagram of matrix score, immune score, estimate score, and
tumor purity, respectively (Figure 3(g)). The differences
between the four scores were statistically significant, with the
three C1 scores exceeding C2, while the tumor purity of C1
was lower than C2.

3.4. WGCNA in Identifying Key Modules and Hub Genes.
The highly mutated genes among ultrasound-sensitive
molecular subtypes in TCGA-LAML were selected for
WGCNA analysis. 130 LAML samples were clustered
(Figure 4(a)), while cut height was set to 8000 to eliminate
outliers; finally, 126 samples were used for subsequent
analysis. Figure 4(b) shows the clustering tree after removing
outliers. As shown in Figure 4(c), when the correlation
coefficient was greater than 0.9, the optimal soft threshold
was 14. Additionally, Figure 3(d) shows that K has a negative
correlation with p (k) (correlation coeflicient: 0.9), which
indicates that a gene scale-free network can be established by
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FiGure 1: GSE10212 dataset’s differential expression and functional enrichment analyses results: (a) volcano map of DEGs in ultrasound and
nonultrasound groups; (b) in the heat map of DEGs, high and low expressions are represented by red and green, respectively; (c—f) bubble
diagram of enrichment pathway of KEGG pathway, molecular function (MF), biological process (BP), and cell component (CC) of DEGs, in
which the number of enriched differential genes is represented by the point’s size and the color characterizes the significance of enrichment

results.

the selected f value. Furthermore, in the module, the
minimum gene number was set to 30, the maximum dis-
tance of the module to 0.25, and the calculation methods of
coexpression correlation and module trait correlation were
Pearson. Figure 4(e) shows the module clustering tree and it
can be observed that brown is a more important module. The
feature vector gene clustering tree and heat map were drawn,
and their results in Figure 4(f) reveal the modules with
correlation coeflicient >0.8 (dissimilarity coeflicient <0.2)
would be merged in the subsequent analysis. Figure 4(g) is

the heat map of the correlation between modules and traits,
and it can be observed that the key traits are age and status,
and the key modules are brown and black. A scatter diagram
was drawn to show the linear relationship between GS and
MM in the module, and the results are illustrated in
Figures 4(h) and 4(j), revealing the correlation coeflicients of
0.35 and 0.33, respectively. According to the distribution of
GS and MM values of genes in the module, the threshold was
set GS>02&MM>0.8, and hub genes were selected
according to the key modules of each key trait. Furthermore,
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37 hub genes were selected from the age-brown module and
26 hub genes were selected in the status-black module, and
based on the edge file and node file obtained from the export
network to Cytoscape function in WGCNA, the hub genes
were screened and introduced into Cytoscape to construct
the module hub genes coexpression network diagram of
a key trait (Figures 4(i) and 4(k)).

3.5. Construction and Verification of the Ultrasound-Related
Prognostic Signature Recognition of Prognostic Signature
Based on Hub Genes. In TCGA-LAML, identification of 63
hub genes was done using univariate Cox analysis, while the
threshold p <0.01 was set. Moreover, 45 prognosis-related
genes were obtained as well. The median expression of each
gene was used as the cutoff value for high and low groups,
and the KM survival curve was drawn. Subsequently,
through random sampling, 7/10 of the TCGA-LAML overall
set (n=130) was selected as the training set (n=91), and on
the basis of these 45 prognostic-related signatures, the seed
was set at 12110, while Lasso linear regression method was
used to remove redundant genes and build a risk model. The
results are shown in Figures 5(a)-5(c). Conclusively, 8
prognostic signatures were selected. Figure 5(d) shows the
KM survival curves of 8 prognostic signatures.

3.6. Verification of Robustness of Risk Model by Internal
Verification Set. Further assessment of the model scores’
impact constructed by the eight signatures on the training

set’s OS, the median of RS was taken as the critical value, and
the samples were distributed into two groups: high-risk and
low-risk groups. The scatter plots of survival time and
survival state of the training set and the scatter plot of
samples’ RS were then drawn, respectively. Combined with
these two scatter plots, the relationship between survival and
score can be observed (Figures 6(a) and 6(b)), whereas the
model gene expression of the training set is variable in both
risk groups (Figure 6(c)). Moreover, the model’s prognostic
efficiency was checked by the construction of KM and ROC
curves (Figures 6(d) and 6(e)). The prognosis of the samples
in the high-risk group was worse, and the p < 0.01 of the KM
curve of both groups indicates that there is a considerable
variation in the prognosis of the two groups. The risk model-
based AUC values for the 1-, 3-, and 5-years periods were
0.772, 0.802, and 0.904, respectively, indicating that the
model score’s prediction efficiency is excellent.
Additionally, the test set of TCGA-LAML was employed
to check the ability of RS for OS prediction. In accordance
with the same method as the TCGA training set, two sample
groups were created as follows: the high-risk group and the
low-risk group, and the survival differences were compared.
The scatter diagram of survival time and survival state of the
test set, the scatter diagram of sample RS, and the heat map
of model gene expression were studied in both risk groups of
the test set (Figures 7(a) and 7(c)). The high-risk group’s
prognosis was observed to be worse than that of the low-risk
group, and substantial differences were observed in the
prognosis of both groups (Figures 7(d) and 7(e)). In the
TCGA test set, the respective AUC values of 1-, 3-, and 5-
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years were 0.733, 0.914, and 0.888, respectively. These results
confirm that the prognostic efficacy of the TCGA test set
model is stable and good.

Finally, the whole set of TCGA-LAML was employed to
check the ability of RS for OS prediction. Similarly, based on
the same method of TCGA training set, two groups of
samples were created as follows: the high-risk group and the
low-risk group in the overall set. Moreover, the scatter di-
agram of the survival time and survival state of the whole set,
the scatter diagram of the RS sample, and the heat map of the
expression of model genes were studied in both risk groups
of the whole set (Figures 8(a)-8(c)). Additionally, it was
observed that the prognosis of the high-risk group is worse,
and considerable variation was observed in the prognosis of

the two risk groups (Figures 8(d) and 8(e)). In the overall
concentration of TCGA, the AUC of 1-, 3-, and 5-years was
0.763, 0.827, and 0.905, respectively. The above results
confirm that the prognosis of the TCGA integrated model is
stable and good.

3.7. The External Validation Set Verifying the Prognostic Ef-
ficacy of the Model. The robustness of the model score can be
further verified by the prediction of the OS of patients with
LAML. This study selected a GEO external data set for the
same analysis and verification. Figures 9(a) and 9(b) illus-
trate the results of the scatter plot of survival time and
survival state and the scatter plot of sample risk score.
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Combined with these two scatter plots, the relationship
between survival and score can be observed. Fig. C illustrates
the genes’ expression model in the GSE71014 dataset in both
risk groups. Figure 9(d) shows the KM curve of GSE71014.
The samples in the high-risk group had a worse prognosis,
while the KM curve of the two risk groups (p <0.05) in-
dicates substantial variations in the prognosis of both
groups. In Fig. E, the AUC values of 1-, 2-, and 3-years are
0.616, 0.654, and 0.651, respectively, indicating that the
prognostic efficiency of the model score is good.

3.8. Prognostic Risk Models Associated with Multiple Tumor
Characteristics RS, an Independent Prognostic Factor. The
constructed risk model in this analysis shows good prog-
nostic efficacy in the TCGA dataset and GEO external
validation set. Additionally, for verification of RS to be
served as an independent prognostic factor, the age and
gender of LAML were combined to conduct univariate and
multivariate Cox regression analyses. The univariate Cox
analysis was performed first, followed by the selection of
independent prognostic factors for multivariate Cox anal-
ysis. The univariate Cox regression revealed significant
variations between the prognostic model group and age
group compared with the reference, which proves that they
are independent prognostic factors (Figure 10(a)). Fur-
thermore, based on survival time and survival status, no-
mograms (Figure 10(b)) were constructed in combination
with clinical indicators. Age and RS were clinical factors that
contributed significantly. The construction of the calibration
curve was performed (Figure 10(c)) to assess the nomo-
gram’s accuracy. The calibration curve revealed that the
prediction accuracy of the model in the 1st and 3rd years is
high. DCA decision curves of different classification features
were constructed to assess the prognosis accuracy of mul-
tiple clinical features. The results are illustrated in
Figure 10(d).

3.9. The Model Risk Score Related to the Clinical Character-
istics of the Tumor. Based on the clinical features of age and
gender of the TCGA-LAML dataset, the distribution dif-
ferences of RS among different clinical feature groups are
shown. As shown in Figures 11(a) and 11(b), there are
substantial variations in RS in the age group. In addition,
according to the grouping information of age, cluster, and
gender, the TCGA dataset was divided into two subdatasets,
and the KM curves of the subdatasets were drawn, re-
spectively, in accordance with the median value of RS. The
KM curves revealed substantial variations in each of the
subdataset, and the prognosis of the high-risk group was
observed to be worse (Figures 11(c)-11(h)).

3.10. The Risk Model Related to the Expression of Immune
Checkpoints. A group of molecules known as immune
checkpoints are expressed in immune cells and have the
ability to regulate the level of immune activation while
playing a significant role in the occurrence of human au-
toimmunity as well. The correlation between five types of

13

immune checkpoints was analyzed (from TISIDB, re-
spectively: chemokine, Immunoinhibitor, Immunostimula-
tor, MHC, and receptor) and the expression of eight model
genes, and the correlation heat map was constructed as well.
The Immunoinhibitor gene is the most commonly used
immune checkpoint, and its correlation with model gene
expression is shown in Figure 12(a), the model genes
generally have a strong correlation with the expression of
immune checkpoints. In addition, the box diagram of four
common immune checkpoints was drawn, and the varia-
tions in the expression of immune checkpoints in model
groups were shown through statistical verification. As shown
in Figures 12(b)-12(e), there are considerable variations in
the gene expression levels of CD274, BTLA, and CTLA4, and
the expression level of genes is increased in the high-
risk group.

3.11. Association between Model Grouping and the Proportion
of Immune Infiltrating Cells. The two primary categories of
nontumor constituents in the tumor microenvironment are
immune and stromal cells, and they both have the potential to
be extremely helpful for tumor diagnosis and prognosis
evaluation. Three algorithms were used for calculating the
proportion of immune infiltrating cells: immune score, matrix
score, tumor purity, and ESTIMATE score. While the tumor
purity was reduced in the high-risk group, the findings of the
three scores in the high-risk group were noticeably greater in
comparison to the low-risk group (Figure 13(a)). Simulta-
neously, the difference in the proportion of immune cell in-
filtration in high-risk and low-risk groups was measured using
CIBERSORT and xCell algorithms. The immune infiltration
difference results of the CIBERSORT algorithm (Figure 13(b)),
in which substantial variations were observed in the proportion
of immune infiltration of 6 cell types in the high-risk and low-
risk groups, whereas the heat map of immune infiltration
proportion was constructed based on xCell algorithm
(Figure 13(c)), and the infiltration proportion of 24 cell types is
considerably variable in high-risk and low-risk groups.

3.12. The Expression of Model Genes is Linked with the Pro-
portion of Immune Cell Infiltration. The grouping of risk
models depends on the expression of model genes. We can
explore the prognosis of cancer affected by the expression of
genes by studying the association between the immune mi-
croenvironment and model gene expression. According to the
proportional analysis of immune cell infiltration by the
CIBERSORT algorithm, the significance of gene expression in
clinical immunology is represented by calculating the correla-
tion coefficient between the expression of model genes in LAML
samples and the proportion of immune cell infiltration. Between
the 8 model genes and the proportion of 23 immune cell in-
filtration, the correlation was illustrated as a heat map (Fig-
ure 14(a)). Additionally, a scatter diagram showing the
relationship between the ESTIMATE score and the expression
of model genes was created, and two model genes with high
correlation coefficients were selected for display (Figures 14(b)
and14(c)). See the annex for other results.
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F1Gure 10: Independence of model scores in clinical characteristics: (a) forest map of the results of univariate and multivariate Cox analysis
of clinical factors in TCGA cohort; (b) in the nomogram of the prediction model, the box plus line segment represents the contribution of
the clinical factor to the outcome event, total points represent the total score of the sum of the corresponding individual scores after the value
of all variables, and the bottom three lines represent the 1-, 3-, and 5-year survival probability corresponding to each value point; (c)
calibration curve, the abscissa is the predicted probability and the ordinate is the actual probability. The closer the gray line in the middle is,
the more accurate the predicted risk probability is. The lower the gray line is, the lower the risk is underestimated, and the upper part is, the
higher the risk is overestimated; (d) the abscissa of the DCA decision curve is the risk probability, and the ordinate is the benefit rate. The

curves with different colors represent different clinical factors.

3.13. Differences in Genomic Mutations. Gene mutations
can promote and lead to the occurrence of cancer or
coordinate to drive the malignant value-added of cancer.
The investigation of genome-level mutations is crucial
for the development of novel tumor therapies and tumor-
targeted drugs. In order to show the distribution of

somatic variation among samples between high-risk and
low-risk groups and the gene mutation distribution
among samples with different clinical characteristics, the
TOP30 genes with the highest mutation frequency in the
high-risk and low-risk groups were selected to draw
a waterfall diagram (Figures 15(a) and 15(b)): the
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the low-risk group.

frequency of gene mutation was observed to be sub-
stantially higher in the high-risk group than that in the
low-risk group.

3.14. Model Scores Correlated with Hallmark Pathway
Enrichment. Based on the expression profile of LAML
samples, the hallmark pathway enrichment score results
were calculated. Combined with the model score in-
formation, the correlation between RS and enrichment score
was explored, and the pathway enrichment variation be-
tween high and low-risk groups, which is helpful to analyze
the association between cancer characteristic pathways and
prognosis. The RS was observed to have a significantly
positive correlation with the hallmark pathway score

(Figure 16(a)), whereas the enrichment scores of 30 path-
ways (Figure 16(b)) have significant differences among
model groups.

3.15. Model Score Predicting the Therapeutic Effect of Patients
Analysis of Chemotherapeutic Drug Resistance. The expres-
sion profile data of TCGA-LAML was used to predict the
sensitivity ICs, values of 138 drugs in the GDSC database. A
significant difference in ICs, values of 60 drugs between
high-risk and low-risk groups was observed (Figure 17(a)).
According to the model grouping results and ICs, values,
a box diagram was drawn to show the distribution variations
of ICsq of drugs between high-risk and low-risk groups, and
6 drugs with considerable variations were selected for
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Figure 12: Correlation analysis between model and immune checkpoint: (a) the heat map of the correlation coefficient between the
expression of model genes and immune checkpoints (immunosuppressant), the color of the dots represents the correlation, and *represents
the significance; (b—e) box diagram of expression differences of four common immune checkpoints between high-risk and low-risk groups.
The red color is for the high-risk group and the green color is for the low-risk group.

display. The results revealed that the IC50 values of high-risk
groups are generally higher than those of low-risk groups
(Figures 17(b)-17(g)), whereas the results of other drugs are
illustrated in the annex.

4, Discussion

Acute myeloid leukemia (LAML) is a rapidly developing ma-
lignant tumor of the hematopoietic system. It is believed to
originate from a single hematopoietic stem cell or progenitor

cell. After the normal differentiation process is blocked due to
various reasons, it still grows rapidly and divides continuously.
These cells are immature and lack normal function, thus af-
fecting the hematopoietic function of the body [22]. Chemo-
therapy is a crucial therapy for the treatment of tumors, and the
main cause of its failure is the development of resistance in
tumor cells to chemotherapy [23, 24]. The drug resistance of
LAML patients to chemotherapy often manifests in relapse after
remission and transformation into refractory leukemia [25]. At
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FIGURE 13: Variation in the proportion of immune infiltrating cells between model groups: (a) box diagrams of matrix score, immune score,
ESTIMATE score, and tumor purity of high-risk and low-risk groups, respectively. The red color is for the high-risk group while the green
color is for the low-risk group; (b): in the CIBERSORT algorithm, the proportion of immune infiltrating cells in high-risk and low-risk
groups is shown in the box diagram. The red color is for the high-risk group while the green color is for the low-risk group; (c) heat map of
the difference between high and low-risk groups in the proportion of immune infiltration in the xCell algorithm.
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present, the molecular mechanism that mediates the trans-
formation of LAML cells from chemotherapy sensitivity to drug

resistance

is still not completely clear. Therefore, finding bio-

markers with prognostic values for LAML is very important for

determini

ng the relevant drug targets of treatment intervention

and overcoming treatment resistance.

Ultrasound examination can quickly and accurately
assess the size and depth of tumors and clarify the extent of
involvement of deep tissues [26]. Recently, ultrasonic
medicine has broken through the limitations of traditional
ultrasonic imaging diagnosis and entered the “nano” era
[27, 28]. The deep drug delivery of tumors is also given a new
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direction by ultrasound-assisted tumor diagnostics and
treatment, enhancing local drug concentration to achieve
targeted therapeutic goals, and minimizing side effects [29].
Compared with the commonly used response evaluation
criteria in solid tumors (RECIST), ultrasound can evaluate
the efficacy of antiangiogenesis drugs in tumor patients
earlier and more conveniently [30]. In conclusion, ultra-
sound plays a significant role in the diagnosis, treatment, and
prognosis of tumors.

In this study, two ultrasound-sensitive molecular subtypes
with significant survival differences were identified based on the
differential genes of ultrasonic treatment of LAML, and the
prognosis of patients with cluster2 was significantly better than
that of cluster]l. Then, the immune cell infiltration between
different subtypes was further analyzed. The results revealed
substantial variations in the immune microenvironment be-
tween the two subtypes, which may be the reason for the survival
differences between the two subtypes. Then, WGCNA analysis
of the disturbed genes between subtypes identified two key
modules of the two main clinical features associated with LAML
was performed. Finally, based on the prognostic factors sig-
nificantly related to LAML, we constructed an 8-gene signature
RS model composed of GASK1A, LPO, LTK, PRRT4, UGT3A2,
BLOCK1S1, G6PD, and UNC93B1 to evaluate the prognosis of
patients with LAML. As a secretory protein kinase, GASK1A is
expressed in basal epithelial cells, which is not only related to the
occurrence and development of tumors but also may cause
chemotherapy resistance in some tumor patients [31, 32]. Since
polyunsaturated fatty acids and oxygen free radicals react in the
body to form lipid peroxide (LPO), and its expression level is
correlated with the poor prognosis and disease invasiveness in
breast cancer patients [33], studies have revealed that inducing
the outbreak of LPO and ferroptosis in tumors can induce the
death of drug-resistant cancer cells and effectively improve the
efficacy and prognosis of chemotherapy-resistant patients [34].
CLIP1-LTK fusion gene can be used as a therapeutic target of
loratinib in patients with non-small cell lung cancer [35]. Ab-
normal activation and mutation of LTK regulate the growth and
apoptosis of tumor cells and affect the occurrence and pro-
gression of many types of tumors [36]. LTK is a common up-
regulated target gene in stages I-IV of hepatocellular carcinoma,
which is mainly involved in tumor immunity and signal
transduction [37]. LTK mutations may cause myeloma and can
be used as biomarkers to detect specific targets of myeloma [38].
In addition, LTK is closely related to the pathogenesis of LAML
[39]. PRRT4 is considered a new prognostic biomarker for
gastric cancer [40]. UGT3A2 may be the antidote to polycyclic
aromatic hydrocarbons in the human body, and its mutation
increases the carcinogenic risk of polycyclic aromatic hydro-
carbons [41, 42]. The expression level of UGT3A2 is related to
DNA methylation and affects the occurrence and development
of LAML [43]. An 1l-gene signature, including UGT3A2,
established based on the immune microenvironment can be
employed for the prediction of the prognosis of thymoma
patients [44]. BLOCKI1S1, also known as GCN5LI, is a new
molecule homologous to the sequence of nuclear acetyl-
transferase GCN5, which is involved in the regulation of mi-
tochondrial autophagy, fatty acid oxidation, and other
mitochondrial biological processes [45-47]. BLOCK1S1 can also

Journal of Oncology

regulate the occurrence and development of hepatocellular
carcinoma through glutamine metabolism, and the expression
level is related to the prognosis of patients [48]. G6PD plays
a role in cell cycle regulation (cell growth and death) and is
related to tumorigenesis and malignant progression; in addition,
it is an indicator of poor tumor prognosis [49, 50]. According to
various studies, G6PD can promote the proliferation of LAML
cells and patient resistance [51]. Furthermore, the role and
mechanism of UNC93B1 in tumors are still unknown and there
is no substantial study available. In conclusion, nearly every one
of the eight genes examined in this study is strongly linked to the
development, progression, and prognosis of different cancers,
with LTK, UGT3A2, and G6PD, particularly thought to be
crucial in LAML.

This study is the first to develop a prognosis model for
LAML based on the differential genes of subtypes that are
sensitive to ultrasound therapy, which offers a fresh
perspective on the disease’s molecular mechanism and
prognosis prediction. The model we established is ob-
tained through the comprehensive analysis of multiple
datasets, which has high reliability, and the multigene
aggregation model has a higher prognostic value than
a single gene. However, there are still some limitations to
this study. Firstly, the sources of clinical information
obtained in this study are TCGA and GEO databases,
most of which are white, African, or Latin American,
thus, when applying our findings to patients of other
races care must be taken. Secondly, because this is
a retrospective study, there is no way to avoid some data
loss and selection bias. Finally, the model is still in the
theoretical stage, and more experiments are needed in
the future to further verify the clinical prognostic value
of the model.

5. Conclusions

In this study, the ultrasound-sensitive subtype of TCGA--
LAML was identified based on the ultrasound-sensitive gene
for the first time, and finally, an RS model composed of 8
signatures was constructed to evaluate the prognosis of
patients with LAML.
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