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Colorectal cancer (CRC) is the most common tumor of the digestive system and the third most common tumor worldwide. To
date, the prognosis of CRC patients remains poor. It is urgent to identify new therapeutic targets for CRC. As a tumor suppresser,
microRNA (miRNA) miR-502-5p is downregulated in CRC tissues. Nevertheless, the role of miR-502-3p in CRC is largely
unclear. Besides, the transcript factor forkhead box protein O1 (FOXO1) could suppress the CRC cell growth. However, the efect
of FOXO1 on miR-502-3p in CRC remains unknown. By contrast, cyclin-dependent kinases 6 (CDK6) promotes the CRC cell
growth. Yet the regulatory efect of miR-502-3p on CDK6 in CRC has not been reported. Tus, the primary aim of this study was
to investigate whether FOXO1 enhanced miR-502-3p expression to suppress the CRC cell growth by targeting CDK6. Here, RNA
level and protein level were detected by quantitative reverse transcription-PCR (qRT-PCR) and western blot (WB), respectively.
Besides, the cell growth was detected by Cell Counting Kit 8 (CCK8) assay. Moreover, the regulatory efect of FOXO1 onmiR-502-
3p or miR-502-3p on CDK6 was determined using dual-luciferase reporter gene (DLR) assay. Results revealed that miR-502-3p
and FOXO1 were downregulated in CRC cells. Besides, miR-502-3p suppressed the CRC cell growth. Moreover, FOXO1 could
increase the miR-502-3p level through facilitatingMIR502 transcription in CRC cells. In addition, miR-502-3p could suppress the
CRC cell growth by targeting CDK6. Tese fndings indicated that FOXO1 induced miR-502-3p expression to suppress the CRC
cell growth through targeting CDK6, which might provide new therapeutic targets for CRC.

1. Introduction

CRC is the most common tumor of the digestive system and
the third most common tumor worldwide [1–3]. In China,
55.5 thousand new CRC cases are reported and 28.6
thousand CRC patients die annually [4–6]. More note-
worthy is that the incidence rate of CRC is still growing
rapidly [4, 7]. What is worse is that the prognosis of CRC
patients remains poor due to postoperative recurrence and
metastasis, and the 5-year survival of stage IV patients with
CRC is only 10% [8, 9]. Tus, it is urgent to seek new
therapeutic targets for CRC to improve the prognosis of
patients with CRC.

Numerous studies have revealed that miRNAs play
critical roles in CRC. For instance, miR-17-5p facilitates
tumorigenesis and metastasis of CRC through suppressing

B-cell linker [10]. By contrast, miR-31 reduces serine/
threonine kinase 40 (STK40) expression to improve ra-
diosensitivity of CRC cells [11]. A previous study has in-
dicated that miR-502-3p is downregulated in CRC tissues
[12]. Besides, several studies have shown that miR-502-3p
exerts an anticarcinogenic efect on gallbladder cancer,
gastric cancer, and invasive pituitary adenoma. For example,
long noncoding RNA (lncRNA) highly expressed in GBC
(HGBC) promotes gallbladder cancer progression via
sponging miR-502-3p [13]. Moreover, circular RNA ribo-
somal protein L15 (circ-RPL15) facilitates gastric cancer
progression through inhibiting miR-502-3p [14]. In addi-
tion, lncRNA LINC00473 stimulates pituitary adenoma cell
proliferation served as a competing endogenous RNA
(ceRNA) of miR-502-3p [15]. However, the efect of miR-
502-3p on CRC is largely unknown.
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As a known transcription factor, FOXO1 is down-
regulated in CRC cells and prohibits the CRC cell growth
[16–18]. Besides, FOXO1 could regulate miRNA expression.
For example, FOXO1 enhances MIR148A transcription to
increase miR-148a expression in hepatocytes [19]. More-
over, unacetylated FOXO1 translocates to the nucleus and
promotes MIR449A transcription to elevate the miR-449a
level [20]. Nevertheless, the regulatory efect of FOXO1 on
miR-502-3p in CRC remains unclear.

CDK6 is a recognized cell cycle kinase facilitating cancer
cell proliferation to promote cancer progression [21]. Be-
sides, CDK6 is upregulated in CRC cells [22]. Moreover,
CDK6 promotes CRC progression. A recent study has
revealed that miR-500a-3p suppresses CRC progression
through inhibiting aerobic glycolysis by targeting CDK6
[22]. By contrast, lncRNA CASC21 enhances the CRC cell
growth by inducing CDK6 expression [23]. Yet the role of
miR-502-3p in CDK6 expression in CRC has not been
reported.

Terefore, the primary aim of the current study was to
investigate whether FOXO1 enhanced miR-502-3p expres-
sion to suppress the CRC cell growth by targeting CDK6.

2. Methods and Materials

2.1. Cell Culture. Normal colonic mucosa cell line FHC cells
and CRC cell line HT29 cells were obtained from the Cell
Bank at the Chinese Academy of Sciences (Shanghai, China).
Ten, FHC and HT29 cells were cultured with Dulbecco’s
modifed eagle’s medium (DMEM) and 10% fetal bovine
serum (FBS) (Gibco BRL, Grand Island, NY, USA) in
a humidifed incubator supplemented with 95% O2 and 5%
CO2 at 37°C.

2.2. Cell Transfection. In this study, miRNA mimic, in-
hibitor, and vectors were transfected into HT29 cells using
Lipofectamine 2000 (Invitrogen, Carlsbad, Calif, USA).
Ten, HT29 cells were collected and used for subsequent
experiments at 48 hours post-transfection.

2.3. QRT-PCR. First, total RNA from HT29 cells were
isolated using Trizol (Invitrogen). For mRNA detection, 1 μg
RNA was reverse transcribed by PrimeScript RT reagent Kit
(Takara, Dalian, Liaoning, China). For miRNA detection,
TaqMan miRNA assays (Applied Biosystems, Forest City,
CA, USA) was utilized to reverse transcript 1 μg RNA. Ten
qRT-qPCR analysis was carried out by the ABI 7500 fast
real-time PCR system (Applied Biosystems) using SYBR
Premix Ex Taq II ((Tli RNaseH Plus)) (Takara). Sub-
sequently, the amount of target RNA was normalized to that
of internal control (18 s or U6) and then the data were given
by 2−△△Ct relative to that of the control group. Te primers
used for qRT-PCR were listed as follows: miR-502-3p:
forward: 5′-ACACTCCAGCTGGGAATGCACCTGGGC
AAGGA-3′, reverse: 5′-CTCAACTGGTGTCGTGGA-3′;
U6 forward: 5′-CTCGCTTCGGCAGCACA-3′, reverse:
5′-AACGCTTCACGAATTTGCGT-3′; FOXO1 forward:
5′-GGCAGCCAGGCATCTCATAA-3′, reverse: 5′-TTG

GGTCAGGCGGTTCATAC-3′; 18 s forward: 5′-CCTGGA
TACCGCAGCTAGGA-3′, reverse: 5′-GCGGCGCAATAC
GAATGCCCC-3′.

2.4. CCK8 Assay. First, 1× 104 HT29 cells were collected in
a well of the 96-well plate. Ten, 10 μL CCK8 solution
(#C0038, Beyotime Biotechnology, Shanghai, China) was
added into each well at a 1/10 dilution to incubate HT29 cells
for 2 hours at 37°C. Next, Multiscan MK3 (Termo Fisher
Scientifc, Waltham, MA, USA) was used to read the ab-
sorbance at 450 nm. Finally, the rate of HT29 cell pro-
liferation was calculated based on themean of optical density
(OD) at 450 nm.

2.5. WB. First, total proteins were extracted from HT29
cells by RIPA lysis bufer (#P0013D, Beyotime Bio-
technology). Ten, 30 μg protein was separated by SDS-
polyacrylamide gel electrophoresis followed by the transfer
onto a PVDF membrane (Millipore, Bedford, MA, USA).
Next, 5% nonfat milk was used to block the membrane at
room temperature (RT) for 1 hour and subsequently in-
cubated with primary antibodies at 4°C overnight. Sub-
sequently, Tris-bufered saline (TBS) supplemented with
0.1% Tween20 was utilized to wash the membrane three
times followed by the incubation with second antibody at
RT for 1.5 hour. Finally, the signals of target proteins were
determined by the enhanced chemiluminescent (ECL)
detection. Te primary antibodies used for WB included
FOXO1 antibody (1 : 1000, #ab52857, Abcam, Cambridge,
UK), CDK6 antibody (1 : 1000, #ab179450, Abcam), and
GAPDH antibody (1 : 15000, #KC-5G5, Aksomicks,
Shanghai, China).

2.6. Bioinformatics Analysis. HumanTFDB database
(https://bioinfo.life.hust.edu.cn/HumanTFDB#!/) was used
to analysis potential FOXO1 binding sites on the promoter
of MIR502. Besides, to mine targets of miR-502-3p,
crosslinking-immunoprecipitation and high-throughput
sequencing data of ENCORI database (https://starbase.
sysu.edu.cn/index.php) were utilized.

2.7. Expression Vector Construction. To construct FOXO1
expression vector, the open reading frame (ORF) of FOXO1
was cloned into the pcDNA 3.1 vector obtained from
TaKaRa.

2.8. DLR Assay. Te promoter of MIR502, wildtype (WT)
CDK6 mRNA 3′UTR or mutant (MUT) CDK6 mRNA
3′UTR containing mutated miR-502-3p binding site was
cloned into the luciferase reporter gene vector pGL3-basic.
After cotransfection with pGL3-basic vectors and FOXO1
expression vector, with mimic NC or miR-502-3p mimic,
respectively, luciferase activity of HT29 cells was detected by
the Dual Luciferase Reporter Assay System (Promega,
Madison, WI, USA).
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2.9. Statistical Analysis. Data in the present study were
present as mean± standard deviation (SD). Besides, statis-
tical diferences were analyzed utilizing SPSS 20 software
(SPSS Inc., Chicago, IL, USA). Briefy, the comparation
between two groups was identifed by the unpaired Student’s
t-test, while one way ANOVA was used for statistics among
multiple groups. P< 0.05 was considered statistically
signifcant.

3. Results

3.1.MiR-502-3p IsDownregulated inCRCCell Line. First, the
miR-502-3p level in HT29 cells was identifed. Results of
qRT-PCR showed that the level of miR-502-3p was reduced
in HT29 cells compared to that in FHC cells (Figure 1),
suggesting that miR-502-3p was downregulated in the CRC
cell line. Tese results were consistent with those found in
CRC tissues.

3.2.MiR-502-3pSuppressesCRCCellGrowth. Next, the efect
of miR-502-3p on CRC cells was determined, and miR-502-
3pmimic was used to overexpress miR-502-3p inHT29 cells.
Results of CCK8 assay revealed that miR-502-3p over-
expression dramatically decreased the HT29 cell growth rate
compared to that of control HT29 cells (Figure 2). Besides,
mimic NC had no efect on the HT29 cell growth rate
(Figure 2). Abovementioned data suggested that miR-502-
3p suppressed the CRC cell growth.

3.3. FOXO1 Elevates miR-502-3p Level through Facilitating
MIR502 Transcription in CRC Cells. Te pri-miR-502 is
a transcript from MIR502. Moreover, potential FOXO1
binding site was found on the promoter of MIR502 by
bioinformatics analysis (Figure 3(a)). Consistent with the
miR-502-3p level, the protein level of FOXO1 was also
reduced in HT29 cells compared to that in FHC cells
(Figure 3(b)). Tese results suggested that FOXO1 might
regulate the miR-502-3p level in HT29 cells.

Next, results of qRT-PCR confrmed that FOXO1
overexpression by transfection of FOXO1 expression vector
upregulated the miR-502-3p level in HT29 cells
(Figure 3(c)). Besides, results of DLR assay indicated that the
luciferase activity of HT29 cells transfected with pGL3-basic
vectors containing the promoter ofMIR502was increased by
transfection of FOXO1 expression vector, while the blank
expression vector had no efect on the luciferase activity of
HT29 cells (Figure 3(d)). Tus, these data suggested that
FOXO1 could elevate the miR-502-3p level through facili-
tating MIR502 transcription in CRC cells.

3.4. MiR-502-3p Targets CDK6 in CRC Cells.
Bioinformatics analysis showed that CDK6 should be the
target of miR-502-3p (Figure 4(a)). Next, results of WB
confrmed that miR-502-3p overexpression dramatically
reduced the CDK6 protein level in HT29 cells (Figure 4(b)).
Besides, mimic NC had no efect on the CDK6 protein level
in HT29 cells (Figure 4(b)).

To further identify the regulatory efect of miR-502-3p
on CDK6, DLR assay was performed. Results showed that
the luciferase activity of HT29 cells transfected with pGL3-
basic vector containing the WT CDK6 mRNA 3′ UTR was
reduced by miR-502-3p mimic whereas elevated by miR-
502-3p inhibitor (Figure 4(c)). However, the luciferase ac-
tivity of HT29 cells transfected with pGL3-basic vector
containing the MUT CDK6 mRNA 3′ UTR with mutated
miR-502-3p binding site was not regulated by miR-502-3p
mimic or inhibitor (Figure 4(c)). Moreover, the luciferase
activity of HT29 cells transfected with pGL3-basic vector was
not afected by mimic NC and inhibitor NC (Figure 4(c)). As
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CDK6 could promote the CRC cell growth [23], these results
together suggested that miR-502-3p should suppress the
CRC cell growth through targeting CDK6.

4. Discussion

Tis study revealed the mechanism of miR-502-3p regu-
lating the CRC cell growth. First, miR-502-3p was down-
regulated in CRC cells and suppressed the CRC cell growth.
Second, FOXO1 could elevate the miR-502-3p level through
facilitating MIR502 transcription in CRC cells. Tird, miR-
502-3p should suppress the CRC cell growth by
targeting CDK6.

Numerous studies have demonstrated the anticarcino-
genic efect of miR-502-3p. For instance, lncRNA-HGBC
facilitates gallbladder cancer progression through sponging
miR-502-3p [13]. Besides, circ-RPL15 promotes gastric
cancer progression by suppressing miR-502-3p [14]. Simi-
larly, circDLST activates NRAS/MEK1/ERK1/2 pathway to
aggravate gastric cancer progression via sponging miR-502-
3p [24]. Moreover, lncRNA LINC00473 enhances pituitary
adenoma cell proliferation serving as a ceRNA of miR-502-
3p [15]. However, the role of miR-502-3p in CRC has not
been explored. Terefore, this study for the frst time
revealed the anticarcinogenic efect of miR-502-3p in CRC,
which is consistent with the role of miR-502-3p in other
cancers.

Te current study had indicated that the FOXO1 protein
level was downregulated in CRC cells. Nevertheless, the
mechanism regulating the FOXO1 protein level in CRC re-
mains unclear. Several studies have revealed that FOXO1
protein expression is reduced by miRNAs in CRC. For

example, miR-544 facilitates CRC progression through de-
creasing FOXO1 protein expression [25]. Besides, miR-135b
decreases sensitiveness of oxaliplatin by reducing the FOXO1
protein level in CRC cells [17]. Moreover, miR-183-5p
stimulates angiogenesis through suppressing FOXO1 protein
expression in CRC [26]. In addition, miR-96 promotes CRC
cell proliferation via downregulating the FOXO1 protein level
[27]. Tus, the FOXO1 protein level might be reduced by
miRNAs in CRC cells.

CDK6 could be regulated by miRNAs in various cancers.
A previous study has revealed that miR-204 suppresses
nonsmall cell lung cancer (NSCLC) progression through
downregulating the CDK6 level [28]. Similarly, a recent
study has indicated that miR-370-3p restrains the pro-
gression of ovarian cancer by reducing CDK6 expression
[29]. Moreover, miR-576 represses CDK6 expression to
promote bladder cancer cell proliferation [30]. In addition,
miR-186 decreases the CDK6 level to inhibit the prostate
cancer cell growth [31]. In CRC, both miR-539-5p and miR-
500a-3p depress CRC progression via targeting CDK6
[22, 23]. Nevertheless, the efect of miR-502-3p on CDK6 is
largely unknown. Terefore, this study for the frst time
revealed the inhibitory role of miR-502-3p in CDK6 during
CRC progression.

However, there are still some limitations in the current
study. For example, the association between FOXO1 and
MIR502 promoter should be further identifed by chromatin
immunoprecipitation (ChIP), while the interaction of miR-
502-3p and CDK6 mRNA should be further determined
using miRNA pulldown. In addition, the efect of miR-502-
3p on the CRC cell growth should be confrmed by in vivo
study performed in nude mice.
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5. Conclusion

In summary, the current study revealed that downregulated
miR-502-3p suppressed the CRC cell growth. Besides,
FOXO1 could increase the miR-502-3p level through fa-
cilitating MIR502 transcription in CRC cells. Moreover,
miR-502-3p should suppress the CRC cell growth by tar-
geting CDK6. Tese fndings indicated that FOXO1 induced
miR-502-3p expression to suppress the CRC cell growth
through targeting CDK6, which might provide novel ther-
apeutic targets for CRC.
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