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Background. Approximately 10% of cancer patients worldwide have colorectal cancer (CRC), a prevalent gastrointestinal ma-
lignancy with substantial mortality and morbidity. Te purpose of this work was to investigate the APOC1 gene’s expression
patterns in the CRC tumor microenvironment and, using the fndings from bioinformatics, to assess the biological function of
APOC1 in the development of CRC.Methods. Te TCGA portal was employed in this investigation to fnd APOC1 expression in
CRC. Its correlation with other genes and clinicopathological data was examined using the UALCAN database. To validate
APOC1’s cellular location, the Human Protein was employed. In order to forecast the relationship between APOC1 expression
and prognosis in CRC patients, the Kaplan–Meier plotter database was used. TISIDB was also employed to evaluate the
connection between immune responses and APOC1 expression in CRC. Te interactions of APOC1 with other proteins were
predicted using STRING. In order to understand the factors that contribute to liver metastasis from CRC, single-cell RNA
sequencing (scRNA-seq) was done on one patient who had the disease. Tis procedure included sampling preoperative blood and
the main colorectal cancer tissues, surrounding colorectal cancer normal tissues, liver metastatic cancer tissues, and normal liver
tissues. Finally, an in vitro knockdown method was used to assess how APOC1 expression in tumor-associated macrophages
(TAMs) afected CRC cancer cell growth and migration. Results. When compared to paracancerous tissues, APOC1 expression
was considerably higher in CRC tissues.Te clinicopathological stage and the prognosis of CRC patients had a positive correlation
with APOC1 upregulation and a negative correlation, respectively. APOC1 proteins are mostly found in cell cytosols where they
may interact with APOE, RAB42, and TREM2. APOC1 was also discovered to have a substantial relationship with immu-
noinhibitors (CD274, IDO1, and IL10) and immunostimulators (PVR, CD86, and ICOS). According to the results of scRNA-seq,
we found that TAMs of CRC tissues had considerably more APOC1 than other cell groups. Te proliferation and migration of
CRC cells were impeded in vitro by APOC1 knockdown in TAMs. Conclusion. Based on scRNA-seq research, the current study
shows that APOC1 was overexpressed in TAMs from CRC tissues. By inhibiting APOC1 in TAMs, CRC progression was reduced
in vitro, ofering a new tactic and giving CRC patients fresh hope.
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1. Introduction

Having a high rate of morbidity and death, colorectal cancer
(CRC) is a malignant tumor of the digestive system [1].
Around 10% of all cancer patients globally have CRC, af-
fecting 1.36 million persons [2]. Te liver is the most
common site of hepatic metastasis in CRC because of its
close anatomical proximity. At the time of initial diagnosis,
20–25% of patients had CRC liver metastases at some point,
later on, 50–60% will [3]. Currently, hepatectomy, which has
a 60% 5-year survival rate, is the best course of treatment for
CRC patients with liver metastases. Unfortunately, ap-
proximately 20–25% of patients with CRC liver metastases
are eligible for resection at the time of diagnosis, leading to
the majority of patients eventually passing away from ad-
vanced metastases [4].

Te infuence of immunology on the development,
prognosis, and therapeutic response of CRC has been shown
in recent investigations. A better prognosis, for instance, is
linked to T and NK cell enrichment in original CRC or
metastases [5, 6]. Programmed cell death 1 (PD1), T cell
control of CD28 superfamily members, and PD ligand 1
(PD-L1) are examples of immune checkpoint molecules that
have recently been identifed as potential targets for CRC
immunotherapy [7]. Pembrolizumab (Keytruda®) was the
frst PD1 inhibitor authorized by the FDA for the treatment
of metastatic malignant melanoma [8]. Te historic clinical
trial of pembrolizumab for CRC, NCT01876511, is note-
worthy. Te clinical trial included 11 patients with defcient
mismatch repair gene expression (dMMR) colorectal cancer,
21 patients with profcient mismatch repair gene expression
(pMMR) colorectal cancer, and 9 patients with dMMR other
malignancies. In dMMR CRC patients and pMMR CRC
patients, respectively, the immune-related objective re-
sponse rate and the immune-relatedprogression-free sur-
vival (PFS) rate were 40% and 78% and 0% and 11%. While
the pMMR CRC group’s median PFS and overall survival
(OS) were 2.2 months and 5.0 months, respectively, the
dMMR group did not accomplish these milestones [9].
Patients with CRC now have a lot of optimism because of
PD1 monoclonal antibody therapy, but medication re-
sistance is still a concern that needs to be fxed. Te study of
the molecular mechanisms underlying the CRC tumor
microenvironment is so crucial.

In the current work, we employed bioinformatics
technology to evaluate the TCGA database and discovered
that apolipoprotein C1 (APOC1) expression was consid-
erably higher expressed in CRC tissues than in nearby tissues
and that it was associated with clinical stage and a bad
prognosis. Te selection of APOC1 to study its role in the
CRC tumor microenvironment was inspired by our research
group [10]. Although APOC1 has been observed to be
crucial for the growth and metastasis of a number of ma-
lignancies [11], the underlying mechanisms have not been
fully understood, particularly with regard to its function and
part in tumor immunity [12]. Liwen Ren et al. established
that APOC1 is an immunological biomarker that controls
macrophage polarization and encourages tumor dissemi-
nation through extensive pan-cancer studies, which revealed

that APOC1 is intimately connected to the infltration of
diferent immune cells in a range of malignancies [13]. We
conducted single-cell RNA sequencing (scRNA-seq) in one
patient with CRC liver metastasis to further examine why
APOC1 is highly expressed in CRC tissues. We covered
primary colorectal cancer tissues (CT), neighboring co-
lorectal cancer tissues (CP), liver metastatic cancer tissues
(LT), normal liver tissues (LP), and preoperative blood (PB)
in order to determine which type of cell population APOC1
is signifcantly enriched for and address causes of liver
metastasis from CRC. Furthermore, we conducted a pre-
liminary evaluation of APOC1’s role in encouraging CRC
migration and proliferation in culture.

2. Materials and Methods

2.1. APOC1Expression Level Analysis andClinicopathological
Analysis inCRC. Te expression of APOC1 was examined in
24 diferent tumor tissue types, including CRC and related
para-carcinoma tissues, using the TCGA portal. Here,
UALCAN was utilized to compare the expression of APOC1
in CRC patients with various stages and lymph node me-
tastases [14, 15].

2.2. Tools for APOC1 Location in Cells. A large number of
tissue, cellular, and pathological results as well as gene data
in cells and tissues are compiled in the Human Protein Atlas,
through which we obtained the location of APOC1 in cells.
Te subcellular portion of the Human Protein provides
high-resolution insight into the expression and spatial and
temporal distribution of proteins encoded by 13,041 genes,
representing 65% of human protein-coding genes. For each
gene, the subcellular distribution of proteins was studied by
immunofuorescence (ICC-IF) and confocal microscopy in
up to three diferent cell lines selected from the 36 cell lines
found in cell line sections. We showed the colocalization of
APOC1 in three cell lines including A-431, U-2 OS, and
U-251 MG cell lines.

2.3. Interaction Analysis of APOC1. STRING is a public
database for searching for interactions and connections
between proteins, both direct and indirect [16]. We perform
a thorough analysis and forecast of the outcomes, as well as
a summary of information exchange and contact with other
(primary) databases. STRINGwas used to build a network of
connections between APOC1, APOE, RAB42, and TREM2
among other signifcant proteins. Te relationship between
APOC1 and other genes in CRC was examined using the
TCGA portal.

2.4. scRNA-Seq Analysis. In accordance with the principles
outlined in the Declaration of Helsinki, all participants were
given information about the study, and patients signed
informed consent was obtained before it could begin. After
surgical resection at the First Afliated Hospital of Nanjing
Medical University, primary colorectal cancer tissues and
corresponding intestine tissues, liver metastatic cancer
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tissues, and corresponding liver tissues were collected.
Additionally, preoperative blood was taken. An Illumina
Hiseq4000 sequencer evaluated the samples (Singleron
Biotechnologies, China). Using the 10X Genomics Cell-
Ranger workfow, the raw counts were compared to the
human reference provided by 10X Genomics (GRCh38
version) (version 2.1.0). Te flter expression matrix Cell-
Ranger generates for each sample are read and processed
using the R program Seurat. Additionally, Seurat was used to
checking the quality of single-cell expression matrices
(version 3.2.0). First, cells that met the following standards
for quality were eliminated: mitochondrial transcripts with
less than 15% uniqueness, less than 100 unique genes
mapped, and more than 500 unique molecular identifcation
counts (UMI). Using the default settings of the R program
DoubletFinder, double peaks in cells were found. Te left-
over cells in all samples were kept and subsequently merged
with Seurat for additional analysis, assuming that the duplex
was eliminated.

2.5. Cell Cluster Analysis and Cell Type Identifcation.
Using FindVariable features from Seurat, 2000 highly var-
iable genes (HVG) were generated, and these genes were
employed in principal component analysis (PCA) with
parameter NPCS� 30. Te Harmony program (version
0.1.0) was used to eliminate probable batches from samples
with the parameter NPCA� 12 based on the PCA results.
FindClusters from Seurat are then used to identify cell
clusters using a shared nearest-neighbor graph. Seurat’s
RunTSNE and RunUMAP are used to reduce the harmony
dimension of visualization by T-distributed random
neighborhood embedding (tSNE) and unifed manifold
approximation and projection (UMAP).

2.6. Tool for Immune-Related Analysis of APOC1. Te
spearman correlations between APOC1 and immune-
modulator expression were investigated using TISIDB,
a digital portal for tumor and immune system interactions
that integrates a variety of heterogeneous data [16].

2.7. Primary Culture of THP-1 and Cell Transfection. 10%
fetal bovine serum (FBS) was added to RPMI 1640 medium
(BI, USA) when cultivating THP-1 cells (Gibco, USA),
following the transfection of THP-1 cells with lentiviral
vectors, including sh-NC and sh-APOC1 (GeneChem,
China). sh-NC:5′-TTCTCCGAACGTGTCACGT-3′; sh-
APOC1:5′-GCATCAAACAGAGTGAACTTT-3′. After two
days of PMA-mediated macrophage diferentiation, THP-1
cells were collected. THP-1 cells were exposed to HCT116/
LOVO culture supernatant in RPMI 1640 media for 2 days
in tumor-associated macrophages (TAMs) stimulation tests,
which resulted in the production of TAMs.

2.8. Cell Proliferation Experiments. For CCK8 experiments,
CRC cells were cocultured with TAMs supernatant con-
taining sh-NC or sh-APOC1. Ten microliters of CCK8 so-
lution (RiboBio, China) were applied at 0 hours, 24 hours,

48 hours, and 72 hours after the cocultured tumor cells were
implanted in 96 wells. 4 hours after adding the CCK8 so-
lution, analyses were carried out using a microplate reading
element at 450 nm in accordance with the manufacturer’s
instructions (Synergy4, USA).

2.9. Scratch Wound Experiment. At 48 h after transfection,
after cells were adherent into monolayer cells, the scratched
cells were evenly crossed with a sterile gun tip, gently washed
with PBS, and then replaced with 1% FBS medium and
cultured in a 37°C and 5% CO2 incubator. At 0 h and 48 h, 5
felds were randomly selected under an inverted microscope
to observe the wound healing and take photos. Cell mi-
gration distance was measured and calculated.

2.10. Statistics-Related Analyzing Process. Continuous in-
formation was compared between the two groups by one
individual t-test procedure. GraphPad Prism 8.0 was used to
carry out the statistically signifcant analytical method and
present the results graphically. It was deemed statistically
signifcant with a P value of 0.05.

3. Results

3.1. Expression and of Clinical Role ofAPOC1 inCRCBased on
TCGAData. Te TCGA portal revealed that the expression
of APOC1 was higher in tumor tissues, including CRC, than
in normal tissues (Figure 1(a)). Based on subgroup analysis
of CRC individual cancer stages and lymph node metastasis,
it was discovered that APOC1 expression increased with
increasing cancer stage and lymph node metastasis
(Figures 1(b) and 1(c)). Using the Kaplan–Meier plotter, the
prognostic value of APOC1 in CRC was further investigated.
Te fndings revealed that, albeit not statistically signifcant
(p> 0.05), CRC patients with high APOC1 expression had
considerably worse prognoses than those with low expres-
sion (Figure 1(d)). Data from the Human Protein Atlas
analysis showed that CRC patients, including those with
rectum and colon cancer, had high or low expression of the
APOC1 protein (Figure 1(e)).

3.2. Genes and Proteins Cointeracted with APOC1 in CRC.
Te human protein Atlas database revealed that APOC1 was
found in the cytoplasm of A-431, U-2 OS, and U-251MG
cells (Figure 2(a)). It was possible to fnd proteins that in-
teract with APOC1 using a STRING interactive network
(Figure 2(b)). Further investigation revealed a high corre-
lation between the expression of APOC1 and proteins that
may interact with it, including APOE, RAB42, and TREM2
(Figure 2(c)).

3.3. Acquisition of scRNA-Seq Profles of Samples and Data
Generation inCRCLiverMetastasis. In this study, we carried
out scRNA-seq [17] in one CRC liver metastasis patient
covering primary colorectal cancer tissues (CT), adjacent
tissues of colorectal cancer (CP), liver metastatic cancer
tissues (LT), normal liver tissues (LP), and preoperative
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blood (PB) and aimed to address the causes of liver me-
tastasis from CRC. Trough the defnition of classifcation,
we fnally identifed 16 cell clusters in immune cells using
a UMAP plot (Figure 3(a)). Each cell type has unique maker
genes (Figure 3(b)). For example, the B cell cluster specif-
ically expresses MS4A1, CD79A, and CD79B. CD4-IL7R
expresses IL7R, IL32, and MALAT1; while CD8-GZMB
expresses CD8A, CD8B, and KLRD1. TAM-APOC1 ex-
presses CD14, C1QC, APOC1, and SPP1. In addition, we
used the violin chart to show the expression of some marker
genes (CD79A, FCN1, and APOC1) in various cell pop-
ulations (Figure 3(c)). A cluster map and histogram were
applied to show the expression of these cell clusters in
diferent tissues and results revealed that there was less TAM
but more B and plasma cell clusters in CP compared with
CT. CT showed more TAM and fewer CD8 T cells. More-
over, there were more CD8 Tcells and NK enrichment in LP
compared with LT (Figures 4(a) and 4(b)). Tese results
demonstrate that TAMs might play an important role in
both the metastasis of primary tissues and the colonization
of metastatic foci and that the lethality of NK cells in cancer

tissues is insufcient in the colonization process after me-
tastasis of CRC.

3.4. APOC1 Was Highly Expressed in TAMs of CRC Tissues.
We discovered that APOC1 may be crucial to the TAMs of
CRC based on the results of the scRNA-seq analysis. As
a result, we carefully examined the expression of APOC1 in
each sample and each cluster of cells. Te exact distribution
of various subgroups in various samples is also displayed in
the UMAP graphic (Figure 5(a)). Te enrichment of APOC1
in various cell clusters in various samples was more clearly
displayed by the UMAPmap (Figure 5(b)). TAMs had much
higher levels of APOC1 than other cell clusters such as CD8
T, CD4 T, and NK cells, which were both less expressed
(Figure 5(b)). Furthermore, we looked at the data from Hae-
Ock Lee et al. [18] and discovered that APOC1 was primarily
expressed in myeloid CRC tissues (Figures 6(a) and 6(b)),
which is similar to our fndings. Our intense curiosity about
the function of APOC1 in TAMs from CRC was piqued by
all of these analyses.
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Figure 1: Expression of APOC1 in CRC tissues. (a) Te expression level of APOC1 mRNA in diferent types of cancer tissues compared to
normal tissue. (b) Te correlation between APOC1 mRNA expression and tumor stage. (c) Te correlation between APOC1 mRNA
expression and lymph node metastatic status. (d) Te relationship between APOC1 expression and CRC patient’s prognosis. (e) Im-
munohistochemical of APOC1 expression in CRC tissues from diferent patients. ∗P< 0.05.
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3.5. APOC1 ExpressionWas Correlated with Immune Factors.
We investigated the connection between the expression of
APOC1 and immunological components in CRC because the
aforementioned fndings showed that APOC1 is linked to
immunity, particularly TAMs, in CRC. As shown in Figures 7
and 8, there was a signifcant link between the expression of
immunostimulators (PVR, CD86, and ICOS) and immu-
noinhibitors (CD274, IDO1, and IL10) and APOC1 itself.

3.6. Inhibition of APOC1 of TAMReducedCRCProgression In
Vitro. We stimulated CRC cells with TAM supernatant in
order to further confrm the function of APOC1 in TAMs
fromCRC in vitro. By using the CCK8 and scratch assays, we
discovered that TAMs in the sh-APOC1 group signifcantly
decreased the proliferation and migration of CRC cells in
comparison to the control group (Figures 9(a) and 9(b)).

4. Discussion

An earlier study found that the mitogenic impact of high-
density lipoprotein cholesterol (HDL) on bovine vascular
endothelial cells in vitro was caused by APOC1 purifed from
HDL [19], and APOC1 has recently been identifed as
a molecule involved in the advancement of cancer.
According to research, APOC1 functions as an oncogene in
cervical cancer, and its knockdown both in vitro and in vivo

reduces the proliferation of cervical cancer cells. Te clinical
outcome of cervical cancer patients is highly correlated with
the relative expression of APOC1 [20]. Li Yangling et al.
discovered that APOC1 activated STAT3 to increase renal
clear cell carcinoma metastasis [11]. According to Huaying
Xiao et al., clear cell renal cell carcinoma (ccRCC) tissues had
a greater expression level of APOC1 than the normal group
did. Poor prognosis was linked to high APOC1 expression in
female patients but not in male patients. In ccRCC patients
older than 60 years, high APOC1 expression also decreased
survival [21]. Trough the MAPK signaling pathway,
APOC1 increases the growth of CRC tumors, according to
research by Ren Hui et al. [12]. Based on the TCGA portal,
we discovered in the current study that the expression of
APOC1 in tumor tissues, including CRC, was obviously
higher than that in normal tissues. Subgroup analysis also
revealed that the higher the cancer stage and lymph node
metastasis, the higher the expression of APOC1. Results
from the Kaplan–Meier plotter demonstrated that, despite
being not statistically signifcant, the prognosis of CRC
patients with high APOC1 expression was signifcantly
worse than that of those with low expression. Our con-
clusion is generally in line with the previous conclusion.

A STRING interactive network revealed a favorable
correlation between the expression of APOC1 and proteins
like APOE, RAB42, and TREM2 that may interact with
APOC1. Both APOC1 and APOE are apolipoproteins, which
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Figure 2: Genes and proteins cointeracted with APOC1. (a) APOC1 located in the cytosol. (b) Interactions between APOC1 and other
proteins. (c) Relationship analysis between APOC1 and APOE, RAB42, and TREM2 in CRC.
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Figure 3: Diverse cell types in CRC delineated by single-cell transcriptomic analysis. (a) UMAP plot showing 16 clusters of immune cells.
(b) Dot plot showing the clustering of immune cell types in each sample. (c)Te violin diagram showing expression levels of specifcmarkers
in each cell type.
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function as physiological carriers of hydrophobic lipids in
aqueous fuids throughout the body [22]. Apolipoproteins
and diferent malignancies may be related, according to

some research studies. In lung cancer cells and B16F10 cells,
APOE expression was knocked down, which reduced
tumor development and metastasis [23]. To describe
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Figure 4: Expression of individual cell populations in individual samples. (a)Te distribution number of each immune cell subgroup in each
sample. (b) Te histogram showing the distribution number of each immune cell subgroup in each sample. CT, primary colorectal cancer
tissues; CP, adjacent tissues of colorectal cancer; LT, liver metastatic cancer tissues; LP, normal liver tissues; PB, preoperative blood.

Journal of Oncology 7



APOE-TREM2 interactions, molecular docking and mo-
lecular dynamics (MD) investigations were carried out.
Additionally, it was examined how a signifcant TREM2-
disease-relatedmutation (R47H) afected TREM2 afnity for
APOE. Te outcomes demonstrated that the binding energy
occurred between APOE and TREM2 in an isomer-
dependent manner, with the potency order being
APOE4>APOE3>APOE2. Furthermore, the R47H muta-
tion decreased the connection between the APOE and

TREM2 proteins, which may be a result of hydrogen bond
interactions, hydrophobic interactions, or a weaker elec-
trostatic interaction between APOE and TREM2 [24].
RAB42 is linked to cancer prognosis and progression,
according to earlier studies. RAB42 expression levels in
hepatocellular carcinoma (HCC) tissues were higher than in
normal tissues, according to a prior investigation. Signifcant
correlations were found between highly expressed RAB42
and a number of clinical indicators in HCC patients.
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Figure 5: APOC1 expression in individual cell populations and individual samples. (a) UMAP plot showing the distribution of each cell
subgroup in each sample. (b) Te expression of APC1 in immune cells in each sample. CT, primary colorectal cancer tissues; CP, adjacent
tissues of colorectal cancer; LT, liver metastatic cancer tissues; LP, normal liver tissues; PB, preoperative blood (PB).
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Additionally, elevated RAB42 expression unmistakably in-
dicated a bad prognosis for HCC [25]. In comparison to
normal samples, glioblastoma (GBM) samples showed
higher expression of RAB42. Patients with high RAB42
expression have a worse prognosis than those with low
RAB42 expression in GBM. A total of 35 pathways, in-
cluding the P53 pathway, were signifcantly activated in
GBM samples with elevated RAB42 expression [26]. A
greater understanding of the direct interactions between
APOC1, APOE, RAB42, and TREM2 in cancer is, however,
required due to the paucity of studies in this area.

Te role and mechanism of APOC1 in the tumor mi-
croenvironment have only been partially studied. With the
quick advancement of scRNA-seq technology, diverse cell
populations can be characterized and identifed, and new cell
markers and regulatory pathways can be found. It is in-
teresting to note that APOC1 has been linked to a number of

immune cell infltrations in diferent malignancies. scRNA-
seq research revealed that TAMs expressed the bulk of
APOC1 in expression. TAMs with the M2 phenotype are
produced when renal cell cancer cells are cocultured; this is
prevented by silencing APOC1. By interacting with CD163
and CD206, APOC1 boosted macrophage polarization to-
ward M2 by increasing its expression in M2 or TAM.
Additionally, through secreting CCL5, macrophages over-
expressing APOC1 aided in the spread of renal cell cancer
cells [13]. According to Chan et al.’s research, TAMs have
high levels of APOE, APOC1, and SPP1 expression, which
results in an anti-infammatory macrophage phenotype [27].
Based on the fndings of this study’s scRNA-seq, we show
that basic CRC and liver metastatic tissues exhibit APOC1
overexpression in TAMs. We also looked at the relationship
between the expression of APOC1 and immune factors in
CRC and discovered that there was a signifcant positive
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Figure 6: Research results of APOC1 at single-cell level from Hae-Ock Lee’s study. (a) Te violin diagram displaying the distribution of
APOC1 expression in diferent cells from CRC tissues in total analysis. (b) Te violin diagram displaying the distribution of APOC1
expression in diferent cells from CRC tissues in subanalysis.
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correlation between the expression of immunoinhibitors
(CD274, IDO1, and IL10) and the expression of APOC1.
Tis result suggested that APOC1 is important in the de-
velopment of the immunosuppressive tumor microenvi-
ronment. We stimulated CRC cancer cells with TAM
supernatant in order to further confrm the function of
APOC1 in CRC TAMs in vitro. TAMs in the sh-APOC1
group drastically decreased CRC cell proliferation and

migration by CCK8 and scratch assays. Te signifcance of
APOC1 in the tumor immune microenvironment is sub-
stantially expanded by our fndings. Massimo Pancione et al.
proposed that many diferent functions of TAMs during
tumor progression may depend on their intrinsic adaptation
to positional schemes that are acquired through factors that
control the balance between a tumor suppressor and tumor-
promoting activities. In the primary tumor, oncogenic
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Figure 7: Correlation between APOC1 expression and immunoinhibitors in CRC. (a) Te heat map showing the correlation between
APOC1 and immunoinhibitor factors in diferent cancers. (b) Te line graph showing the correlation of APOC1 with specifc immune
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alterations or changes in the tumor microenvironment es-
tablish a new equilibrium that can be further modifed
during metastasis. Tere are at least two mechanisms
supporting the prometastatic function of TAMs:

(1) M2-macrophages can form a dense barrier around in-
vasive cancer cells, leading to heterotypic interactions be-
tween tumor cells and the surrounding matrix, disrupting
host tissue integrity; (2) Invasive cancer cells can acquire
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Figure 8: Correlation between APOC1 expression and immunostimulators in CRC. (a) Te heat map showing the correlation between
APOC1 and immunostimulator factors in diferent cancers. (b) Te line graph showing the correlation of APOC1 with specifc immune
indicators in CRC.
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immunophenotypic features, such as macrophage fusion
with cancer cells, which promotes homotypic interactions
between host matrix and TAMs [28–30]. Terefore, TAMs
play an indispensable role in the progression of liver me-
tastasis of CRC.

Te association between APOC1 and CRC was exten-
sively investigated in this research using bioinformatics
analysis and a few trials, although there are still numerous
gaps in our understanding. First of, no mechanistic in-
vestigation was done; only APOC1’s expression and function
in TAMs were confrmed. Second, there are not many re-
search studies on in vivo efcacy in animals. Tird, the
impact of APOC1 knockdown on other cells was not in-
vestigated in TAMs. We anticipate publishing more in-
formation about the connection between APOC1 function
and cancer in many cell types.

 . Conclusion

In conclusion, the current study shows that APOC1 was
highly expressed in TAMs of CRC tissues based on
scRNA-seq and bioinformatics analysis and that inhib-
iting APOC1 of TAMs slowed CRC progression in vitro,
ofering a novel approach and giving CRC patients
fresh hope.
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