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Colorectal cancer (CRC) is a common and highly lethal gastrointestinal malignancy. Immunotherapy has shown positive efcacy
in the treatment of CRC; however, only a minority of patients beneft from immunotherapy. Te aim of this study is to construct
a cuproptosis-related lncRNA (CRLs) risk score model to predict the prognosis and immune infltration of CRC patients. Firstly,
we synthetically analyzed 19 cuproptosis-related genes (CRGs) from CRC samples derived from the TCGA and obtained 33 CRLs
that were signifcantly associated with prognosis. Next, we defned three cuproptosis modifcation patterns via consensus
clustering analysis (C1, C2, and C3). Further analysis showed that there were signifcant diferences in the abundance of B cells,
NK cells, fbroblasts, monocytes, CD8+ cells, bone marrow dendritic cells, and cytotoxic lymphocytes in diferent clusters. In
addition, the LASSO regression screened out 6 individual CRLs (AC009315.1, PLS3-AS1, ZEB1-AS1, AC007608.3, AC010789.2,
and AC010207.1) closely related to the prognosis of CRC. We found that the low-risk group had better survival prognoses in
patients. Furthermore, the high-risk group had lower immune scores and exhibited lower CD8+ T cell infltration. Moreover, the
low-risk group had lower immune exclusion, immune dysfunction and TIDE scores than the high-risk group. Interestingly, the
lncRNAs in our risk model were positively associated with most immune checkpoints. CD274 (PD-L1), CTLA4, and HAVCR2
(TIM3) were positively correlated with risk scores. Moreover, MSI-H patients had lower risk scores than MSI-L patients, and IPS
scores were signifcantly higher in the low CRLs score group. In conclusion, we constructed a novel risk score model with6
lncRNAs related to cuproptosis, whichmay be a potential biomarker for evaluating the prognosis and immune treatment for CRC.

1. Introduction

In the past, surgery and chemotherapy were the main
treatment methods for colorectal cancer (CRC) [1]. In recent
years, with the advent of immunotherapy, targeted therapy
and other treatment strategies, the prognosis of colorectal
cancer patients has been signifcantly improved [2].

However, the prognosis of patients with advanced CRC
remains poor, largely due to the lack of highly specifc
prognostic biomarkers [3]. So far, the TNM staging system is
the most commonly used prognostic indicator in clinical
practice, but its overall specifcity is insufcient [4].
Terefore, it is crucial to explore more sensitive and specifc
markers for the prognosis of CRC.
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Cuproptosis is a newly discovered form of programmed
cell death, which is diferent from known programmed cell
death such as apoptosis, ferroptosis, pyroptosis, and nec-
roptosis; relies on intracellular overload of copper ions to
cause cellular death. Excessive respiration produces cyto-
toxicity and eventually induces cell death [5]. Recent studies
have shown that cuproptosis regulation is involved in the
development and response to therapy of multiple tumor
types [6–8]. Numerous proteins, such as CDKN2A, FDX1,
DLD, DLAT, LIAS, GLS, LIPT1, MTF1, PDHA1, and PDHB,
have been identifed that afect tumor cell proliferation and
migration and are associated with cuproptosis [9]. Tere-
fore, revealing the occurrence and development mechanism
of cuproptosis may provide positive help for the treatment
of CRC.

In recent years, immunotherapy has emerged as
a promising alternative therapy for CRC patients. However,
due to tumor heterogeneity, only a minority of patients
beneft from immunotherapy [10]. Given the evidence
suggests that intratumoral infltrating leukocytes are closely
associated with the efciency of immune responses, in-
cluding in CRC [11]. Terefore, the discovery and identi-
fcation of novel immune-related gene targets are crucial to
accurately predict the immune response of CRC.

LncRNAs are RNAs containing more than 200 nucle-
otides that cannot be translated into proteins [12]. LncRNAs
play an important role in the occurrence and progression of
various solid cancers, including CRC [13–15]. More in-
terestingly, a series of prognostic models constructed based
on public databases and by analyzing the expression of
lncRNAs showed excellent predictive ability [16, 17]. A
prognostic model based on a collection of various regulatory
functions in tumors may be a positive direction for the
exploration of prognostic markers in the future. However,
there has been no report on the construction of a prognostic
model based on cuproptosis-related lncRNAs (CRLs).

In this study, we obtained RNA-sequencing (RNA-seq)
data from the TCGA database and identifed 6CRLs sig-
nifcantly associated with prognostic and then developed
a prognostic model. In addition, we verifed the CRLs model
with training and validation cohort and explored its un-
derlying mechanisms through enrichment analysis. Finally,
we assessed the relationship between risk scores and im-
mune cell infltration, drug sensitivity, and immunotherapy
efcacy. Our fndings will help predict the prognosis of
colorectal cancer patients and provide references for clinical
immunotherapy.

2. Materials and Method

2.1. Data Collection and Correlation Analysis. Te Cancer
Genome Atlas (TCGA) database was used to retrieve the
RNA transcriptome dataset and the associated CRC clinical
data. Genes were divided into protein-coding genes and
lncRNA genes based on information from the annotated
human genome. Additionally, the levels of 19 cuproptosis-
related genes (CRGs) expression were evaluated. To evaluate
the relationship between lncRNAs and CRGs, we employed
Pearson correlation coefcients. CRLs were those with an

absolute correlation coefcient of >0.4 and a p value less
than 0.001. After that, patients were split into the training
group and the validation group. Te data that were retrieved
were then used for bioinformatics analysis.

2.2. Construction of Risk Model. To fnd lncRNA predictive
characteristics connected to cuproptosis in the training data
set, univariate Cox regression analysis and minimal absolute
shrinkage and selection operator (lasso) penalized Cox re-
gression analysis were utilized. Each CRC patient’s risk score
was determined using the following formula: Risk score is
equal to Expi∗ i, where Expi and bi are the expression and
coefcient of each lncRNA, respectively.

2.3. Estimation of Tumor-Microenvironment Cell Infltration.
In this study, we applied the method of Cell type Identif-
cation By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT) to quantify 22 types of immune cells in the
tumor and normal tissue [18]. We also applied the micro-
environmental cell population counter (MCPcecther)
method using the R package “MCPcether” to quantify the
absolute abundance of eight immune cell populations and
two stromal cell populations in tumor tissues from RNA-
seq data.

2.4. Prediction of Small Molecule Drugs. Te “limma” R
package was used to fnd diferentially expressed genes
(DEGs) between high- and low-risk groups. Ten, in order
to identify which potential target chemicals would be
helpful, we submitted the frst 1000 DEGs to the CMAP
database [19].

2.5. Statistical Analysis. R software (version 4.1.3, available
at https://www.r-project.org) was used for computational
and statistical analyses. Teir response to immunotherapy
was compared using the Wilcoxon rank sum test. Te
distinctions between the high- and low-risk categories were
ascertained using Kaplan-Meier curves and log-rank testing.
p values under 0.05 were regarded as statistically signifcant
for all analyses.

3. Results

3.1. Identifcation of Cuproptosis-Related lncRNAs in CRC
Patients. We frst analyzed the CRCmRNA dataset from the
TCGA database and obtained the expression profles of 19
CRGs and 16,876 lncRNAs. Next, we screened out 2450
CRLs by Pearson correlation analysis (|R|> 0.4, p< 0.001)
(Figure 1(a)). We further performed coexpression and
univariate Cox regression analysis and obtained 33 CRLs
that were signifcantly associated with prognosis
(Figure 1(b)). In addition, we compared the expression of
the obtained 33 CRLS in tumor tissue and normal tissue, and
the results showed that there were signifcant diferences in
their expression levels (Figures 1(c) and 1(d)).
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3.2. Cuproptosis-Related Genotyping and GSVA Analysis.
Cuproptosis is closely associated with prognosis in solid
malignancies [5, 20, 21]. Based on the above hypothesis, we
stratifed samples with qualitatively diferent CRC based on
the expression of 19CRGs via consensus clustering analysis.
Te results showed that we identifed three diferent clusters
of modifed patterns, including 100 cases in cluster 1 (with
high CRGs and namely C1), 197 cases in cluster 2 (with
medium CRGs and namely C2), and 246 cases in cluster 3
(with low CRGs and namely C3) (Figure 2(a) and Supple-
mentary Figure 1). Te further survival analysis showed that
C1 had a worse survival advantage than C2 and C3 (Fig-
ure 2(b)). In addition, MCP counter algorithm was used to
calculate the infltration of 9 immune cells in the three
molecular subtypes of CRC, and the diferences were ana-
lyzed [22]. Te results showed that the abundance of B cells,
NK cells, and fbroblasts in C2 was higher than that in C3,
the abundance of monocytes and CD8+T cells in C3 was

lower than that in C1 and C2, the abundance of bone
marrow dendritic cells and cytotoxic lymphocytes in C2 was
higher than that in C1 and C3, and there was no diference in
neutrophils and endothelial cells in C1, C2, and C3 group
(Figures 2(c)–2(k)). Next, we compared the enrichment
diferences of KEGG and HALLMARK signaling pathways
in C1 and C3 groups by GSVA analysis, and the heat map
showed that all pathways with statistical signifcance were
enriched in the C1 group (Figures 3(a) and 3(b)). Tese
results strongly suggest that CRGs may participate in the
immune function of CCR via multiple signaling pathways.

3.3. Constructing and Evaluating a Risk ScoreModel Based on
CRLs in CRC. A variety of studies showed that prognostic
models based on lncRNAs have guiding signifcance for
patient prognosis [23].Terefore, the purpose of this study is
to establish a CRLs-based model to facilitate the prognostic
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Figure 1: Selection of cuproptosis-related lncRNA in CRC. (a) Te Sankey diagram shows the associations between cuproptosis-related
lncRNAs and mRNAs. (b) Te Forest plot shows 33 lncRNAs with hazard ratios (95% confdence intervals) and p-values for their as-
sociation with CRC prognosis based on univariate Cox proportional-hazards analysis. (c) Histogram of expression levels of 33 lncRNAs in
CRC tissues and paired normal tissues. (d) Heatmap of expression levels of 33 lncRNAs in CRC tissues and paired normal tissues.
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Figure 2: Continued.
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prediction of CRC. We previously obtained 33 CRLs with
prognostic values, which were further screened by LASSO
regression. A total of 6 lncRNAs were obtained, and their
risk coefcients were calculated. Specifcally, the risk score
model for predicting CRC prognosis based on 6 CRLs is
shown as follows: risk score� expression value of
AC009315.1∗ 0.15835365544805 + expression value of
PLS3-AS1∗ 0.100587632623172 + expression value of ZEB1-
AS1∗ 0.0274302502732273 + expression value of
AC007608.3∗ 0.0549982300165668 + expression value of
AC010789.2∗ 0.166645095217608 + expression value of
AC010207.1∗ 0.403357464363707. Next, we randomly di-
vided the CRC cohort patients into two cohorts, a training
cohort (n� 382) and a validation cohort (n� 161), in a 7 : 3
ratio. In the training and validation cohort, the patients were
divided into low-risk and high-risk groups based on the
median risk score. Surprisingly, we found that the low-risk
group had a higher survival rate than the high-risk group,
both in the training and validation cohort (Figures 4(a) and
4(b)). Te AUC values of the 1-year, 3-year and 5-year ROC
curves of the training cohort were 0.756, 0.737, and 0.649,
respectively, while the AUC values of the 1-year, 3-year and
5-year ROC curves of the validation cohort were 0.688,
0.652, and 0.728, respectively, (Figures 4(c) and 4(d)). In
addition, in the training and validation cohort, the signature

divided the integrated cohort into low-risk and high-risk
groups based on the median risk score (Figures 4(e) and
4(f )). Te above results indicated that the risk score model
based on CRLs has a good predictive efciency for the
prognosis of CRC patients.

3.4.TeCorrelationAnalysisbetween theClinicalFeaturesand
CRLs Risk Score Model for CRC Patients. We previously
established a risk score model based on CRLs and found that
it could accurately predict the survival prognosis of CRC
patients. To further explore the value of this model, we
analyzed the correlation of this model with the clinical
features (age, gender and stage) of CRC patients
(Figure 5(a)).Te results showed that the low-risk group had
better survival prognosis in patients aged >65 years, male,
stage I-II, stage III-IV, T3-4, N1-2, and M0. Tere was no
diference in survival prognosis between high and low-risk
groups in patients aged ≤65 years, female, T1-2, N0, andM1
(Figures 5(b)–5(d)).

3.5. Enrichment and Drug Sensitivity Analysis of CRLs Risk
Score Model. In order to clarify the specifc mechanism of
the CRLs risk score in CCR, we further analyzed the po-
tential functional pathway of the high-risk and low-risk
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Figure 2: Consensus clustering and the diferent immune profles between tree clusters. (a) Consensus map of NMF clustering. (b) Overall
survival curves of the three molecular subtypes. (c–k) Comparisons of the abundance of infltrating immune function between C1, C2 and
C3.
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groups. Te results showed that the diferentially expressed
genes in the high-risk group and the low-risk group were
mainly enriched in multiple signaling pathways, such as
DNA packaging, chromatin assembly and neutrophil ex-
tracellular trap formation (Figures 6(a) and 6(b)). In ad-
dition, we further analyzed the association between the CRLs
risk score and the efcacy of chemotherapy in the treatment
of CRC. It showed that the high-risk group was associated
with lower half inhibitory centration (IC50) of chemo-
therapeutic drugs, such as AZ8055, Paclitaxel, and AKT
inhibitor VII, while the IC50 of Cisplatin, 5-Fu, and Tra-
metinib was higher (Figures 6(c)–6(h)). Te results showed
that the CRLs risk score model could be used as a predictor
of chemical sensitivity in the future.

3.6. Te Relationship between TME and CRLs Risk Score in
CRC. Te immune microenvironment of tumors is closely
related to tumor progression. Tumor cells interact with
immune cells, thereby inhibiting the function of immune
cells and fnally leading to tumor immune escape [24, 25].

Terefore, we continued to investigate whether the CCR
immune microenvironment was associated with CRLs risk
scores. We assessed the immune microenvironment of CRC
by the ESTIMATE algorithm and observed the diferences in
the stromal score and immune score between the high-risk
group and the low-risk group. As shown in Figure 7(a),
lower immune scores were exhibited in the high-risk group.
Te distribution of 22 immune cells in CRC patients is
shown in Figure 7(b). Next, we further calculated the in-
fltration abundance of immune cells by the CIBORESORT
algorithm. Te results showed that the infltrating abun-
dance of CD8+ Tcells in the low-risk group was higher than
that in the high-risk group (Figure 7(c)). Moreover, the
boxplot of immune function analysis showed that the scores
of chemokine receptors, HLA and MHC in the high-risk
group were signifcantly lower than those in the low-risk
group (Figure 7(d)). Immune checkpoints are important
predictors for assessing immunotherapy response [26].
Terefore, we evaluated the association of 12 immune
checkpoints with CRLs. As shown in Figure 7(e), all
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lncRNAs in the CRLs risk model were positively associated
with most immune checkpoints. Finally, we analyzed the
relationship of four common immune checkpoints with risk
scores, and the results showed that CD274 (PD-L1), CTLA4,
and HAVCR2 (TIM3) were positively associated with risk
scores (Figure 7(f)). Te above data strongly suggested that
CRGs play an important role in the regulation of the CCR
immune microenvironment.

3.7. Correlataion between Immunotherapy Responsiveness
and CRLs Risk Score. MSI is an important indicator for
evaluating the efcacy of immunotherapy in CRC [27].
Terefore, we explored the association of MSS, MSI-L and
MSI-H with CRLS scores. Te result showed that MSI-H
patients had lower risk scores than MSI-L patients
(Figure 8(a)). In recent years, IPS and TIDE have been
widely used to evaluate the efcacy of immunotherapy
[28, 29]. Our analysis revealed that IPS scores were signif-
icantly higher in the low CRLs score group (Figures 8(b) and
8(c)). Consistently, the low-risk group had a lower immune
exclusion, immune dysfunction and TIDE scores than the
high-risk group (Figures 8(d)–8(f)). Tese fndings in-
directly suggest that CRLs may play a key role in mediating
immune responses in CRC.

4. Discussion

In recent years, the gradual increase in the incidence of CRC
has attracted many researchers to lucubrate its occurrence,
development and treatment. Te resistance of tumors to
antitumor therapy has made people gradually realize the
importance of programmed cell death, such as autophagy,
pyroptosis and ferroptosis [30–32]. Cuproptosis is a newly
discovered type of cell death that can be induced by a variety

of drugs [33]. Terefore, a full understanding of the specifc
mechanisms of cuproptosis is critical to guide the treatment
of CCR.

In this study, frstly, we found that CRGs were closely
associated with CCR immune cell infltration. Next, we
identifed 6 CRLs signifcantly associated with prognostic
and then developed a prognostic model. In addition, we
validate the accuracy of the CRLs model and initially explore
its underlying mechanisms. Finally, we evaluated the re-
lationship between risk scores and immune cell infltration,
drug sensitivity, and immunotherapy efcacy.

In the past decade, more and more studies attempted to
establish lncRNA-based prognostic models in order to
provide guidance for the prognosis of various malignant
tumors. Tang et al. analyzed the expression of ferroptosis-
related lncRNAs in head and neck squamous cell carcinoma
in a public database, constructed a prognostic model, and
further confrmed that it has a good predictive efect. Te
AUC area for 1 year, 3 years, and 5 years is 0.78, 0.83, and
0.71, respectively [34]. Song et al. analyzed the expression of
pyroptosis-related lncRNAs in lung cancer tissues and
constructed a prognostic model with good predictive ability.
Te AUC area for 1 year, 3 years and 5 years is 0.757, 0.728,
and 0.685, respectively [35]. In this study, the areas under the
AUC curve of our prognostic model at 1 year, 3 years, and
5 years were 0.756, 0.737, and 0.649, respectively. Compared
with previous studies, this model shows no weak predictive
ability and has good clinical application value.

Te immune microenvironment of tumors is regulated
by a variety of cells, including tumor cells themselves, im-
mune cells, and fbroblasts [36]. Among them, immune cells
play a major role in regulating the tumor immune micro-
environment [37]. In recent years, eforts have been made to
explore new approaches to treat CCR. Te advent of im-
munotherapy has brought new hope to this idea. A variety of

0.0011

highlow
Risk

0

1

2

3

4

A
KT

 in
hi

bi
to

r V
II

I
se

ns
tiv

ity
 (I

C5
0)

Risk
low
high

(g)

0.0011

highlow
Risk

−8

−4

0

4

Tr
am

et
in

ib
 se

ns
tiv

ity
 (I

C5
0)

Risk
low
high

(h)

Figure 6: GO and KEGG enrichment and drug sensitivity analysis between high-risk and low-risk groups. (a) GO analysis for the high-risk
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evidence indicates that infltrating lymphocytes play an
important role in the prognosis of various solid tumors and
have potential predictive value [38]. In this study, we found
that diferent groups of CRGs have diferences in the dis-
tribution of immune cells, which indirectly suggests the
existence of a relationship between CRGs and the immune
microenvironment. More interestingly, we constructed
a prognostic model based on CRLs and also showed an
association between the risk score and the proportion of
immune cells in the tumor microenvironment. Tis result
further supported the relationship between cuproptosis and
the immune microenvironment of CCR. However, its spe-
cifc mechanism needs to be further studied in the future.

Cuproptosis is a novel mode of cell death for which
research is currently rather limited. In this study, we found
that there were signifcant diferences in the infltration of
various immune cells under diferent patterns of CRLs. More
interestingly, the risk scores of the prognostic models
constructed based on CRLs were also signifcantly diferent
from the immune microenvironment of CRC and its
multiple immune checkpoints. Tese data strongly sug-
gested that there is a strong interrelationship prior to
cuproptosis and immunity. Given the existence of an ex-
tremely complex network of molecular interactions within
cells. In addition, there are some unsatisfactory aspects of
this study. Firstly, all data in this study were obtained from
public databases, lacking further support from clinical data.
Secondly, the mechanism by which the CRLs model regu-
lates the immune microenvironment has not been thor-
oughly investigated. Tese issues deserve further research in
the future.

In conclusion, in this study, we revealed multiple roles of
CRGs and CRLs in CCR. Firstly, CRGs were closely related
to CCR immune cell infltration. Secondly, the risk scoring
model based on CRLs has a good predictive ability for the
overall survival of CCR. In addition, the risk score of CRLs
might have potential guiding value for the application of
various antitumor drugs. Moreover, the risk score of CRLs
was closely related to the immune cell infltration of CCR.
Finally, the CRLs risk model might have potential instructive
value for immunotherapy.
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