
Research Article
Chromatin Regulator-Related Gene Signature for Predicting
Prognosis and Immunotherapy Efficacy in Breast Cancer

Dongxu Feng,1 Wenbing Li,1 Wei Wu,1 Ulf Dietrich Kahlert,2 Pingfa Gao,1 Gangfeng Hu,1

Xia Huang,1 Wenjie Shi ,2,3 and Huichao Li 4

1Department of General Surgery, Chongming Hospital Afliated to Shanghai University of Medicine and Health Sciences,
Chongming District, Shanghai 202150, China
2University Clinic for General, Visceral, Vascular-and Transplantation Surgery, Faculty of Medicine,
Otto-von-Guericke-University, Magdeburg 39120, Germany
3University Hospital for Gynaecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg 26121, Germany
4Department of Tyroid Surgery, Te Afliated Hospital of Qingdao University, Qingdao 266555, Shandong, China

Correspondence should be addressed to Wenjie Shi; wenjie.shi@uni-oldenburg.de and Huichao Li; lihuichao@qdu.edu.cn

Received 3 September 2022; Revised 22 October 2022; Accepted 24 November 2022; Published 30 January 2023

Academic Editor: Feng Jiang

Copyright © 2023 Dongxu Feng et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Many studies have found that chromatin regulators (CRs) are correlated with tumorigenesis and disease prognosis.
Here, we attempted to build a new CR-related gene model to predict breast cancer (BC) survival status. Methods. First, the CR-
related diferentially expressed genes (DEGs) were screened in normal and tumor breast tissues, and the potential mechanism of
CR-related DEGs was determined by function analysis. Based on the prognostic DEGs, the Cox regression model was applied to
build a signature for BC. Ten, survival and receiver operating characteristic (ROC) curves were performed to validate the
signature’s efcacy and identify its independent prognostic value.Te CIBERSORTand tumor immune dysfunction and exclusion
(TIDE) algorithms were used to assess the immune cells infltration and immunotherapy efcacy for this signature, respectively.
Additionally, a novel nomogram was also built for clinical decisions. Results. We identifed 98 CR-related DEGs in breast tissues
and constructed a novel 6 CR-related gene signature (ARID5A, ASCL1, IKZF3, KDM4B, PRDM11, and TFF1) to predict the
outcome of BC patients. Te prognostic value of this CR-related gene signature was validated with outstanding predictive
performance. Te TIDE analysis revealed that the high-risk group patients had a better response to immune checkpoint blockade
(ICB) therapy. Conclusion. A new CR-related gene signature was built, and this signature could provide the independent
predictive capability of prognosis and immunotherapy efcacy for BC patients.

1. Introduction

Breast cancer (BC) is a common cancer in the world [1].
Although the widespread use of adjuvant chemotherapy and
hormonal drugs has reduced mortality in BC patients, there
are still individual diferences in treatment outcomes and
diferent clinical benefts for BC patients [2]. Fortunately, with
the continuous updating of new therapies, the use of cancer
biomarkers has become an aid in BC diagnosis, prognosis,
treatment response prediction, and disease monitoring dur-
ing and after treatment [3]. Nowadays, many researchers have
tried to use various bioinformatics techniques to identify the

biomarkers or build the risk model in BC and achieved good
research results, such as the machine learning model in
predicting the immune subtype [4] and the eight-lncRNA
prognostic model [5]. Terefore, in order to provide a more
efective prediction of survival in tumor patients, continuous
eforts are needed to identify new prognostic key molecules
and explore their prognostic values.

Chromatin regulators (CRs) are essential upstream reg-
ulatory factors in epigenetics that can cooperate to connect
the organizational scales of chromatin from nucleosome
assembly to the establishment of functional chromatin do-
mains [6]. CRs can highly regulate chromatin structure by
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four broad classes of nuclear factors, including histone var-
iants, histone chaperones, chromatin remodelers, and histone
modifers [7]. In human cancer pathogenesis, it has been
found that the function of CRs is frequently disrupted by
genetic mutations and epigenetic alterations, resulting in
perturbed gene expression profles. Te role of CRs in cancer
is complex and highly specifc [8]. To begin with, the car-
cinogenic efects of chromatin regulators are well established.
Meanwhile, recent new studies have demonstrated their tu-
mor suppressive properties in the regulation of multiple
cellular processes [9]. For example, MLL3/4, one of the
chromatin regulators, may exert broad tumor suppressor
efects in various cancers [10]. In addition, growing evidence
has shown that CRs and tumor prognosis are closely related.
In cervical cancer, 57 overexpressed chromatin regulators
were identifed to have prognostic signifcance [11]. Similarly,
CR-related genes were found to be signifcantly associated
with postoperative outcomes in astrocytomas [12]. However,
CRs afecting prognosis of breast cancer is still lacking more
understanding and research.

Te tumor microenvironment (TME), consisting of
extracellular matrix, stromal cells, and immune cells [13], is
important in cancer initiation, progression, and therapy
[14]. With the emergence of new technologies, immuno-
therapy has become a widely concerned research direction
for cancer treatment, which aims to use the immune system
as a tool for treating oncological diseases [15]. Te efect of
immunotherapy is associated with the TME, especially the
tumor-infltrating immune cells (TICs) [16]. Currently,
there are 3 types of immunotherapies that target tumor-
specifc T cells, including immune checkpoint blockade
(ICB), adoptive cellular therapies, and cancer vaccines [17].
In immune checkpoint blockade therapy, multiple cancers
have been treated with two diferent antiprogrammed cell
death protein 1 (PD1) drugs (nivolumab and pem-
brolizumab) [18] and anticytotoxic T lymphocyte-associated
antigen 4 (CTLA4) (ipilimumab) [19].Te use of therapeutic
antibodies does provide clinical beneft to a small patient
population, but adverse efects associated with immune
checkpoint blockade complicate immunotherapy and limits
its use in cancer patients [20].Terefore, in order to promote
the efcacy of ICB therapy, it is necessary to identify and
explore the predictive biomarkers for immune checkpoint-
blocking therapies [21, 22].

In this work, we investigated the potentiality of CR-
related DEGs as prognostic markers in BC through several
bioinformatic analyses. Furthermore, CR-related DEGs were
successfully employed to construct a six-gene prognostic
model and a new CR-related gene signature for predicting
patients’ outcome and immunotherapy efcacy.

2. Materials and Methods

2.1. Data Collection. Te training set was downloaded from
the Te Cancer Genome Atlas (TCGA) database (n� 1167;
113 normal samples vs. 1054 tumor samples). Te validate
set was obtained fromGSE20685 (n� 327) [23]. Considering
that a patient’s follow-up for less than 30 days is too short to
evaluate the prognosis, we excluded those patients for

a more accurate evaluation. Te complete clinical in-
formation of patients is shown in Supplementary Table 1.
Lastly, there were 870 chromatin regulator (CR)-related
genes obtained from previous research [6].

2.2. Identifcation of CR-Related DEGs. First, the data of the
training set were normalized with the log2 transformation.
Next, the expression profles of 853 CRs were extracted from
the normalized TCGA-BRCA matrix based on the obtained
CR names. In the training set, DEGs related to CRs were
performed by the “limma” package. Diferential expression
was set as the adjusted p value less than 0.05, and the ab-
solute value of log2FC (fold change) was greater than 1. Te
result of the analysis was visualized in a volcano map uti-
lizing the “ggplot2” R package.

2.3. Biology Function Enrichment. ClusterProfler was con-
ducted to analyze gene oncology and the KEGG pathway,
and this procedure aims at discovering the potential
mechanism of the CR-related DEGs. In addition, the en-
richment analysis results were visualized via circos diagrams.

2.4. Signature Model Construction and Validation. Batch
Cox regression was applied to screen the prognosis-related
DEGs of CRs in the training set. And the important can-
didate genes were analyzed by the multivariate Cox analysis
for identifying independent prognosis risk factors. Based on
the multivariate regression results, we then developed an
optimal signature to predict prognosis based on the co-
efcients (Coef). Te model was constructed as the risk
formula: risk score�A gene×Coef + B gene×Coef + . . .+X
gene×Coef.Te forest map was plotted by the “forestplot” R
package. Te area under curve of ROC will be used to
evaluate the model in the training and validation set,
respectively.

2.5. Signature Prognostic Value Evaluation. Other clinical
variables also afect patient clinical prognosis, and when
compared with risk score, if risk score is also associated with
patients outcomes, here, we use Cox regression model to
demonstrate it, and we also conduct subgroup analyses of
risk score and survival status.

2.6. Immune Cell Infltration and Immunotherapy Efcacy
Estimation. To evaluate the association between this sig-
nature and tumor-infltrating immune cells, CIBERSORT
was used to analyze the proportion of various TICs between
high-score and low-score patients in the TCGA training
set. We also use the tumor immune dysfunction and ex-
clusion (TIDE) indicator to estimate ICB therapy response
in BC patients. Among them, lower TIDE scores mean that
tumor cells have less chance with immune escape, in-
dicating a higher response rate to ICBs therapy. Finally, we
assessed the correlation between this signature and im-
munotherapeutic markers and ICB-related genes via
Wilcoxon test.
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2.7. Predictive Nomogram Establishment and Evaluation.
A nomogram, a visual scoring system, was established in the
training set by integrating the risk score of CR-related gene
signature and clinicopathological variables to be used to
evaluate the OS of the BC patients. At the same time, the
bootstrap method was used to calculate the concordance
index (C-index), ROC, and calibration curves. Besides, we
further utilized the Kaplan–Meier analysis for OS, DSS, and
PFS to prove the clinical prognostic value of the nomogram.
All the analyses and plots were done by the R software and
suitable R packages.

3. Results

3.1. CR-Related DEGs and Function Enrichment. In the
training dataset, a total of 98 CR-related DEGs (Figure 1(a))
(Supplementary Table 2) were screened from 1154 BC tissue
samples and 113 normal tissue samples. We predicted the
biological mechanisms of 98 CR-related DEGs. GO en-
richment analysis showed that the most highly enriched
molecular functions (MF) of these DEGs were histone
binding, transcription corepressor activity, and histone ki-
nase activity. Cellular components (CC) of these DEGs were
covalent chromatin modifcation, histone modifcation, and
DNA replication. Te biological process (BP) of these DEGs
was remarkably involved in covalent chromatin modifca-
tion, histone modifcation, and DNA replication. Moreover,
they are also enriched in the cell cycle, homologous re-
combination, and lysine degradation by KEGG enrichment
analysis (Figure 1(b)).

3.2. Prognostic Signature Construction Based on the CR-
Related Gene. We used 98 CR-related DEGs to build the
prognostic signature in the TCGA training set. First, ten
important CR-related genes associated with OS in BC pa-
tients were selected (Figure 1(c)). Ten, six hub CR-related
genes (ARID5A, ASCL1, IKZF3, KDM4B, PRDM11, and
TFF1) were identifed as associated with the OS and con-
tributed to the risk signature (Figure 1(d)) (Table 1).
Te risk score� (−0.201073277) ∗ ARID5A+ 0.1231206 ∗
ASCL1+ (−0.268713644) ∗ IKZF3 + (−0.197882736) ∗ KDM
4B+(−0.538035757) ∗ PRDM11+(−0.050431061) ∗ TFF1.

3.3. Evaluation and Validation of Signature Efcacy. Te
high-risk group was defned as risk score more than the
median value, others were defned as low-risk groups, re-
spectively, in the training dataset. Ten, the risk score
distribution between the two groups was compared
(Figure 2(a)). Patients with high risk have a poor outcome
while the low-risk patients always suggest a better prognosis
(p � 1.179e − 04) (Figure 2(b)). Moreover, the area under
the ROC curve (AUC) was 0.713, which proved the pre-
dictive efcacy of our signature for predicting the OS in the
training set (Figure 2(c)), which was also validated in the
GEO. Te risk score distribution in the two groups is shown
in Figure 2(d). In addition, patients with low risk also have
a better prognosis (p � 7.955e − 04) (Figure 2(e)), and the

results further supported the above conclusion: AUC is
equal to 0.821 (Figure 2(f)).

3.4. Applicability of the CR-Related Gene Signature. We in-
tegrated the signature with other clinical risk factors in the
total data set to further assess the independent prognostic
value of the risk model for BC. As shown in the TCGA
training dataset, age, TNM stage, ER status, and risk score
were associated with the OS (p< 0.05), and risk score was an
independent prognostic factor (p< 0.05) (Figures 3(a) and
3(b)). Additionally, in the GEO validation dataset, analysis
results also support the abovementioned conclusions
(Figures 3(c) and 3(d)).

3.5. Subgroup Analysis to Evaluate Gene Signature. We
performed survival subgroup analysis in the TCGA training
set to demonstrate that the signature is associated with
clinical features. First of all, the clinical patients were
classifed into two groups, such as age ≤60 vs. >60 groups,
the T1/2 stage vs. T3/4 stage, the N (−) stage vs. N (+) stage
(N0 and N1–N3, respectively), and the M0 stage vs. M1
stage. Subgroup analysis suggests that subgroup patients also
have survival rate diferences in age, T stage, N1–N3 stage,
and M0 stage between high- and low-risk groups. However,
patients with the N0 or M1 stage has no signifcance
(p � 0.080 and p � 0.486, respectively) (Figures 4(a)–4(h)).

3.6. Immune Cell Infltration and Immunotherapy Efcacy
Estimation for the Signature. As for the relationship between
the signature and TME, 19 of the 22 TICs were signifcantly
related to the risk score (Figure 5(a)). Here, the CD8+ Tcells,
resting memory CD4+ T cells, regulatory T cells (Tregs),
gamma delta T cells, follicular helper T cells, M1 macro-
phages, memory B cells, naive B cells, activated NK cells,
monocytes, restingmyeloid dendritic cells, and activatedmast
cells were negatively correlated with the risk score, while the
M0 macrophages, M2 macrophages, resting NK cells, acti-
vated myeloid dendritic cells, resting mast cells, eosinophils,
and neutrophils were positively correlated with the risk score.
Meanwhile, the proportion of 12 TICs did difer signifcantly
between the two groups (p< 0.05, Figure 5(b)). Te pro-
portion of M0 and M2 macrophages was signifcantly higher
in the high-risk group, while the proportion of plasma cells,
naive B cells, CD8+ T cells, gamma delta T cells, resting
memory CD4+ Tcells, resting NK cells, and resting mast cells
was signifcantly higher in the low-risk group.

Regarding the CR-related signature’s potential for pre-
dicting response to immunotherapy in BC patients, the
result showed that the low-risk group had a higher TIDE
score (p< 0.001, Figure 5(c)), meaning a poor response to
immunotherapy. Likewise, 13 immune checkpoint mole-
cules (CTLA4, PDL1, PD1, PDL2, LAG3, TIM3, CD86,
BTLA, ICOS, CD96, CD160, TIGIT, and IDO1) are also
positive with low-risk group gene expression (p< 0.05,
Figure 5(d)). Taken together, these results illustrated the
importance of the risk score in breast cancer immuno-
therapy prediction.
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3.7. Nomogram for Clinical Decision. A visualized nomo-
gram was built and was used to predict OS probability at
three periods (1, 3, and 5 years) (Figure 6(a)). Te

concordance C-index was 0.734, which illustrated a good
ability in predicting OS for BC patients. Furthermore, we
found that the calibration curves indicated that the predicted

Table 1: Six CR-related prognostic genes signifcantly associated with OS in breast cancer patients.

Gene
Multivariate cox regression analysis

Coef HR HR 0.95L HR 0.95 H p value
ARID5A −0.201073277 0.8178525 0.668022015 1.001288425 0.051475659
ASCL1 0.1231206 1.131020814 1.016273871 1.258723773 0.02408809
IKZF3 −0.268713644 0.764362104 0.642458524 0.909396333 0.002434433
KDM4B −0.197882736 0.820466059 0.655829072 1.026432927 0.083334851
PRDM11 −0.538035757 0.583894036 0.344413023 0.989893597 0.045751465
TFF1 −0.050431061 0.950819475 0.900181977 1.004305459 0.070902358
CRs, chromatin regulators; OS, overall survival; Coef, β coefcient; HR, hazard ratio.
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Figure 1: Diferential expression analysis and the construction of CR-related prognosis signature in the TCGA training set. Volcano map of
the CR-related DEGs. Red represents the up-regulated genes; blue represents the down-regulated genes (|logFC|> 1, FDR q value <0.05)
(a). GO enrichment analysis (consisting of BP, CC and MF) and KEGG pathway enrichment analysis for the CR-related DEGs (p< 0.05,
FDR q value <0.05) (b). Univariate Cox regression analysis selected 10 CR-related genes correlated with OS (c). Multivariate Cox regression
analysis identifed a 6-gene (ARID5A, ASCL1, IKZF3, KDM4B, PRDM11, and TFF1) prognostic signature (d). ∗p< 0.05 and ∗∗p< 0.01.
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Figure 2: Validation of the CR-related prognostic signature in BC patients. Risk score distribution for patients in low- and high-risk groups
from the TCGA training set (a). Kaplan–Meier survival analysis of OS between the low-and high-risk groups from the TCGA training set
(b). AUC in ROC analysis for risk scores predicting the OS from the TCGA training set (c). Risk score distribution for BC patients in low-
and high-risk groups from the GEO validation set (d). Kaplan–Meier survival analysis of OS between the low- and high-risk groups from the
GEO validation set (e). AUC in ROC analysis for risk scores predicting the OS from the GEO validation set (f ).
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curve is close to the ideal curve (Figure 6(b)). At the same time,
the ROC curves of this nomogram also showed a good accuracy
to individually predict OS for BC patients (AUC� 0.788, 0.731,
and 0.713, respectively) (Figures 6(c)–6(e)). Lastly, we also
assessed the prognostic value of the nomogram, fnding that it
was remarkably associated with OS, DSS, and PFS (p< 0.05)
(Figure 6(f)).

4. Discussion

A signifcantly poor prognosis for the stage IV female BC
patients who were diagnosed between 2007 and 2013 can be
observed [24]. To improve the survival rate of BC patients,
an increasing number of genetic signatures have been
established. For example, Shi et al. [25] developed a fve-
mRNA signature model based on the ceRNA network for
predicting the survival of BC. However, few studies have
focused on prognostic signatures based on key genes in CRs
that have been shown to have potential as prognostic
markers. What’s more, studies have shown that epigenetic
factors and mechanisms can be involved in regulating the
TME and the ICBs response. In lung adenocarcinomas,

ASF1A defciency could sensitize lung adenocarcinomas to
anti-PD-1 therapy by inducing immunogenic M1-like
macrophage diferentiation and enhancing T cell activa-
tion of the TME [26]. Ten, in checkpoint-blocked re-
fractory mouse melanoma, histone demethylase LSD1
depletion enhanced tumor immunogenicity and T-cell in-
fltration in poorly immunogenic tumors and elicited
a signifcant response to anti-PD-1 treatment [27]. Tus,
exploring and evaluating the CR-related gene expression in
BC patients is important. In our study, we constructed a CR-
related gene signature, a useful tool to predict patients’
outcomes and immunotherapy sensitivity.

Te CR-related gene signature has 6 hub genes; ASCL1,
as one of the 6 genes, was positively associated with outcome,
while the levels of ARID5A, IKZF3, KDM4B, PRDM11, and
TFF1 were negatively associated with survival. As the results
demonstrated, the model could predict the patient’s
outcome.

Te ROC curves also confrmed the favorable predictive
performance of this signature. Besides, the independent
prognostic analysis determined that this signature, age, and
TNM stage were independent predictors for BC prognosis.
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Figure 3: Independent prognostic analysis of the clinical traits and risk score in BC patients. Univariate and multivariate Cox regression
analyses of the OS in the TCGA training set (a) and (b). Univariate and multivariate cox regression analyses of the OS in the GEO validation
set (c) and (d).
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As expected, survival subgroup analysis also suggests the
efective prediction ability of the signature in subgroups.
Next, we found that patients with high-risk conditions will
obtain a better response to immunotherapy and were more
suitable for ICB therapy. Moreover, a nomogram model
consisting of clinical factors and signature was established,
which showed good power and accuracy with a high AUC
value and C-index in BC patients. Terefore, the CR-related
gene signature was a reliable model to predict prognosis and
immunotherapy efcacy, which might have potential im-
plications in clinical practice for BC.

All six genes involved in the signature model are as-
sociated with chromatin regulation or tumorigenesis.

Achaete-scute complex homolog 1 (ASCL1) is a key regu-
lator of neuroendocrine diferentiation [28]. ASCL1 was
highly expressed in classic small cell lung cancer (SCLC);
additionally, it was a key driver of tumorigenesis in classic
SCLC and correlated with the survival and development of
lung cancers with neuroendocrine (NE) features [29]. Jiang
et al. [30] confrmed that when ASCL1 was successfully
overexpressed with SV40 large T-antigen, it could syner-
gistically inhibit retinoblastoma protein and p53 to promote
the development of aggressive adenocarcinoma with NE
characteristics; however, in the developing mouse lung,
knockout of ASCL1 resulted in specifc ablation of lung NE
cells. Moreover, in recent studies, ASCL1 demonstrated that
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Figure 4: Kaplan–Meier survival subgroup analysis in BC patients from the TCGA training set based on the 6-gene signature stratifed by
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it is involved in the diferentiation, cell proliferation, and E-
cadherin expression of NE cells in SCLC cell lines by reg-
ulating theWnt signaling pathway [31]. Our work also found
that ASCL1 was a risk factor for BC prognosis patients,
implying that it might promote breast cancer tumorigenesis.
ARID5A (AT-rich interactive domain-containing protein
5a) is one of the Arid family of proteins and possesses the
ability to bind nucleic acids, which exist in the nucleus under
normal conditions [32]. Meanwhile, ARID5A has been
shown to mainly regulate infammatory and autoimmune
disease development by regulating the expression of
Interleukin-6 (IL-6) mRNA [33]. Subsequent research
revealed that ARID5A could regulate IL-6 mRNA stability
through NF-κB and MAPK signaling pathways [34]. As for

IKZF3 (Aiolos), it belongs to the family of Cys2-His2 zinc
fnger proteins, which is a lymphocyte lineage transcription
factor necessary for the survival of the malignant [35]. For
multiple myeloma, immunomodulatory drugs, such as
thalidomide could activate E3-ubiquitin ligases and induce
degradation of key transcription factors to exert direct
antimyeloma efects and promote the survival of myeloma
[36]. Ten, IKZF3 was a frequently mutated tumor sup-
pressor gene in acute lymphoblastic leukemia (ALL), and its
deletion could block lymphocytic lineage diferentiation and
increase the susceptibility to developing ALL [37]. Consis-
tently, we also found that IKZF3 was a protective factor for
BC and facilitated the prognosis of BC patients. Lysine-
specifc histone demethylase 4B (KDM4B) is a histone
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Figure 5:Te estimation of immune cells infltration and immunotherapy prediction for the prognostic model in the TCGA training set. Ns,
not signifcant; ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001. Te correlation analysis between the risk score and 19 tumor-infltrating immune cells
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plot showing the expression of immune checkpoint-related markers in low-and high-risk groups (d).
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demethylase for H3K9me3 [38]. According to the genome-
wide analysis, KDM4B might be a cancer-specifc regulator
of alternative splicing by regulating additional alternative
splicing-related genes involved in tumorigenesis [39]. In
breast cancer, studies have revealed that KDM4B not only
antagonizes H3K9 tri-methylation in peripheral hetero-
chromatin and afects H3K4/H3K9 methylation but also
plays a role in estrogen receptor α-regulated breast cancer
development and mammary epithelial cells proliferation
[40, 41]. At the same time, KDM4B was the frst identifed
androgen receptor AR)-regulated demethylase with efects
on AR signaling and turnover and might be a therapeutic

target for prostate cancer [42]. Te PR-domain (PRDM)
family of genes and the putative transcriptional regu-
latorsbelong to the SET domain family of histone methyl-
transferases, which can directly catalyze histone lysine
methylation or work by recruiting transcriptional cofactors
[43]. Some of the PRDMs are deregulated in cancer and act
as tumor suppressors or oncogenes, especially in hemato-
logic malignancies and solid cancers [44]. In difuse large B-
cell lymphomas (DLBCLs), the study showed that the
overexpression of PRDM11 (PR-domain family member
Prdm11) could induce apoptosis in the Eμ-Myc mouse
model, then, the DLBCLs patients with low levels of
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PRDM11 correlate with shorter overall survival [45]. Ad-
ditionally, PRDM11 was also identifed as a novel locus
associated with forced vital capacity, which could be a new
target for lung diseases in a genome-wide association
analysis [46]. TFF1 (trefoil factor 1), one of the trefoil factor
family (TFF), is a small molecule peptide and prevalent in
the mucosal environment [47]. In human gastric cancer, it is
widely accepted that TFF1 is markedly low-expressed and
functions as a gastric tumor suppressor [48]. In BC, although
the serum and tissue levels of TFF1 are typically overex-
pressed [49], many clinical studies have also reported that
TFF1 defciency increases tumorigenicity of human breast
cancer cells, and TFF1 expression in BC has an efect on
good clinical outcomes for patients [50, 51]. Taken together,
all 6 CR-related genes have been reported as taking part in
the development of tumors, playing a role in cancer sup-
pression or carcinogenesis. However, the prognostic role in
tumors is still less elucidated, and more studies and in-
vestigations are needed to understand their prognostic value
and mechanisms.

To our knowledge, this is the frst time to establish and
validate the chromatin regulator-related gene prognostic
signature using a large sample size and a high AUC value for
breast cancer. Regardless, several limitations can be further
improved in the study. In the frst place, although our results
showed the predictive potentiality and clinical value of our
signature, the potential mechanisms of these 6 CR-related
genes in BC still require more in-depth experimental in-
vestigation. Secondly, the data and information from a total
of 1,362 BC patients in the public database used to build the
prognostic signature and validate the predictive efciency of
this model are inadequate; therefore, prospective clinical
studies are supposed to further confrm our fndings.

In conclusion, we identifed CR-related DEGs and their
predictive ability of prognosis in breast cancer. After that,
a novel 6-gene signature model using CR-related DEGs was
developed and validated to predict the OS and immuno-
therapeutic sensitivity for BC patients. Furthermore, a no-
mogram integrating this novel gene signature and clinical
factors was constructed to accurately predict the prognosis
for breast cancer, which might provide individualized
treatment and aid clinical decision-making for BC patients
through prospective validation experiments in the future.
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