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Background. Te clinical behavior and molecular mechanisms of hepatocellular carcinoma (HCC) are complex and highly
variable, limiting the discovery of new targets and therapies in clinical research. Phosphatase and tensin homolog deleted on
chromosome 10 (PTEN) is one of the tumor suppressor genes. It is of great interest to discover the role of unexplored correlation
among PTEN, the tumor immune microenvironment, and autophagy-related signaling pathways and to construct a reliable risk
model for prognosis during HCC progression.Method. We frst performed diferential expression analysis on the HCC samples.
By using Cox regression and LASSO analysis, we determined the DEGs contributing to the survival beneft. In addition, the gene
set enrichment analysis (GSEA) was performed to identify potential molecular signaling pathways regulated by the PTEN gene
signature, autophagy, and autophagy-related pathways. ESTIMATE was also employed for evaluating the composition of immune
cell populations. Results. We found a signifcant correlation between PTEN expression and the tumor immune microenvi-
ronment. Te low-PTEN expression group had higher immune infltration and lower expression of immune checkpoints. In
addition, PTEN expression was found to be positively correlated with autophagy-related pathways. Ten, diferentially expressed
genes between tumor and tumor-adjacent samples were screened, and 2895 genes were signifcantly associated with both PTEN
and autophagy. Based on PTEN-related genes, we identifed 5 key prognostic genes, including BFSP1, PPAT, EIF5B, ASF1A, and
GNA14.Te 5-gene PTEN-autophagy risk score (RS) model was demonstrated to have favorable performance in the prediction of
prognosis. Conclusion. In summary, our study showed the importance of the PTEN gene and its correlation with immunity and
autophagy in HCC. Te PTEN-autophagy.RS model we established could be used to predict the prognosis of HCC patients and
showed signifcantly higher prognostic accuracy than the TIDE score in response to immunotherapy.

1. Introduction

Liver cancer is the second-most deadly cancer and also
results in increased incidence and mortality annually
worldwide [1]. Hepatocellular carcinoma (HCC) is the most
common type of liver malignancies [2].Te clinical behavior
and molecular mechanisms of HCC are complex and highly
variable, limiting the discovery of new targets and therapies
in clinical research.Tere is an urgent unmet need to explore
the potential mechanisms associated with HCC progression

to improve the clinical diagnosis, optimize the treatment
strategy, and predict prognosis.

As reported, phosphatase and tensin homolog deleted on
chromosome 10 (PTEN) is one of the tumor suppressor
genes that can negatively regulate the phosphatidylinositol
3-kinase (PI3K) pathway [3, 4]. Te activated PI3K can
convert phosphatidylinositol bisphosphate (PIP2) into
phosphatidylinositol trisphosphate (PIP3), thereby activat-
ing downstream AKT/mTOR signaling pathways [4–6]. Te
PI3K/AKT/mTOR signaling pathways play important roles
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in cell growth and survival [7–9], driving tumor pro-
liferation and progression. PTEN induces tumor suppres-
sion by dephosphorylating PIP3 that prevents the activation
of the PI3K-AKT-mTOR signaling pathways. Recent studies
have demonstrated that PTEN is the negative regulator of
oncogene signaling pathways and is involved in immune
regulation in the tumor microenvironment [10, 11]. Im-
munotherapy is an emerging promising component of many
cancer treatment regimens that revives immune activation
by blocking immune checkpoints, increases T cell in-
fltration, and enhances the antigen-presenting capability in
the tumor microenvironment [12, 13]. It is therefore of great
interest to study the correlation between PTEN and the
tumor immune microenvironment during HCC
progression.

Autophagy is a protein degradation system in which
a dynamic response of cells to stress can be typically ob-
served [14, 15]. During the process, cellular proteins and
organelles are delivered to lysosomes and digested by ly-
sosomal hydrolases, allowing cells to maintain homeostasis
[16]. In normal cells, autophagy is active at the basal level
which has an important homeostatic function in the
ubiquitin proteasome degradation signaling pathway and
maintains protein and organelle quality control [17, 18].
Autophagy can be further increased for pathogens and
engulfment of apoptotic cells [19]. Te association between
autophagy and PTEN has been revealed in diferent cancers.
It has been shown that PTEN can increase autophagy in
human glioma cells [20] and breast cancer cells [21]. PTEN
was considered as molecular switch node regulating auto-
phagy and cancer metabolic reprogramming in the tumor
microenvironment [22]. However, the link between PTEN
and autophagy in the HCC tumor microenvironment has
not been fully understood.

Herein, in this study, we collected HCC patient samples
fromTe Cancer Genome Atlas (TCGA) dataset, which has
been used for identifying gene signature in children with
stage III acute lymphoblastic leukemia [23] and analyzed
the diference in PTEN gene expression in liver tumor
tissue and adjacent tissue, copy number variation (CNV)
and single-nucleotide variant (SNV) mutation, methyla-
tion, and some other factors. Ten, we explored the as-
sociation between the PTEN gene and the tumor immune
microenvironment through analyzing diferent immune
cell scores. In addition, the correlation between autophagy
and autophagy-related pathways, the signifcance of
autophagy in tumorigenesis, and PTEN gene expression
and mutation were analyzed. Considering the importance
of the PTEN gene and autophagy in HCC, we screened 5
genes (BFSP1, PPAT, EIF5B, ASF1A, and GNA14) asso-
ciated with both the PTEN gene and autophagy by cor-
relation analysis, univariate cox analysis, LASSO, and
multivariate cox analysis. Finally, the PTEN-autophagy.RS
model was constructed, and we demonstrated that the
model can further improve the prognosis of patients. By
comparing the data of immunotherapy with the perfor-
mance of TIDE, we confrmed that the PTEN-
autophagy.RS model was more sensitive than the TIDE
score in response to immunotherapy.

2. Materials and Methods

2.1. Te Acquisition of HCC Datasets. Te mutation data,
copy number variation data, and RNA-seq data for HCC
patients were downloaded through the TCGA GDC API.
Samples without survival time or survival status were re-
moved. Te methylation data for HCC patients was
downloaded through TCGA GDC API. Te expression
profle data of GSE76427 were downloaded from NCBI’s
Gene Expression Omnibus (GEO) website (https://www.
ncbi.nlm.nih.gov/geo/).

2.2. Preprocessing of Methylation Data and RNA-Seq Data.
For the TCGA RNA-seq data, we frst removed samples
without clinical follow-up information including survival
time and survival status. After that, we converted ensemble
to a gene symbol and took the average of the expressions
with multiple gene symbols. Ten, the base 2 logarithm of
the expression fle (transcript per million, TPM) was per-
formed. After screening, a total of 360 primary tumor
samples and 50 tumor-adjacent samples were included in the
TCGA dataset.

For GEO data, we frst removed the normal tissue samples
and converted the probes into gene symbols using the platform
annotation fle. Ten, we removed the mean of multiple gene
names corresponding to one probe and one gene name cor-
responding to multiple probes. Next, the samples without
clinical follow-up information such as survival time and
survival status were also removed for further analysis. 115
tumor samples and 31,425 genes were fnally screened.

For the methylation data in the TCGA dataset, we used
the KNN function in the R package impute to complete the
NA values and converted the beta value to anM value. After
that, the cross-reactive CpG sites in the genome were re-
moved according to the cross-reactive sites provided by
a previous study [24]. Ten, we removed the unstable ge-
nomic methylation sites including the removal of CpGs sites
and single nucleotide sites on sex chromosomes.

2.3. Calculation of Immune Cell Infltration Abundance in
TME. We obtained the characteristic genes of 28 immune
cells according to a previous study [25] and calculated the
scores of 28 immune cells using the ssGSEA algorithm [26].
Meanwhile, we also used the CIBERSORT [27] to calculate
the immune cell scores of each sample. Te ESTIMATE
software [28] was utilized to calculate the proportion of
immune cells.

2.4. Gene Set Enrichment Analysis (GSEA). Te autophagy-
related pathways and immune-related pathways were
downloaded from the Molecular Signature Database
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) [29].
We performed ssGSEA to calculate the enrichment score of
autophagy and immune-related pathways. P value< 0.05
was determined as statistically signifcant. Te correlation
between PTEN and autophagy-related pathways was ex-
amined by employing Pearson correlation analysis.

2 Journal of Oncology

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp


2.5. Establishment andValidation of the PTEN-Autophagy.RS
Mmodel. We frst selected diferentially expressed genes
with prognostic signifcance, and the number of genes was
further reduced by least absolute shrinkage and selection
operator (LASSO) regression to obtain phenotype-related
prognostic genes. Te Akaike Information Criterion (AIC)
was utilized for the regression analysis, which considered the
number of parameters applied for ftting by stepAIC and the
statistical ft of the model. We then calculated the risk score
for each patient sample using the following formula:
RiskScore�Σβi×Expi, where Expi refers to the gene ex-
pression level of the phenotypic prognosis-related gene
signature and β is the Cox regression coefcient of the
corresponding gene. Te risk score was determined for each
HCC sample and was converted to a z-score. According to
the threshold z-score of 0, the patient samples were divided
into high- and low-risk groups. Te Kaplan–Meier method
was used for prognostic analysis, and the log-rank test was
used to determine the signifcance of the diference.

2.6. Prediction of Responsiveness to the Immunotherapy Efect.
We used the TIDE algorithm (http://tide.dfci.harvard.edu/)
[30] to evaluate the TIDE score of the immunotherapy efect
and verify the prediction of clinical responsiveness to the
PTEN-autophagy.RS model. Te immunotherapy dataset
IMvigor210 [31] and the GSE91061 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE91061) dataset were included
to evaluate the risk model. All the data of IMvigor210 were
accessed through the IMvigor210CoreBiologies R package
(http://research-pub.gene.com/IMvigor210CoreBiologies).

2.7. Statistical Analysis. Te data were expressed as the
mean± standard deviation (s.d.). Statistical signifcance was
determined by the Wilcox test through R software when
comparing diferent groups. Kaplan–Meier curves were
plotted, and the log-rank Mantel–Cox test was used for
survival curve analysis.

3. Results

3.1. Te Role of the PTEN Gene in Hepatocellular Carcinoma.
Te work fow of this study is shown in Figure 1(a). First, we
analyzed the expression diference of the PTEN gene in the
HCC tumor tissue samples and their adjacent tissues in the
TCGA dataset. As shown in Figure 1(b), PTEN is highly
expressed in the tumor tissue compared to adjacent tissue.
We also found that a total of 8 samples were mutated in the
PTEN gene among 360 samples. Although the gene ex-
pression of HCC samples without PTEN mutation was
higher than that of samples with PTEN mutation, there was
no signifcant diference between the two groups, which
might be caused by the small sample numbers of themutated
PTEN gene group (Figure 1(c)).

Next, we divided tumor samples into three groups
amplifcation, (deletion and diploid groups) according to the
CNV status of PTEN including amplifcation, and we found
that the samples without a CNV mutation in PTEN were
signifcantly higher than the censored samples (Figure 1(d)).

Furthermore, the correlation between the expression and the
methylation of the PTEN gene was calculated, which showed
a weak negative correlation (Figure 1(e)), suggesting that
methylation might play a role in the regulation of gene
expression.

3.2. Te Relationship between the PTEN Gene and the Tumor
Immune Microenvironment. To evaluate the relationship
between the PTEN gene and immunity in HCC patients, we
frst divided the PTEN high-expression and low-expression
groups by the median expression level and then calculated
the scores of 22 immune cells in the diferent groups. It was
found that the score of CD4 T cells and Treg cells in the low
PTEN expression group was much higher than in the high-
expression group (Figure 2(a)). Te immune score of tumor
samples was determined, and here the results showed
a higher immune infltration in the low-expression group
compared to the high-expression group (Figure 2(b)). Tese
results indicated that the PTEN gene might regulate the
immune cell composition and infltration into HCC tumor
tissues.

According to the previous study [25], we collected the
characteristic genes of 28 immune cells and calculated the
scores of these immune cells. As shown in Figure 2(c),
compared to the high-expression group, the PTEN low-
expression group had much higher scores in some immune
cells, especially CD8 Tcells, Natural Killer (NK) cells, B cells,
and macrophages, which can activate the antitumor im-
munity and revive the tumor-killing capability in the HCC
tumor microenvironment [32, 33]. We further compared the
expression of diferent immune checkpoints reported in the
previous study [33] between PTEN high- and low-expression
groups. We found that in the PTEN low-expression group,
there was a signifcant decrease in the expression of some
immune checkpoints, including CD276, CD274, NRP1, and
the TNFRSF family, that are closely involved in immuno-
suppressive signals in HCC tumor (Figure 2(d)).Tese results
indicated that PTEN expression in the HCC tumor micro-
environment might regulate the immunosuppressive signals
and drive the antitumor immune cells’ infltration into HCC
tumor tissues.

We therefore extracted the genes of immune-related
pathways and found that with the increase of PTEN gene
expression, the gene expression of most immune-related
pathways also increased (Figure 3), suggesting a close cor-
relation between PTEN gene expression and immune-
related pathways. Further exploration of the relationship
between PTEN expression and immunosuppressive or
immune-activated signaling pathways was necessary to
better predict clinical outcome.

3.3. Te Relationship between PTEN Expression and
Autophagy. It has been reported that PTEN-L (PTENα) is
a novel phosphatase that mediates ubiquitin de-
phosphorylation and can inhibit PINK1/Parkin-mediated
mitophagy [34]. Terefore, we further extracted fve
autophagy-related pathways and calculated the autophagy-
related scores of these pathways. Compared to the
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Figure 1: (a) Te work fow of this study; (b) comparison of PTEN gene expression in tumor tissues (n� 360) and tumor-adjacent tissues
(n� 50); (c) comparison of PTEN gene expression between samples with SNVmutation in PTEN (n� 8) and samples without SNVmutation
(n� 352); (d) comparison of PTEN gene expression in diferent CNV groups including amplifcation (n� 3), diploid (n� 333), and deletion
(n� 23); and (e) correlation analysis of PTEN gene expression and PTEN gene methylation.
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Figure 2: Continued.
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paracancerous tissues, the scores of several signaling path-
ways, including the selective autophagy pathway and posi-
tive/negative regulation of the autophagy pathway, were
signifcantly lower in the tumor tissues (Figure 4(a)).
Moreover, we found that these autophagy-related pathways
were signifcantly positively correlated with PTEN gene
expression by performing correlation analysis (Figure 4(b)).
To explore the relationship between the expression of the
PTEN gene and autophagy, we divided the high- and low-
expression groups according to the median expression of the
PTEN gene and found that the high-expression group
showed a higher autophagy score compared to the low-
expression group, which was consistent with the results in
Figure 4(b) (Figure 4(c)). Te relationship between SNV
mutation and CNV mutation of PTEN and autophagy was
further analyzed. Tere was no signifcant diference be-
tween SNV mutation and CNV mutation of PTEN and the
autophagy score (Figures 4(d) and 4(e)). Tese results in-
dicated that PTEN may play a role in the autophagy-related
signaling pathways and their function in HCC tumor
progression.

3.4. ScreeningGeneSets Related toBothPTENandAutophagy.
From the previous analysis, we found that the PTEN gene
was associated with autophagy-related pathways, tumori-
genesis, and tumor progression. Terefore, we analyzed the
gene expression between tumor tissues and paracancerous
tissues and identifed diferentially expressed genes (DEGs)
between two groups (|log 2(fold change, FC)|> 1.5; false
discovery rate (FDR)< 0.05) (Figure 5(a)). Within these
DEGs between tumor and paracancerous tissues, there were
3818 and 32 genes positively and negatively correlated with
PTEN expression, respectively. Moreover, a total of 5974
genes were found to be related to autophagy pathways.
Trough overlap analysis, we fnally found a total of 2895

genes associated with both PTEN and autophagy
(Figure 5(b)). Next, we performed GO and KEGG enrich-
ment analyses [35] on the 2895 key genes package and found
23 pathways were enriched. Figures 5(c)–5(f) showed the
visualization of the top 10 entries of the enrichment analysis.
Tese enriched pathways and genes were closely related to
the function of autophagy and PTEN-related signaling
pathways that might afect tumor progression and clinical
outcomes.

3.5. Construction of the PTEN-Autophagy Risk Model.
Next, we screened a total of 738 genes related to prognosis, of
which 4 genes were protective and 734 genes were risk
factors (Figure 6(a)). We further compressed these 738 genes
using LASSO regression to reduce the number of genes
contained in the risk model. Firstly, the change trajectory of
each independent variable was analyzed (Figure 6(b)). With
the gradual increase of lambda, the number of independent
variable coefcients tending to 0 gradually increased. We
used 10-fold cross-validation to build the model. As shown
in Figure 6(c), the confdence interval under each lambda
was analyzed and the model reached the optimal value when
lambda was 0.0757. We selected 11 genes and further carried
out stepwise multivariate regression analysis. As shown in
Figure 6(d), we fnally identifed 5 genes, including BFSP1,
PPAT, EIF5B, ASF1A, and GNA14, as prognostic genes
related to PTEN and autophagy. Te risk model was defned
as follows: risk score � 0.194 ∗ ASF1A + 0.301 ∗ BFSP1 +
0.249 ∗ EIF5B − 0.354 ∗ GNA14 + 0.278 ∗ PPAT.

We then used the TCGA dataset as the training data set
and calculated the risk score of each sample based on the
expression levels of 5 genes. We analyzed the classifcation
efciency of the risk model in predicting 1, 3, and 5-year
prognosis, respectively, and the time-dependent ROC curves
(AUC) reached 0.7 in 1 and 5 years, indicating a strong
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Figure 2:Te immune characteristics of high (n� 180) and low (n� 180) PTEN expression groups in the TCGA dataset. (a) Comparison of
22 immune cell scores with high and low PTEN expression; (b) comparison of immune infltration with high and low PTEN expression; (c)
comparison of 28 immune cell scores with high and low PTEN expression; and (d) comparison of the levels of immune checkpoints with
high and low PTEN expression.
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Figure 4: (a) Comparison of autophagy-related pathway scores in tumor tissue and paracancerous tissue; (b) correlation analysis of
autophagy-related pathway scores and PTEN gene expression; (c) comparison of autophagy-related scores between high and low PTEN
gene expression groups; (d) comparison of autophagy-related scores of the PTEN gene with or without SNV mutation samples; and (e)
comparison of autophagy-related scores of the PTEN gene with CNV amplifcation, deletion, and diploid groups.
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predictive ability of this risk model. Ten, the risk score was
converted to a z-score, and the samples with a z-score greater
than zero were divided into a high-risk group; otherwise,
they were assigned to a low-risk group. As shown in Fig-
ure 7(a), the low-risk group showed a prolonged survival
time compared to the high-risk group. We also used the
same method to verify the GSE76427 independent dataset
and observed similar survival benefts in the low-risk group
(Figure 7(b)), indicating that the risk model had high
predictivity.

3.6. Performance Comparison between PTEN-Autophagy.RS
and TIDE. We then collected the clinical data after im-
munotherapy (IMvigor210 and GSE91061) and calculated
the PTEN-autophagy.RS for the samples after immuno-
therapy.Te online tool TIDE was used to evaluate the TIDE
score of the immunotherapy efect. As shown in Figures 8(a)
and 8(d), we found the poor prognosis in the high-risk
group. We next compared the response to immunotherapy
predicted by TIDE between the two datasets and found that
there was no signifcant diference in the response
(Figures 8(b) and 8(e)). We further calculated the PTEN-
autophagy.RS and the AUC of TIDE on the efect of

immunotherapy. Te efect of PTEN-autophagy.RS on the
immunotherapy was better than that of TIDE in the
GSE91061 dataset (Figures 8(c) and 8(f )). It was basically
close to the efect of TIDE in the IMvigor210 dataset. Overall,
the PTEN-autophagy.RS model we constructed was better
than TIDE in the immunotherapy efect.

3.7. PTEN-Autophagy.RS Combined with Clinicopathological
Features toFurther Improve thePrognosticModel andSurvival
Prediction. Univariate and multivariate Cox regression
analysis of the risk score and clinicopathological charac-
teristics showed that PTEN-autophagy.RS was the most
signifcant prognostic factor (Figures 9(a) and 9(b)). To
quantify the risk assessment and survival probability of
patients, we combined PTEN-autophagy.RS and other
clinicopathological features. As shown in Figure 9(c), PTEN-
autophagy.RS had the greatest impact on survival rate
prediction. Furthermore, we used the calibration curve to
evaluate the prediction accuracy of the model (Figure 9(d)).
Te predicted calibration curves of the three calibration
points at 1, 3, and 5 years were nearly coincident with the
standard curve, which suggested a strong predictive per-
formance. In addition, we also used decision curve analysis
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Figure 5: (a) Te volcano plot of diferential analysis of tumor tissue and paracancerous tissue in the TCGA dataset; (b) the venn plot of
PTEN-related DEGs and autophagy-related genes; (c) the dot plot of BP enrichment analysis of shared genes; (d) the dot plot of the CC
enrichment analysis of the shared gene; (e) the dot plot of the MF enrichment analysis of the shared gene; and (f) the dot plot of the KEGG
enrichment analysis of the shared gene.
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(DCA) to evaluate the reliability of the model. As shown in
Figures 9(e) and 9(f), the benefts of PTEN-autophagy.RS
and nomogram were signifcantly higher than those of ex-
treme curves. Compared with other clinicopathological
features, PTEN-autophagy. RS showed the strongest survival
prediction ability.

4. Discussion

HCC is the most common type of liver malignancies and
shows increased incidence and mortality annually. Te
molecular mechanisms of HCC are complex, limiting the
discovery of new targets and therapies in clinical research.
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Terefore, in this study, we explored the potential mecha-
nisms related to HCC progression to predict prognosis. As
demonstrated, PTEN is one of the tumor suppressor genes
capable of negatively regulating the signaling pathways re-
lated to cancer progression. Although the function of the

PTEN gene in immune regulation was found, the role of
unexplored correlation between PTEN and immunity
during HCC progression was still unknown. We therefore
discovered their potential relationship and the signifcance
of the PTEN gene in the tumor immune microenvironment.
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In addition to immune-relevant function, we also explored
the correlation of the PTEN gene with autophagy and its
related signaling pathways in HCC. Considering the im-
portance of the PTEN gene and autophagy in HCC, we
screened 5 genes including BFSP1, PPAT, EIF5B, ASF1A,

and GNA14 associated with both the PTEN gene and
autophagy. Among these genes, phosphoribosyl amido-
transferase (PPAT) was demonstrated to serve as prognostic
biomarkers for aggressive lung adenocarcinoma [36]. It was
also reported that the expression of PPAT was upregulated
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Figure 8: (a) KM curve and the ROC curve of PTEN-autophagy. RS in the IMvigor210 dataset (n-high� 149 and n-low� 149); (b) the KM
curve and the ROC curve of immunotherapy response predicted by TIDE in the IMvigor210 dataset (n-high� 149 and n-low� 149); (c) the
ROC curve of PTEN-autophagy. RS and TIDE on the immunotherapy efect in the IMvigor210 dataset; (d) the KM curve and the ROC curve
of PTEN-autophagy. RS in the GSE91061 dataset (n-high� 31 and n-low� 18); (e) the KM curve and the ROC curve of immunotherapy
response predicted by TIDE in the GSE91061 dataset (n-high� 26 and n-low� 23); and (f) ROC curves of immunotherapy efects of PTEN-
autophagy. RS and TIDE in the GSE91061 dataset.
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during malignant progression [36]. PPAT could be used as
one of the most promising therapeutic targets for its close
correlation with patients’ prognoses in many cancer types.
Some studies have demonstrated that overexpression of
EIF5B might induce PD-L1-related signaling pathways,
which are frequent in lung adenocarcinomas and highly
associated with a poor prognosis [37, 38]. Te mechanisms
of the PD-1/PD-L1 immune checkpoint, EIF5B, and PTEN
genes in HCC could be further explored as therapeutic
intervention. In addition, several studies found that ASF1A
was overexpressed in human malignancies which was

necessary for the proliferation of cancer cells [39–41].
ASF1Amay also serve as a potential target in cancer therapy.
Te functional and clinical signifcance of ASF1A and its
potential target against HCC should be considered.

We further established a PTEN-autophagy.RS prog-
nostic model based on those genes and performed validation
studies to assess the prediction efciency in high- and low-
risk groups. Te results showed that the model can further
improve the prognoses of patients. We used ESTIMATE and
ssGSEA to estimate the tumor-infltrating immune cells and
immune scores for each HCC-patient sample and observed
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Figure 9: (a-b) Univariate and multivariate Cox analyses of PTEN-autophagy. RS and clinicopathological features; (c) nomogram model
construction for predicting the survival probability of HCC patients; (d) calibration curves for 1, 3, and 5 years of the nomogram; (e)
decision curve analysis for the nomogram; and (f) compared with other clinicopathological features, the nomogram exhibited the most
powerful capacity for survival prediction.
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that the PTEN low-expression group had much higher
scores in some immune cells, especially CD8 T cells, NK
cells, B cells, and macrophages, which can activate the an-
titumor immunity and revive the tumor-killing capability in
the HCC tumor microenvironment. Te expression of
diferent immune checkpoints was compared, and a signif-
icant decrease in the expression of some immune check-
points was detected in HCC tumor. Tese results indicated
that PTEN expression in the HCC tumor microenvironment
might regulate the immunosuppressive signals and drive [1]
antitumor immune cells infltration into HCC tumor tissues.
However, further exploration of the relationship between
PTEN expression and immunosuppressive or immune-
activated signaling pathways is necessary for a better un-
derstanding of the mechanism and predicting clinical out-
come. Collectively, comparison on the data of
immunotherapy with the performance of TIDE showed that
the PTEN-autophagy.RS model we constructed was more
sensitive than TIDE to the efects of immunotherapy.

Te current fndings should be further validated, espe-
cially for the association between PTEN and immune cell
types in the tumor microenvironment, which can be a po-
tential future research direction. Additionally, the com-
prehensive tumor microenvironment within HCC including
the interaction between diferent cell types and autophagy is
another promising direction in research.

5. Conclusion

In this study, we frst evaluated the importance of the PTEN
gene in HCC by analyzing the diference in PTEN gene
expression in liver tumor tissue and adjacent tissue, CNV
and SNV mutations, methylation, and other factors. Fur-
thermore, the relationship between the PTEN gene and the
tumor immune microenvironment in HCC was explored.
Moreover, the correlation between autophagy and
autophagy-related pathways for the importance of auto-
phagy in tumorigenesis, PTEN gene expression, and mu-
tation were also analyzed. Considering the role of the PTEN
gene and autophagy in HCC, we screened 5 genes related to
both the PTEN gene and autophagy using correlation
analysis, univariate cox analysis, LASSO, and multivariate
cox analysis. Finally, a PTEN-autophagy.RS model was
constructed, and we demonstrated that the model can
further improve the prognoses of patients. By comparing the
data of immunotherapy with the performance of TIDE, it
was further verifed that the PTEN-autophagy.RS model we
constructed was more sensitive than the TIDE score in
response to immunotherapy.
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