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Hypofractionated radiotherapy (HFRT) or chemotherapy combined with programmed death-1 (PD-1) blockade has achieved good
clinical control in advanced nonsmall cell lung cancer (NSCLC). However, the relative infuence of HFRT+PD-1 blockade and chemo-
immunotherapy on peripheral memory T cell subsets in NSCLC responders has not been evaluated in clinical practice. Tirty-nine
patients with advanced NSCLC were enrolled. Te frequencies of naive (Tn; CD45RA+CCR7+), central memory (Tcm;
CD45RA–CCR7+), efector memory (Tem; CD45RA–CCR7–), and efector memory RA (TemRA; CD45RA+CCR7–) Tcell subsets and
PD-1 expression were analyzed in CD4+ and CD8+ T cells using fow cytometry from peripheral blood samples. Te correlations of
memory T cell subsets and PD-1 expression with overall survival in HFRT+PD-1 blockade group were examined using the
Kaplan–Meier method. Patients with partial response to HFRT+PD-1 blockade showed reduction in Tn and expansion in TemRA cell
subpopulations among CD8+ T cells and reduced PD-1+CD4+ and PD-1+CD8+ T cells, all of which were signifcantly correlated with
overall survival. Te responders to chemo-immunotherapy showed expansion of the TemRA and decrease of Tcm in CD8+ T cell
subpopulation. Our fndings show that HFRT+PD-1 blockade and chemo-immunotherapy combination therapies induce diferential
memory Tcell subset diferentiation, ofering predictive markers for treatment response. Clinical Trial Information: https://clinicaltrials.
gov/ct2/show/ChiCTR-1900027768.

1. Introduction

Te development of immunotherapy-based treatment com-
binations represents a signifcant milestone in NSCLC treat-
ment [1]. Te success of immunotherapy has now driven
a paradigm shift in the treatment of advanced NSCLC,
combined therapy promotes the formation of immune
memory. In particular, chemotherapy combined with PD-1

blockade has been shown to promote immune cell infltration
in the tumor microenvironment and mediate the peripheral
immune memory cell phenotype [2–4]. Immunotherapy based
on programmed death-1 (PD-1) has improved clinical out-
comes in patients with nonsmall cell lung cancer (NSCLC),
however, the efciency of monotherapy remains low, resulting
in increased number of trials of combined therapies, with
encouraging results [5]. Terefore, more studies are needed to
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explore the discrepancy in memory T cell subsets among
diferent combination therapies.

Immune cells play an important role in suppressing or
promoting tumor development, metastasis, and progression
[6]. Immune memory is essential for long-term immunity
and is a key factor for the long-term beneft of tumor im-
munotherapy [7]. Circulating T cells with tumor antigen
specifcity are widely found in patients with cancer [8]. Once
the organism encounters a viral infection or tumorigenesis,
naive T cells are activated by antigens, and some efector
Tcells become long-lived memory Tcells to initiate immune
efects [9]. According to anatomical location and phenotypic
characteristics, naive T cells (Tn; defned as
CD45RA+CCR7+) diferentiate into central (Tcm;
CD45RA–CCR7+) and efector (Tem; CD45RA–CCR7–)
memory T cells upon antigen activation. Another terminal
subpopulation expressing CD45RA (TemRA) was also re-
cently identifed [10, 11].

Irradiation can alter tumor-host interactions and restore
tumor immunogenicity [12], leading to dynamic changes in
peripheral blood lymphocyte ratios [13]. Stereotactic body
radiation therapy (SBRT) can stimulate innate and adaptive
immunity and thus improve the efcacy of tumor immu-
notherapy [14, 15]. Evaluation of endogenous antigen-
specifc immune responses triggered by SBRT and PD-1
blockade showed that radiotherapy increases the diferen-
tiation of antigen-experienced T cells to Tem cells [16]. Te
prescribed doses of SBRT are designed to wrap around the
planning target volume (PTV) as much as possible while
prioritizing meeting organ-threatening dose limits. In
contrast, hypofractionated brachytherapy (HFBT) uses
a 192Ir source and prescribes doses that wrap around the
gross tumor target volume (GVT) as much as possible
without outgrowing the clinical target dose volume and PTV
under the premise of prioritizing organ-threatening doses.
However, the relative infuence of HFRT+PD-1 blockade
and chemo-immunotherapy on peripheral memory T cell
subsets in NSCLC responders has not been evaluated in
clinical practice.

In our previous study, the overall objective response and
complete remission rate were 39.13% and 13.04%, respectively
[17]. CR patients maintained continuous remission for a 2-
yearfollow-up period. Te aim of the current study was to
investigate the diferentiation of memory T cells in NSCLC
responders treated with HFRT+PD-1 and to explore the
diferences in memory T cell subsets with those induced by
chemo-immunotherapy. We hope this study could bring
better clinical treatment implications for NSCLC patients.

2. Methods and Materials

2.1. Study Design and Treatment. Tis prospective trial was
approved by our ethics committee (No. KY2019276). Tirty-
nine patients with advanced NSCLC were enrolled in the
trial. Te study was conducted in accordance with the
principles of the 1964 Declaration of Helsinki and its sub-
sequent amendments. We followed the methods of Kang
et al., and the detailed medication doses and radiotherapy
protocols are available in this report [18].

2.2. Specimen Collection. A prospective collection of pe-
ripheral blood samples from 39 patients with NSCLC who met
the inclusion criteria and were enrolled in the study between
May 2019 and July 2021, and then again at 3 months after
treatment (Table 1). Samples collected before any HFRT+PD-
1 blockade were considered baseline, and samples were col-
lected at least 1 week after completion of radiotherapy after
HFRT+PD-1 blockade, only samples from patients before
their frst radioimmunotherapy or chemo-immunotherapy
were included in the comparison between the healthy donor
and patient groups. Single-cell suspensions were prepared
using Ficoll-Paque gradient centrifugation within 24h after
anticoagulation of fresh blood with EDTA-K2. A programmed
gradient was used to freeze then thawed at various time points
to assess the frequency of T cell subpopulations. Healthy
control samples were obtained from 20 donors matched to the
age and sex distributions of the patients.

2.3. Assessment of Tumor Volume and Clinical Response.
Clinical response was assessed using computed tomography
(CT) scans according to the Response Evaluation Criteria for
Solid Tumors (RECIST V1.1) and classifed as partial re-
sponse (PR), stable disease (SD), or progressive disease (PD).
Further details are provided in our previous report [17].
Interpretation of response from positron emission tomog-
raphy (PET) scans was based on the European Organization
for Research and Treatment of Cancer 1999 standard [19].

2.4. FlowCytometry. Cells were washed with 10% fetal bovine
serum +90% RPMI1640 medium; after being washed with
phosphate-bufered saline, the cells were treated with human
Trustain FCX specifc antibodies to block nonspecifc binding.
For extracellular staining, 1× 106 isolated peripheral blood
mononuclear cells (PBMCs) were stained with CD3-APC/
Cyanine7 (300318; Biolegend USA), CD4-FITC (300506;
Biolegend USA), CD8-PerCP/Cyanine5.5 (344710; Biolegend
USA), CD279-APC Clone MIH4 (RUO) (558694, BD, USA),
CD45RA-Brilliant Violet510 (304142; Biolegend USA), and
CD197(CCR7)-Brilliant Violet421 (353208; Biolegend USA).
After being washed with phosphate-bufered saline, the cells
were collected by fow cytometry (BD, FACS CantoII, USA)
and analyzed using BD FACS Diva software for circle gate
analysis.

2.5. Statistical Analysis. Overall survival (OS) was defned as
the time from the frst fraction of HFRT to death from any
cause or the last follow-up visit, estimated using the
Kaplan–Meier method. All quantitative variables are
expressed as mean± standard or median deviation. For
comparison of median diferences between the diferent
response groups, the Mann–Whitney U test was used. All
statistical analyses were performed using SPSS Version 17.0
software (SPSS, Inc., Chicago IL, USA) and GraphPad Prism
8 (GraphPad Software Inc. USA). Cut-of values for high and
low OS were determined using receiver operating charac-
teristic (ROC) curve. p values were calculated using paired t-
test and independent samples t-test. Diferences were con-
sidered signifcant with a p value below 0.05.
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3. Results

3.1. Diferences in Peripheral Circulating T Cells in NSCLC
Patients andHealthy Individuals. We analyzed Tcell subsets
in PBMCs from 17 untreated NSCLC patients and 20 healthy
donors. Figure 1(a) shows representative fow cytograms
indicating the percentages of memory T cell subpopulations
in one healthy donor and one patient. Te TemRA pop-
ulation was predominantly present in the CD8+ T cell
subpopulation, and the percentage of Tn cells among both
CD4+ and CD8+ Tcells was lower in NSCLC patients than in
healthy controls (p < 0.0001), whereas those of Tcm
(p < 0.0001) and Tem (p � 0.013, p � 0.017) cell sub-
populations were elevated in patients (Figure 1(b)), which is
consistent with the fndings of a previous study [20]. Te
expression of PD-1 on CD4+ T cells was remarkably higher
in NSCLC patients than in healthy controls (p � 0.037),
whereas its expression on CD8+ T cells did not difer sig-
nifcantly between the two groups (Figure 1(c)).

3.2. Expansion of TemRA Cell Subpopulation and Decreased
PD-1 Expression Associated with PR after HFRT+PD-1
Blockade. According to RECIST v1.1, 14 patients exhibited
PR, 5 exhibited SD, and 6 exhibited PD at follow-up. Te PR

group showed a trend of decreased frequency of CD4+ PD-
1+ and CD8+ PD-1+ T cell subsets (Figure 2(a)) (p � 0.019,
p � 0.003). Moreover, disease progression was associated
with less TemRA (Figure 2(b)) (p � 0.013, p � 0.038) and
expansion of the Tcm cell subpopulation (Figure 2(c))
(p � 0.037), Tere was no signifcant diference in the Tn
and Tem cell subpopulations between the groups. And we
compared the diferent groups of pretreatment fnding that
there were no signifcant diferences between them.

3.3. Expansion of TemRA Cell Subpopulation after
HFRT+PD-1 Blockade in PR Patients. CT images and
PET-CT imaging data of a PR patient before and after treat-
ment with SBRTcombined with PD-1 blockade demonstrated
excellent tumor control after treatment with HFRT
(Figures 3(a) and 3(b)). For the PR group, compared with the
pretreatment levels, the post-treatment Tn and Tcm sub-
populations in CD4+ T cells were signifcantly diminished
(p � 0.009, p � 0.041), whereas the Tem and TemRA cell
subsets were signifcantly expanded (Figure 3(c)) (p � 0.004,
p � 0.003). As the primary killing cells, the CD8+ T cell
subpopulation showed a signifcant decrease in the näıve Tcell
subpopulation and expansion in the TemRA cell subpopulation
(Figure 3(d)) in the PR group (p � 0.026, p � 0.005), which is
similar to the fndings of Kunert et al. [21], CD8+ T cell
populations in PR patients show enhanced frequencies of
TemRA cell compared to PD patients at baseline and during
treatment. Since HFRT and PD-1 blockade showed good ef-
fcacy and elicited long-term survival in several patients in this
trial, all of whom survived for at least 2 years, we further
analyzed the T cell subsets of PBMCs in these long-term re-
mission patients to obtain insight into the potential long-term
presence of memory T cells, there was a trend of reduction of
Tn subpopulation and a gradually rising trend of TemRA in
CD8+ T cells (Figure 3(e)).

3.4. Diferences in Memory T Cell Subsets before and after
Chemo-Immunotherapy. CT and PET-CT imaging data of
a PR patient before and after chemotherapy combined with
immunotherapy are shown in Figures 4(a) and 4(b), dem-
onstrating that the tumor lesions were efectively cleared.
Flow cytometry of T cell subsets from PBMCs in the PR
group that received chemo-immunotherapy (n� 14) showed
signifcant reduction in Tcm subpopulation (p � 0.044) and
the TemRA subpopulation expanded after treatment in
CD8+ T cells (Figure 4(c)) (p � 0.048). PD-1 expression in
CD8+ T cells decreased after chemo-immunotherapy
(Figure 4(d)) (p � 0.011), while there was no signifcant
discrepancy in the CD4+ T cells (p � 0.07).

3.5.AssociationofMemoryTCell Subsets andPD-1Expression
withSurvival inHFRT+PD-1BlockadeGroup. An expanded
TemRA or Tem cell subpopulation among CD4+ and CD8+
T cells was positively associated with OS (Figures 5(a) and
5(b)). In contrast, a small Tcm (CD45RA–CCR7+) cell
subpopulation among CD4+ Twas positively correlated with
OS (Figure 5(c)). Similarly, reduced PD-1 expression in both

Table 1: Baseline characteristics of patients.

Characteristics No.
Age (year)
Median (range) 58 (38–72)
Gender
Male 27
Female 12
ECOG status
0 10
1 18
2 11
Smoking status
Former and current 19
Never 20
Histologic type
Squamous 14
Adenocarcinoma 23
Other NSCLC 2
Staging
IIIA 7
IIIB 6
IIIC 3
IVA 12
IVB 11
Follow duration (mo)
Median (range) 14 (2–32)
Combination with PD-1
SBRT or SABR 25
No SBRT or SABR 14
ECOG, Eastern Cooperative Oncology Group; SBRT, stereotactic body
radiotherapy; SABR, stereotactic ablative radiotherapy; mo, month; fx,
fraction.
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CD4+ T and CD8+ T cells was associated with longer OS
(Figure 5(d)). In addition, based on the pretreatment data,
a reduced Tn (CD45RA+CCR7+) cell subpopulation among
CD4+ Tand CD8+ Tcells was found to prospectively predict

better survival (Figure 5(e)). Tese fndings further support
that activation of memory T cell subsets has a favorable
prognosis. Te ROC curve clearly distinguished memory
T cell subpopulations according to OS (Figure 6). Te most
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Figure 1: Peripheral immune memory T cell subsets in untreated NSCLC patients (n� 17) show stronger immune memory efects than
those in healthy donors (n� 20). (a) Gating scheme for memory T cell subpopulations in PBMCs. (b) Diferences in näıve (Tn), central
memory (Tcm), efector memory (Tem), and efector memory RA (TemRA) Tcells among CD4+ and CD8+ Tcells between NSCLC patients
and healthy controls. (c) CD4+PD-1+ and CD8+PD-1+ T cell subpopulations among PBMCs from NSCLC patients and healthy controls.
HD, healthy donors; Pt, patients. Data are shown as the mean± SD, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.001, and ns, not
signifcant.
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sensitive and specifc indicator of OS was the TemRA cell
subpopulation among CD8+ T cells, with an area under the
curve (AUC) value of 0.747, followed by the Tn cell sub-
population among CD8+ T cells (AUC� 0.733). TemRA cell
subpopulation among CD4+ T cells (AUC� 0.720), Tem cell
subpopulations among CD4+ T and CD8+ T cells
(AUC� 0.693 and 0.620, respectively), and Tcm cell sub-
population among CD4+ T cells (AUC� 0.683). Te AUC
values for PD-1 expression of CD4+ and CD8+ T cells were
0.647 and 0.683, respectively. Te AUC of Tn cells among
CD4+ T cells before treatment was 0.633 and that of CD8+
T cells after treatment was 0.733.

4. Discussion

In this study, we evaluated four subpopulations (Tn, Tcm,
Tem, and TemRA) of memory T cells among PBMCs, which
were found to be distinctly activated and diferentiated in
NSCLC patients compared with those in healthy controls. In
particular, the frequency of TemRA cells was markedly
increased, and PD-1 expression was decreased in the PR
patient group after HFRT+PD-1 blockade and chemo-
immunotherapy, suggesting distinct mechanisms of re-
sponse to diferent combination treatments, these results are
consistent with evidence that increased PD-1 expression is
associated with poor prognosis [20]. Specifcally, these re-
sults suggested that the naı̈ve Tcell subpopulation in NSCLC
patients diferentiates toward the efector memory T cell
subpopulation after antigen stimulation, and high expres-
sion of PD-1 on CD4+ T cells may be responsible for the
suppression of antitumor efects [22].

Radiotherapy combined with immunotherapy can in-
crease the percentage of efector memory T cells that can
stimulate endogenous antigen-specifc immune responses in
advanced NSCLC, thereby enhancing the immunothera-
peutic response [15, 23, 24]. We also found a signifcantly
higher frequency of Tcm cells in both CD4+ and CD8+ Tcell
subpopulations in our NSCLC cohort compared with that in
the healthy controls. Together, these results indicate that
immune efects were activated in NSCLC, thereby validating
the association between expanded Tcm cell subpopulation
and enhanced tumor infammatory features [25, 26].
Moreover, as an indicator of disease progression [27], PD-1
expression of the PD group was signifcantly higher than the
PR group, which might refect the better response to PD-1
blockade in the latter group.

Memory cells are abundant in responders to combina-
tion immunotherapy [28], and CD8+ Tefector cell memory
subpopulations show the major Tcell phenotypic expansion
in patients responding to treatment [29]. A key factor in the
generation of memory CD8+ T cells is the help provided by
CD4+ T cells [30]. We identifed the presence of four
memory cell subpopulations among both CD4+ and CD8+
T cells, although these subpopulations were mainly present
in CD8+ Tcells. During the diferentiation of memory Tcells,
Tn cells are activated as an abundant initial subpopulation
and then diferentiate into central memory cells as well as
efector memory cells [31–34], along with the terminally
diferentiated subpopulation expressing CD45RA (TemRA)
[10]. TemRA cells in CD4+ T cells have been reported to be
associated with protective immunity against pathogens such
as dengue virus [11], and TemRA cells among CD8+ T cells
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Figure 2: Diferences in memory T cell subpopulations in diferent responder patient groups after treatment with HFRT+PD-1 blockade.
(a) Diferential expression of PD-1 on CD4+ and CD8+ Tcells in patient, NSCLC patient (Pt), partial response (PR), stable disease (SD), and
progressive disease (PD) groups. Diferences in TemRA (b) and Tem (c) cell subpopulation frequencies and among CD4+ and CD8+ Tcells in
the PR, SD, and PD groups. Data are shown as the median, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.001, and ns, not signifcant.
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Figure 3: Imaging data and changes in immune memory T cell subsets in patients who showed partial response (PR) before and after
treatment with HFBT+PD-1 blockade. (a, b) PET-CT fusion images and PET tomography data of a PR patient treated with HFBT+PD-1
blockade showing excellent tumor control. Comparison of peripheral CD4+ (c) and CD8+ (d) memory Tcell subsets in PR patients pre- and
post-treatment with HFRT+PD-1 blockade. (e) Trends of peripheral memory T cell subsets over 2 years in a patient with long-term PR.
PET-CT: positron emission tomography-computed tomography. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.001, and ns, not
signifcant.
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Figure 4: Imaging data and changes in immune memory T cell subsets in partial response (PR) patients before and after chemo-
immunotherapy. (a, b) PET-CT fusion images and PET tomography data of a patient with PR after chemo-immunotherapy treatment
showing good tumor control. (c) Comparison of peripheral CD4+ and CD8+ memory Tcell subsets in PR patients pre- and post-treatment
with chemo-immunotherapy. (d) Diferential expression of PD-1 on CD4+ and CD8+ T cells in PR with chemo-immunotherapy. PET-CT:
positron emission tomography-computed tomography. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.001, and ns, not signifcant.
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can generate rapid responses to stimuli, playing a specifc
role in immune surveillance with high proliferative capacity
and diferentiation plasticity [35, 36], which has challenged
the conventional view that the TemRA cell subpopulation is
primarily associated with immune system aging [37, 38]. We
also found a decrease in the initial memory cell sub-
population and a signifcant expansion of the TemRA cell
subpopulation in the PR group of patients with HFRT+PD-
1 blockade maintenance for 2 years. Tese results suggested
that a better treatment response is associated with immune
memory function activated by stimulation, and the memory
T cell subpopulation gradually diferentiates toward efector
memory cells that perform the killing function [30]. As the
storage pool of memory cells [25], we found a reduction in
the Tcm cell subpopulation among CD4+ T cells but

expansion of the Tem cell subpopulation, suggesting that
memory T cells show diferentiation from naı̈ve memory
Tcells to the memory efector subpopulation in patients with
better response to treatment. Moreover, the central circu-
lating pool of cells was continuously replenished in the CD8+
T cell subpopulation. Furthermore, among the PR, SD, and
PD groups, the TemRA subpopulation was diminished in the
PD patient group, whereas that of Tcm cells was expanded
mainly among CD8+ Tcells, which indicates that the patients
in the PD group did not have fully functional memory
clearance because the TemRA cell subpopulation was not
sufciently formed.

Chemotherapy combined with immunotherapy has
shown good efcacy in the treatment of advanced NSCLC
[39, 40], enhancing memory cell phenotypes [2], and
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Figure 5: Elevated efector memory T cell count and low expression of PD-1 associated with high survival rates in NSCLC patients treated
with HFRT+PD-1 blockade. Expanded efector memory RA (TemRA) (a) and efector memory (Tem) (b) T cell subpopulations, reduced
näıve (Tn) (c) and central memory (Tcm) (d) Tcell subpopulations, and low expression of PD-1 (e) in NSCLC patients treated with HFRTare
associated with high survival rates.
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peripheral memory T cells are associated with clinical
prognosis, as found after SBRT [41]. However, diferences in
the frequencies of memory T cell subpopulations between
the two treatments have been rarely reported, thus, we in-
vestigated changes of memory T cell subpopulations in PR
patients after chemo-immunotherapy, revealing only sig-
nifcant reduction in the Tcm subpopulation among CD8+
T cells. Tis suggests that peripheral memory T cells show
diferent patterns of activation according to diferent types of
combination therapies.

Our data also demonstrated the association of OS with
memory T cell subsets in the entire cohort of NSCLC

patients treated with HFRT +PD-1, with increased fre-
quencies of the TemRA and Tem cell subsets signifcantly
associated with longer survival, whereas the Tn and Tcm
cell subpopulations showed the opposite trend. PD-1 ex-
pression was negatively correlated with OS, and the ability
of these subgroups to predict OS was refected in the
ROC curve.

Nevertheless, there are some limitations of our study that
should be mentioned. In particular, the sample size was
small, and peripheral blood sampling was performed before
and after curative efect assessment rather than at an ab-
solute fxed time point, and patients in the chemo-
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Figure 6: Receiver operating characteristic curves to assess predictive ability of immune Tcell subpopulations to discriminate between high
and low survival probability, as shown in Figure 5.
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immunotherapy group have not a long enough OS to be
evaluated, these might lead to bias in the conclusions.

In conclusion, this study demonstrated that HFRT and
chemotherapy combined with PD-1 blockade can trigger
diferentiation of memory Tcells in responders. Te TemRA
cell subpopulation was highly expanded in patients showing
treatment response and long-term remission, and correlated
with OS, indicating its potentially predictive value in the
response to HFRT+PD-1 treatment. Te diferent patterns
of immune memory cell diferentiation between
HFRT+PD-1 and chemo-immunotherapy suggest that se-
quential radio-chemo-immunotherapy could promote
comprehensive stimulation of immune memory, and thus
might bring greater clinical beneft to patients with NSCLC.
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