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Tis study aimed to evaluate the feasibility of applying a clinical multimodal radiomics nomogram based on ultrasonography (US)
and multiparametric magnetic resonance imaging (MRI) for the prediction of cervical lymph node metastasis (LNM) in papillary
thyroid carcinoma (PTC) preoperatively. We performed retrospective evaluations of 133 patients with pathologically confrmed
PTC, who were assigned to the training cohort and validation cohort (7 : 3), and extracted radiomics features from the pre-
operative US, T2-weighted (T2WI),difusion-weighted (DWI), and contrast-enhanced T1-weighted (CE-T1WI) images. Optimal
subsets were selected using minimum redundancy, maximum relevance, and recursive feature elimination in the support vector
machine (SVM). For LNM prediction, the radiomics model was constructed by SVM, and Multi-Omics Graph cOnvolutional
NETworks (MOGONET) was used for the efective classifcation of multiradiomics data. Multivariable logistic regression in-
corporating multiradiomics signatures and clinical risk factors was used to generate a nomogram, whose performance and clinical
utility were assessed. Results showed that the nine most predictive features were separately selected from US, T2WI, DWI, and
CE-T1WI images, and 18 features were selected in the combined model. Te combined radiomics model showed better per-
formance than models based on US, T2WI, DWI, and CE-T1WI. In a comparison of the combined radiomics and MOGONET
model, receiver operating curve analysis showed that the area under the curve (AUC) value (95%CI) was 0.84 (0.76–0.93) and 0.84
(0.71–0.96) for the MOGONETmodel in the training and validation cohorts, respectively. Te corresponding values (95% CI) for
the combined radiomics model were 0.82 (0.74–0.90) and 0.77 (0.61–0.94), respectively. Te MOGONET model had better
performance and better prediction specifcity compared with the combined radiomics model. Te nomogram including the
MOGONET signature showed a better predictive value (AUC: 0.81 vs. 0.88) in the training and validation (AUC: 0.74vs. 0.87)
cohorts, as compared with the clinical model. Calibration curves showed good agreement in both cohorts. Te applicability of the
clinical multimodal radiomics (CMR) nomogram in clinical settings was validated by decision curve analysis. In patients with
PTC, the CMR nomogram could improve the prediction of cervical LNM preoperatively and may be helpful in clinical decision-
making.

1. Introduction

In the past three decades, papillary thyroid cancer (PTC)
incidence has continued to increase worldwide [1, 2].
Furthermore, PTC is the most commonly seen histology

(89.1%) in thyroid cancer, and its incidence-based mortality
rates continue to increase [3]. However, the mortality rates
of PTC (0.3 per 100,000 in men and 0.5 per 100,000 in
women) are very low [1]. Although PTC is an indolent
tumor with a good prognosis, 30%–80% of cases may show

Hindawi
Journal of Oncology
Volume 2023, Article ID 3270137, 11 pages
https://doi.org/10.1155/2023/3270137

https://orcid.org/0000-0001-8493-2523
mailto:songbin@fudan.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3270137


cervical lymph node metastasis (LNM), which is extremely
common (incidence rate, up to 41.3%) in papillary thyroid
microcarcinoma [4]. Cervical LNM frst develops in the
central neck region corresponding to cervical level VI, and
then in the lateral neck. Cervical LNM in PTC is an im-
portant factor determining the approach of surgery total
thyroidectomy or lobectomy, bilateral or ipsilateral central
node dissection (CND). It is also an independent factor
infuencing the risk of poor prognosis and local recurrence
of PTC [5–7] and the most important factor predicting
a high risk of lateral LNM [4]. Many PTC patients undergo
procedures such as total thyroidectomy and CND to address
the risk of cervical LNM, frequently resulting in
overtreatment [8].

Although CND improves disease-specifc survival and
reduces local recurrence in cases of LNM [9], prophylactic
CND has been reported to not improve long-term outcomes
and is related to high hypoparathyroidism rates [10]. Given
the increasing awareness about the substantial impact of
PTC overdiagnosis, the guidelines of the American Tyroid
Association (ATA) recommended and advocated thyroid
lobectomy alone and active surveillance as initial treatments
for low-risk PTC patients [11]. Furthermore, preoperative
examinations should be improved to more accurately
identify patients with high-risk PTC and provide in-
dividualized treatments.

Preoperative ultrasound (US) is useful for assessing
lateral cervical LNM among patients with PTC [12].
However, its sensitivity for evaluating central cervical LNM
is only 30%–50% [12, 13]. Contrast-enhanced US and
elastosonography have been shown to be superior to con-
ventional US [13, 14]. However, US evaluation is dependent
on the operator and may not provide adequate visualization
of deep anatomical structures and the structures that are
obscured by the bone or air acoustically. Computed to-
mography (CT) shows greater sensitivity than the US for
detecting central cervical LNM but lower sensitivity in
predicting lateral cervical LNM. Tus, a noninvasive and
efective approach to predict cervical LNM risk in PTC is
essential for guiding diagnosis and treatment.

Risk analysis for the prediction of cervical LNM among
patients with PTC has been proposed in several studies, and
tumor size, location, extrathyroidal extension, and micro-
calcifcation were found to be independent risk factors of
cervical LNM [4, 6, 7, 15]. Several cervical LNM prediction
models were constructed by combining the above risk
factors with US features [16–18]. Recently, radiomics has
received great attention for its potential to facilitate accurate
diagnosis. CT- and US-based radiomics approaches for
predicting cervical LNM among patients with PTC have
been reported in several studies [19–21]. A previous study
confrmed that MRI-based radiomics showed good per-
formance for preoperative cervical LNM prediction among
patients with PTC, with an area under the receiver operating
characteristic (ROC) curve (AUC) of 0.835 and 0.830 in the
training and validation groups, respectively [22]. However,
all of the aforementioned studies were conducted with
a single imaging modality and used diferent methods for
feature extraction and model construction. Combining

features from multiple imaging modalities may further
improve the performance of the radiomics model in pre-
operative cervical LNM prediction; however, there are few
reports on the comparison between radiomics models based
on diferent imaging modalities and multiple imaging
modalities for predicting cervical LNM in PTC.

Te widespread use of high-throughput technologies has
led to the emergence of multiomics integrative analysis
approaches. Researchers can obtain omics data at scale from
diferent molecular levels such as the genome, tran-
scriptome, proteome, interactome, epigenome, metabolome,
liposome, and microbiome to advance the understanding of
biological processes and molecular mechanisms.

Multi-Omics Graph cOnvolutional NETworks
(MOGONET), a novel multiomics integrative method, was
recently proposed by Wang et al. [23]. As a supervised al-
gorithm based on a graph network, MOGONET out-
performs other multiomics integration methods and is
efective for multiomics data classifcation. In this study, we
applied this method to a multiradiomics model based on US
and multiparametric MRI data of thyroid neoplasms to
predict cervical LNM among patients with PTC and com-
pared the performance of the multiradiomics model con-
structed using MOGONET and support vector machine
(SVM) followed by the construction of a predictive no-
mogram. We hypothesize that based on its superior per-
formance in previous biomedical classifcations, the
MOGONETmultiradiomics model may show a better ability
to predict cervical LNM than that of traditional radiomics
and clinical statistical models.

2. Materials and Methods

2.1. Patients. Te ethics committee of Minhang Hospital,
Fudan University School of Medicine, approved this study.
All participants provided written informed consent before
US and MRI examinations. Tis retrospective review was
conducted using the data of 268 consecutive patients who
presented with pathologically confrmed PTC at our hospital
from January 1, 2017 to December 31, 2021. Te inclusion
criteria were as follows: (1) pathologically confrmed PTC;
(2) receipt of neck lymph node dissection and preoperative
MRI andUS examinations; (3) no previous biopsy or surgery
of the thyroid; and (4) no history of neck cancer or radiation
therapy.Te exclusion criteria were as follows: (1) maximum
tumor diameter of <5mm; (2) nonreceipt of lymph node
dissection; (3) poor MRI quality; (4) measuring lines on US
images; and (5) inconsistency between MR and US images.
Finally, 133 patients were included; 58 (43.6%) and 75
(56.4%) patients did not have cervical LNM (non-LNM
group) and had pathologically confrmed cervical LNM
(LNM group), respectively. Te patient selection fow chart
is shown in Supplementary Figure 1.

2.2. MRI Data Acquisition. All MRI examinations were
conducted on a 1.5T MRI scanner (EXCITE HD; GE) that
was equipped with an eight-channel neck surface coil. Te
MRI protocols consisted of axial T2WI, axial DWI (b values:
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0 and 800 s/mm2), and axial CE-T1WI.Te detailed imaging
parameters are listed in Supplementary Table 1. CE-T1WI
was performed at 30, 60, 120, 180, 240, and 300 s after
gadolinium (Magnevist, Bayer) injection at a fow rate of
3ml/s. Te images collected at the 300 s phase were used to
extract features.

2.3. US Data Acquisition. US examinations were conducted
on the Aplio i900 (Canon), Logic E9 (GE), and Toshiba 790A
(Toshiba) ultrasound systems by radiologists (≥5 years’ ex-
perience). Te probe models included i6SVX1, ML6-15, and
PLT-805AT, and the probe frequency was 5–15MHz. All US
examinations of the thyroid require the storage of the largest
long-axis cross-section images of the lesions and other
typical signs such as microcalcifcation and capsule invasion.

2.4. Tumor Segmentation. Te largest long-axis cross-section
images obtained using T2WI, DWI, and CE-T1WI were
recorded from PACS by a radiologist (W. J. H.) (with >10years
of experience inMRI).Te largest long-axis cross-section images
of the tumor were recorded from PACS by a radiologist (H. Y.
C.) (with >20years of experience in US imaging of the thyroid).
Tumor segmentation was performed using the ITK-SNAP
software package (v3.8.0; https://www.itksnap.org), withmanual
delineation of regions of interest (ROIs) along the tumor edge on
the largest long-axis cross-section from T2WI, DWI, CE-T1WI,
and US images. A radiologist (W. J. H) performed MR image
segmentation, while another radiologist (L. T.) (5 years’ expe-
rience in theUS) performedUS image segmentation.Te largest
lesion in multifocal PTCs was evaluated for further analysis.

Subsequently, to evaluate feature reproducibility,
a double-blind comparison of manual segmentation in 30
cases was performed by two pairs of radiologists (B. S. vs.
W. J. H., L. T. vs. H. Y. C.). An intraclass correlation co-
efcient (ICCs) >0.75 was considered excellent reliability.
Features with ICCs >0.75 in the frst sketch of W. J. H and
H. Y. C. were retained.

2.5. Feature Extraction and Selection. All images were
normalized before the feature extraction procedure. Te
following features were extracted using the PyRadiomics
package (3.0.1) [24] implemented in Python: gray-level co-
occurrence matrix (GLCM), gray-level size zone matrix
(GLSZM), gray-level run-length matrix (GLRLM), frst-
order statistics, Laplacian of Gaussian (LoG), and wavelet.
Data were randomly divided into the training and validation
groups at a ratio of 7 : 3. Two feature selection methods were
applied. First, redundant features were eliminated, and
features showing a high correlation with the labels were
retained using minimum redundancy maximum relevance
(mRMR). Twenty features were retained. Subsequently, the
recursive feature elimination (RFE) algorithm was used to
fnd a subset of predictors that could be used to produce an
accurate model by the backward selection of predictors
based on predictor importance ranking. Te predictors were
ranked, and the less important ones were sequentially
eliminated before modelling.

2.6. Radiomics Model Construction and Nomogram
Development. First, radiomics models based on US (US-
radiomics), T2WI (T2WI-radiomics), DWI (DWI-
radiomics), and CE-T1WI (CE-T1WI-radiomics) were
constructed using SVM. Ten, a multiparametric
radiomics model was established by integrating these
four image modalities by using SVM and MOGONET.
Compared with the traditional machine learning clas-
sifcation method, MOGONET utilizes the advantage of
each imaging modality and considers the correlations
among samples analyzed by similarity networks of graph
convolutional networks (GCN) to obtain imaging
modality-specifc GCNs. Next, the modality-specifc
GCNs were fed into a cross-image modality discovery
tensor to explore the cross-image modality correlation at
label space. Ten, the View Correlation Discovery Net-
work (VCDN) was used for efective multi-image mo-
dality integration to obtain the fnal prediction with the
cross-image modality discovery tensor. A nomogram for
cervical LNM prediction was developed based on clinical
risk factors as well as the prediction performed using
MOGONET by stepwise multivariate logistic regression
analyses.

2.7. Statistical Analysis. Continuous variables are pre-
sented as mean ± standard deviation values, and cate-
gorical variables are shown as counts (percentages). Te
Chi-square or Fisher’s exact test was employed for the
comparison of categorical variables. Te t-test or Man-
n–Whitney test was employed for the comparison of
continuous variables depending on data distribution. Te
performance of the LNM prediction models was evaluated
by ROC analysis, and the sensitivity (SEN), specifcity
(SPE), positive predictive value (PPV), negative predictive
value (NPV), accuracy (ACC), and AUC were recorded.
Te nomogram performance was also evaluated using
ROC analysis. DeLong’s test was applied for comparison
between ROC curves, and net reclassifcation improve-
ment (NRI) and integrated discrimination improvement
(IDI) were calculated. Te Hosmer–Lemeshow test was
used to assess the nomogram’s goodness-of-ft. Finally,
the decision curve analysis (DCA) was performed for
evaluating the nomogram’s clinical utility. IBM SPSS
Statistics 26.0 (IBM Corp, Armonk, NY, USA), R software
(version4.1.3; https://www.r-project.org/), and Python
(version 3.5.6; https://www.python.org/) were used for all
the statistical analyses. Te “mRMR” algorithm in the
“mRMRe” package was used to employ the maximum
relevance minimum redundancy algorithm to initially
screen the radiomics features. Te best feature cohort was
selected by the “glmnet” algorithm in the “glmnet”
package. ROC analysis was conducted based on the
“pROC” package to evaluate efectiveness. Te “caliplot2”
function in the “ModelGood” package was applied to plot
the calibration curves, and decision curves were plotted
using on “rmda” package. Te MOGONET algorithm we
used was shown in the literature. A two-tailedp value of
<0.05 was considered, as statistical signifcance.
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3. Results

3.1.PatientCharacteristics. Testudy population included 133
patients with PTC (40males, 93 females; age 44.69±13.50years;
age range, 13–77years).Te incidence rate of cervical LNMwas
56.39% (75/133).Te patients’ detailed clinical characteristics are
summarized in Table 1. None of the clinical characteristics was
signifcantly diferent between the training and validation co-
horts.Te associations between clinical characteristics and LNM
in the training and validation cohorts are presented in Table 2.
Te non-LNM and LNM groups in both cohorts showed no
signifcant diferences in age, sex, and the number of lesions.
Tumor diameter was larger in the LNM group in both cohorts.
Te LNM group showed a greater frequency of bilateral and
multifocal PTCs (training cohort: p< 0.05; validation cohort:
p> 0.05). In both cohorts, the LNM group had a markedly
higher frequency of thyroid contour protrusion with a more
poorly defned tumor margin (p< 0.001). Similarly, in both
cohorts, microcalcifcation was more commonly seen in the
LNM group (p< 0.05). Te training cohort showed signifcant
diferences in the incidence of an aspect ratio of >1 between the
two groups (p � 0.004).

3.2. Performance of the Radiomics Models. After the in-
terobserver ICC analysis, high-throughput features were
extracted, 740 from US images, 1045 from T2WI images,
1045 from DWI images, and 785 from CE-T1WI images.
Eventually, the nine most predictive subset features were
separately selected from US, DWI, T2WI, and CE-T1WI
images, and 18 subset features were selected from combined
images. Feature importance was evaluated. Supplementary
Figure 2 presents the selected features and their importance.
Figure 1 shows the ROC curves for the radiomics models in
distinguishing the LNM group from the non-LNM group in
both cohorts. Te combined radiomics model showed better
performance than the other four radiomics models in both
cohorts.Te AUC, ACC, SEN, SPE, PPV, and NPV of the six
models are detailed in Table 3.

3.3. Performance of MOGONET Model. To boost the clas-
sifcation performance of the multiradiomics model, we
further used MOGONET as a classifer. Compared with the
combined radiomics model, the MOGONET model per-
formed better in the training (AUC� 0.84 vs. 0.82) and
validation (AUC� 0.84 vs. 0.77) cohorts (Figure 2),
according to the ROC analysis. Notably, MOGONET im-
proved the diagnostic specifcity. Te specifcity of the
MOGONET, CE-T1WI-radiomics, T2WI-radiomics, DWI-
radiomics, and combined radiomics models were 0.71 vs.
0.94, 0.74 vs. 0.53, 0.85 vs. 0.59, 0.51 vs. 0.53, 0.39 vs. 0.18,
and 0.73 vs. 0.67 in the training and validation cohorts,
respectively (Table 3).

3.4. Performance of the Predictive Nomogram.
Multivariable logistic regression analysis indicated that
poorly defned tumor margin [OR (95% CI):
3.56(1.39–19.15), p � 0.008], thyroid contour protrusions

[OR (95% CI): 3.18 (1.15–8.78), p � 0.026], and MOGONET
[OR (95% CI): 7.72 (3.05–19.58), p≤ 0.01] were independent
clinical LNM predictors among patients with PTC (p< 0.05)
(Table 4). Terefore, we constructed a nomogram for LNM
prediction using these predictors (Figure 2(a)). Te ROC
analysis showed that the AUC (95% CI) of the nomogram
was 0.88 (0.81–0.95) and 0.87 (0.75–0.99) in the training and
validation cohorts, respectively (Figure 2(b)), which was
higher than those associated with the clinical model. Tis
fnding suggests that this nomogram had the good dis-
criminative ability. Te Hosmer–Lemeshow test showed
good agreement between the ftting and observed values in
both cohorts (all p> 0.05) (Figure 3). DeLong’s test showed
that the AUCs were not signifcantly diferent between the
nomogram and clinical model in both cohorts (p> 0.05).
Tere were signifcant diferences in NRI and IDI between
the two groups. NRI (95% CI) and IDI (95% CI) were 0.96
(0.60–1.31; p≤ 0.01) and 0.14 (0.07–0.21; p≤ 0.01) in the
training cohort and were 0.71 (0.14–1.29; p � 0.015) and 0.17
(0.0471–0.2891; p � 0.006) in the validation cohort.

DCA of the nomogram and the clinical model was
performed to determine whether the nomogram can im-
prove the net beneft for patients. Te DCA results indicated
that the nomogram had a greater net beneft than the clinical
models when the threshold probability was between 0 and
0.7 (Figure 4).

4. Discussion

In patients with PTC, cervical LNM indicates local re-
currence risk and poor prognosis. We aimed to develop
a useful tool based on multiradiomics data for predicting
cervical LNM preoperatively. To this end, we constructed
four radiomics models using T2WI, DWI, CE-T1WI, and US
images, and one linear combination model based on mul-
timodal images using a traditional classifcation algorithm
(SVM). We also used MOGONET for classifer multi-
radiomics data and compared its performance with other
models based on SVM. MOGONET showed better pre-
dictive performance (AUC >0.8 in both cohorts) than did
the other models, suggesting that multiradiomics model
could be invaluable for predicting cervical LNM in PTCs.
Te DCA also validated the potential applicability of the
nomogram incorporating the MOGONET model and
clinical risk factors. Tis approach could be helpful for early
medical management and avoid overdiagnosis and over-
treatment in PTC.

Although the prognosis of PTC is much better than those
of many other cancers, cervical LNM occurs in 30%–80% of
the patients with PTC. Cervical LNM is an important
consideration in surgical procedures and clinical manage-
ment for patients with PTC. Nodal metastases most com-
monly occur at cervical level VI. Te ATA guidelines
recommend therapeutic lymph node dissection for cN1
disease in cases of PTC. However, the role of prophylactic
CCND for cN0 disease is extremely controversial. Some
studies have suggested that prophylactic CCND could re-
duce local recurrence while improving the accuracy of re-
currence risk assessment. In contrast, other studies have
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demonstrated that prophylactic CCND ofers no clear
beneft for the long-term outcome and is associated with
a higher potential for complications, including hemorrhage
and injuries to the posterior recurrent nerve. Tese fndings
highlight the need to develop a method showing improved
accuracy for preoperative LNM prediction while more ac-
curately identifying high-risk patients.

Although US is the preferred imaging modality for
assessing thyroid lesions and cervical lymph nodes, US
cannot adequately reveal the central region and shows
limited ability to identify central cervical LNM. Moreover,
operator-related diferences substantially infuence the ac-
curacy of US-based diagnoses of cervical LNM.

Several recent studies on clinical prediction models have
shown that complex echo patterns, posterior region ho-
mogeneity, microcalcifcations, extrathyroidal extension,
capsule contact, age ≤45 years, and tumor size >1.0 cm were
independent indicators of cervical LNM among patients
with PTC. However, these predictors are subjective and
showed variable sensitivity and specifcity in predicting
cervical LNM among patients with PTC.

In comparison with conventional image analysis,
radiomics features provide objective information about the
lesion. Radiomics signatures have been shown to be useful
for predicting LNM and prognosis in cancer studies.
Moreover, radiomics has been used to predict LNM among
patients with PTC. Liu et al. established a US-based

radiomics model to predict cervical LNM among patients
with PTC and reported AUCs of 0.78 in the training cohort
and 0.73 in the validation cohort. A nomogram based on
shear-wave elastography (SWE) radiomics also showed good
calibration and discrimination ability (AUC� 0.83 in the
test), demonstrating that SWE radiomics signature is
a useful biomarker for cervical LNM prediction among
patients with PTC [25]. Yu et al. [20] proposed the transfer
learning radiomics for the LNM prediction model of PTC,
and the model achieved an AUC of 0.93 and yielded more
benefts than other methods. In comparison with qualitative
CT image features, the radiomics signature of dual-energy
CT iodine maps performed better in the preoperative di-
agnosis of cervical LNM of PTC [26]. In our previous study,
we also demonstrated that radiomics based on multipa-
rameter MRI could adequately predict cervical LNM in PTC
patients (AUC� 0.83 in the test cohort) [22].

Te radiomics studies described above were conducted
on the basis of single-modality medical images. As far as we
know, no previous study has compared the performance of
radiomics models based on diferent or multiple imaging
modalities. Terefore, we constructed radiomics models
based on US and MR images, including DWI, T2WI, and
CE-T1WI sequences, and compared their predictive per-
formance. In the validation cohort, the AUCs of the DWI-
radiomics, T2WI-radiomics, CE-T1WI-radiomics, and US-
radiomics models were 0.74, 0.52, 0.68, and 0.66,

Table 1: Clinical characteristics of PTCs in the training and validation cohorts.

Variable Training cohort Validation cohort Statistics p value
Age (years) 44.73± 13.6 44.59± 13.41 0.001 0.977
Diameter (cm) 1.27± 0.61 1.32± 0.68 0.42 0.526
Gender 0.279 0.598
Female 67 (71.28%) 26 (66.67%)
Male 27 (28.72%) 13 (33.37%)

Location 3.932 0.281
Right lobe 34 (36.17%) 14 (35.90%)
Left lobe 47 (50.0%) 22 (56.41%)
Isthmus 5 (5.32%) 3 (7.69%)
Bilateral 8 (8.51%) 0 (0%)

Number_of_lesions 6.11 0.137
1 71 (75.53%) 37 (94.87%)
2 17 (18.09%) 2 (5.13%)
3 3 (3.19%) 0 (0%)
4 2 (2.13%) 0 (0%)
5 1 (1.06%) 0 (0%)

Tumor margin on T1WC+ 1.91 0.167
Well defned 36 (38.3%) 20 (51.28%)
Poorly defned 58 (61.70%) 19 (48.72%)

Tyroid contour protrusion sign on T1WC+ 0.524 0.469
Absent 57 (60.64%) 21 (53.85%)
Present 37 (39.36%) 18 (46.15%)

Aspect ratio on US imaging 0.696 0.404
<1 63 (67.02%) 29 (74.36%)
>1 31 (32.98%) 10 (25.64%)

Microcalcifcation 0.115 0.735
Absent 44 (46.81%) 17 (43.59%)
Present 22 (53.19%) 22 (56.41%)

MOGONET 0.53± 0.50 0.56± 0.50 0.545 0.462
PTC, papillary thyroid carcinoma; LNM, lymph node metastasis. p values of <0.05 were considered to indicate statistical signifcance.
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respectively. Previous studies have shown that multi-
parametric MRI combination can improve diagnostic ef-
cacy [22]. Liu et al. also showed that B-mode images together
with strain elastography improved cervical LNM prediction,
with the AUC increasing from 0.81 for B-mode images to
0.90 for multimodality images. Multiomics data can yield
more accurate clinical outcome predictions than single-type
omics data. Our results corroborated these fndings by
showing that the combined radiomics model constructed

from the linear fusion of all features had a better perfor-
mance than the unimodular model in both training and
validation cohorts.

Te existing classifcation methods based on supervised
data integration includes the strategies based on feature
concatenation and ensembles. In the methods based on
concatenation, diferent types of omics data are integrated by
directly concatenating the input data features to train the
classifcation model. In contrast, predictions from diferent

Table 3: Quantitative indices pertaining to the six models for data from two cohorts.

Model Cohorts AUC (95% CI) ACC SEN SPE PPV NPV

MOGONET Training 0.84 (0.76–0.93) 0.82 0.89 0.71 0.80 0.83
Validation 0.84 (0.71–0.96) 0.77 0.76 0.94 0.88 0.74

Combined-radiomic Training 0.82 (0.74–0.90) 0.80 0.85 0.74 0.77 0.83
Validation 0.77 (0.61–0.94) 0.77 0.93 0.67 0.64 0.94

DWI-radiomic Training 0.74 (0.56–0.91) 0.72 0.89 0.51 0.70 0.78
Validation 0.74 (0.56–0.91) 0.74 0.91 0.53 0.71 0.82

CE-T1WC-radiomic Training 0.79 (0.70–0.89) 0.77 0.74 0.80 0.83 0.70
Validation 0.68 (0.50–0.85) 0.64 0.73 0.53 0.67 0.60

T2WI-radiomic Training 0.71 (0.61–0.82) 0.69 0.57 0.85 0.83 0.60
Validation 0.52 (0.33–0.71) 0.51 0.45 0.59 0.59 0.45

US-radiomic Training 0.69 (0.59–0.80) 0.69 0.92 0.39 0.66 0.80
Validation 0.66 (0.48–0.85) 0.59 0.91 0.18 0.59 0.60

AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specifcity; PPV, positive predictive value; NPV, negative
predictive value; CI, confdence interval.
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Figure 1: Comparison of ROC curves of the six models for LNM prediction in the cohort.Te AUC of theMOGONETmodel is higher than
those of the other fve models in both the training (a) and validation (b) cohorts.
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Figure 2: Comparison between the clinical and multimodal radiomics nomograms. (a) Te clinical multimodal radiomics nomogram
incorporated the MOGONETsignature into the clinical model. (b)Te ROC curves for nomogram evaluation in the training and validation
cohorts. Te red, blue, and black lines are the curves of the clinical multimodal radiomics nomogram, MOGONET, and the clinical model,
respectively. ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve.

Table 4: Univariate and multivariate analyses of the preoperative predictors of LNM of PTCs in the training cohort.

Variable
Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value
Age, <45 years 1.76 (0.77–4.02) 0.050 — —
Diameter, <1 cm 2.0 (0.86–4.67) 0.026∗ — —
Gender 0.77 (0.32–1.9) 0.574 — —
Location 1.85 (1.06–3.2) 0.029∗ — —
Number_of_lesions 2.16 (0.99–4.74) 0.054 — —
Tumor margin on T1WC+ 9.43 (3.59–24.74) <0.001∗ 3.56 (1.39–19.15) 0.008∗
Tyroid contour protrusion sign on T1WC+ 8.22 (2.95–22.89) <0.001∗ 3.18 (1.15–8.78) 0.026∗
Aspect ratio on US imaging 4.02 (1.51–10.68) 0.005∗ — —
Microcalcifcation 4.08 (1.72–9.71) 0.001∗ — —
MOGONET 14.03 (5.98–32.95) <0.001∗ 7.72 (3.05–19.58) <0.001∗

PTC, papillary thyroid carcinoma; LNM, lymph node metastasis; CI, confdence interval; OR, odds ratio; ∗p< 0.05.
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classifers are integrated into ensemble-based methods.
However, these methods did not account for correlations
among diferent types of omics data. MOGONET, a new
multiomics integrative algorithm was proposed recently. In
comparison with KNN, SVM, and the other seven existing

integration methods, MOGONET achieved the best per-
formance in all classifcation tasks on three databases. In
addition, MOGONET was superior to the latest supervised
multiomics integration methods. Exploration of cross-omics
label correlations through VCDN and integration of
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Figure 3: Calibration curves of the clinical multimodal radiomics nomogram in the training and validation cohorts. Te Hos-
mer–Lemeshow test showed no signifcant diference (p> 0.05) in both cohorts.
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blue line is the decision curve of all PTC patients without LNM who did not receive treatment. Te decision curves show that the clinical
multimodal radiomics nomogram to predict LNM in patients with PTC provides a greater beneft than does the clinical model.
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classifcation results from diferent types of omics data
yielded consistent improvements in classifcation
performance.

In this study, MOGONETmodels trained with four types
of radiomics data achieved better performance than com-
bined radiomics model constructed by SVM. Te AUCs
(95% CI) of MOGONET model in the training and vali-
dation cohorts were 0.84 (0.76–0.93) and 0.84 (0.71–0.96),
respectively, while the corresponding AUCs (95% CI) of the
combined radiomics model was 0.82 (0.74–0.90) and 0.77
(0.61–0.94), respectively. Notably, MOGONET models im-
proved the specifcity of predicting LNM.

Te logistic regression analyses suggested that in PTC
patients, poorly defned margins, thyroid contour pro-
trusion, and MOGONET scores were independent risk
factors for LNM. Te AUC of the nomogram was higher
than that of clinical models. Although DeLong’s test showed
no signifcant diferences between the ROC curves of the
clinical models and the nomogram (p> 0.05), the small
sample size may have infuenced this fnding. In contrast,
NRI and IDI associated with the nomogram were signif-
cantly higher than those associated with the clinical models
in both cohorts (p< 0.05), indicating an improved pre-
diction probability. DCA analysis showed a net beneft of the
nomogram.

Te study had several limitations. First, the data were
obtained from a single centre and lacked external validation.
Second, the sample size was small, and the prognostic value
of the fndings should be further validated in the future.
Tird, since this was a retrospective study, LN status was
evaluated on the basis of postoperative pathology. Te
largest long-axis cross-section image on the US was de-
pendent on the operator, and we cannot ensure complete
consistency between the largest long-axis cross-section
images obtained using US and MRI. Tus, selection bias
was inevitable and may have afected the results. Finally, US
examinations were not performed on the same machine and
by the same radiologist. Te resultant inconsistencies in
inspection parameters may have afected the accuracy of the
results and need to be verifed with large-sample
multicentre data.

5. Conclusions

In conclusion, the MOGONET model integrated multi-
radiomics performed better in LNM prediction than
radiomics constructed from single imaging modality data.
Tis noninvasive clinical multimodal radiomics nomogram
may facilitate clinical decision-making for patients
showing PTC.
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