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Objective. Clear cell renal cell carcinoma (ccRCC) is one of the common renal cell carcinomas (RCC) with a high risk of re-
currence. Considering that SLC9A1 is involved in various cellular physiological processes and probably mediates the course of
mTOR signaling in tumors, this study constructed a risk model for SLC9A1 combined with mTOR signaling in ccRCC, aiming at
better predicting the prognosis of patients. Methods. ccRCC expression matrices were downloaded from TCGA and ICGC
databases to compare the expression of SLC9A1 in TCGA, and qRT-PCR was adopted to validate the SLC9A1 expression in
diferent RCC cells and normal kidney cells. Te CIBERSORT and ESTIMATE algorithms were used to assess samples for
immunity. mTOR signaling-associated genes were downloaded from the KEGG website, and then the genes were adopted to
screen genes associated with SLC9A1 expression and mTOR signaling pathway colleagues, based on which univariate COX
regression and lasso regression Cox analyses were conducted to construct a ccRCC prognostic risk model. ROC curves and
nomograms were used to assess the validity of the models. Results. ccRCC tumor samples showed lower SLC9A1 expression than
normal samples, as also evidenced by qRT-PCR.Te SLC9A1 expression was highly correlated with tumor immunity. Totally, 564
key genes associated with both SLC9A1 expression and mTOR signaling were screened out, and the risk model consisting of 11
gene signatures was constructed in ccRCC based on the 564 genes. Since patients at a high risk had poorer survival outcomes, the
high-risk group presented poorer immunotherapy outcomes. Moreover, a higher clinical grade of patients suggested a higher risk
score. Te risk score can serve as one independent prognostic factor for the prognosis prediction of ccRCC patients. Conclusion.
An extremely promising prognostic indicator for ccRCC based on SLCA9A1 andmTOR signaling has been constructed to provide
reference for clinical treatment.

1. Introduction

Renal cell carcinoma (RCC) is one of themost common solid
tumors of the adult kidney [1]. Among its subtypes, clear cell
renal cell carcinoma (ccRCC) is the major one, with a high
rate of occurrence (accounting for 80–90% of all cases) and
relapse risk [2, 3]. Moreover, about 30% of patients

presented distant metastasis during initial diagnosis [4].
Although the treatment of ccRCC has achieved great
progress in recent years, especially immunotherapy, which
has been considered an efective therapeutic method for
advanced patients [5–7], cancer-specifc morbidity and
mortality continue to rise, and drug resistance persists
unfortunately worldwide [8, 9]. Te prognostic staging
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system currently does not provide adequate guidance for
treatment and cannot accurately predict clinical outcomes
[10, 11]. Accordingly, it is urgent to identify the efcient
prognostic model of ccRCC patients.

SLC9A1, also named Na/H exchanger 1 (NHE1) [12],
belongs to the NHE exchanger family [13]. As a membrane
protein, SLC9A1 exists in many mammalian cell types and is
involved in intracellular pH (pHi) regulation [14, 15]. Many
physiological processes are dependent on SLC9A1, including
cell proliferation, cell volume regulation, cellular immunity,
and cell death [16]. Furthermore, prior research has revealed
that potential downstream impacts of mTOR on cell growth,
survival, and tumorigenesis were under medication by
SLC9A1 [17]. Reportedly, in gastric cancer, hepatocellular
carcinoma (HCC), ovarian cancer, and gliomas, SLC9A1
favors tumorigenesis and predicts poor prognosis
[13, 18, 19]. In breast cancer, SLC9A1 acts as a facilitator in
tumor invasiveness [20]. Based on these fndings, SLC9A1
protein has emerged as an important marker for tumori-
genesis and prognosis, whereas the potential role of SLC9A1
in ccRCC has not been fully understood.

Tis study analyzed the SLC9A1 expression in ccRCC
and its association with immunity. A prognostic risk model
was established on the basis of SCL9A1 as well as mTOR
signaling in ccRCC, with the purpose of fnding possible
prognostic markers in ccRCC and providing a theoretical
basis for prognostic prediction of patients.

2. Materials and Methods

2.1. Cell Strains andReagents. Human RCC cell strains (786-
O, A498, OS-RC-2, ACHN, 769-P, Caki-1, and Caki-2) and
human normal renal cells (293T and HK-2) were provided
by American Type Culture Collection (ATCC, Rockville,
MD, and the States). A498, ACHN, and HK-2 were in-
cubated inMEM (Invitrogen, 11090-081). 786-O, 769-P, and
OS-RC-2 were subjected to incubation in RPMI-1640
(Gibco, 11875500BT). Caki-1 and Caki-2 were subjected to
incubation in Mccoy 5A (Gibco, 12330031). 293T was
cultured in DMEM (Gibco, 11995500BT).Temedium were
supplemented with 10% fetal bovine serum (Gibco, the
States). All the cell strains were maintained in an incubator
(37°C, 5% CO2).

2.2. RNA Isolation and Quantitative Real-Time PCR (qRT-
PCR). Total RNA was extracted from cells through TRIzol
reagent (Invitrogen). First-strand cDNAwas generated from
1 μg total RNA using Hifair® II 1st Strand cDNA Synthesis
Kit (11119ES60) fromYeasen (Shanghai, CN). qRT-PCRwas
conducted three times with a SYBR Green premix qPCR kit
(Accurate Biotechnology, Changsha, Hunan, CN,
AG11701). Sequences of primers for qRT-PCR were pro-
vided as follows: SLC9A: forward: 5′-ACCACGAGAACG
CTCGATTG-3′, reverse: 5′-ACGTGTGTGTAGTCGATG
CC-3′. GAPDH: forward: 5′- GGAGCGAGATCCCTCCAA
AAT-3′, reverse: 5′-GGCTGTTGTCATACTTCTCATGG-
3′. Te specifc experimental procedures were carried out in
strict accordance with the kit instructions. Gene expression

was measured and normalized relative to the GAPDH level
using the 2−ΔΔCt method.

2.3. Data Collection and Processing. Expression matrices for
526 ccRCC samples and 72 normal ones were acquired from
TeCancer GenomeAtlas (TCGA, https://portal.gdc.cancer.
gov/repository) database and fltered for samples with
missing clinical and survival information, with gene ex-
pression as the mean value. Data about mutation data and
copy number variation for ccRCC were also obtained from
TCGA. Additionally, ninety-one primary renal cell cancer
samples with complete prognostic and clinical information
in the International Cancer Genome Consortium (ICGC,
https://dcc.icgc.org/) were screened, and their expression
profles were downloaded.

2.4. Tumor Immunity. Te relative proportions of the 22
immune cell compositions in the expression matrix were
assessed using CIBERSORT, and p< 0.05 was used for
subsequent comparisons. In addition, immune scores in
tumor samples were calculated using the ESTIMATE al-
gorithm, outputting scores for immune, stromal, and
ESTIMATES.

2.5. Screening for SLC9A1andmTOR-RelatedGenes andGene
Sets. Te mTOR pathway-related genes were acquired from
the ofcial website of the Kyoto Encyclopedia of Genes and
Genomes (KEGG, https://www.genome.jp/kegg/), and
sample mTOR pathway scores were calculated using the
ssGSEA algorithm. Te correlation between gene sets and
genes was calculated, respectively, on the basis of the Hmisc
package rcorr function of the R language, and the correlated
gene sets were screened by |cor|> 0.25 and p< 0.001.

2.6. Enrichment Analysis. Gene ontology (GO) enrichment
analysis was conducted to explore the possible biological
functions of the relevant genes in biological processes,
cellular components, and molecular functions through the
cluster Profler package in R. A separate KEGG pathway
enrichment analysis was performed to search for potential
mechanisms.

2.7. Construction andValidation of the Prognostic RiskModel.
Prognostic signifcance of genes was calculated by single and
multifactor Cox analyses performed with the survival
package. p< 0.05 was the selection criterion for screening for
subsequent analyses. Candidate genes were subjected to
lasso regression analysis using the R package glmnet for
screening for prognosis-associated gene signatures, and
models were constructed by 10-fold cross-validation.

Risk score(patient) � 

n

i�1
expressiongene i × coff icientGene i. (1)

Te median risk score was defned with the R package
survminer, and samples were classifed according to the risk
level. Kaplan–Meier (K–M) curves were drawn through the
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R package time ROC to predict the prognostic classifcation
efciency of the risk score.

Module genes were extracted from published articles
[21–23], and the c-index of these models was calculated and
compared by the survcomp package.

2.8. Immunotherapy. Te online software Tumor Immune
Dysfunction and Exclusion (TIDE, https://tide.dfci.harvard.
edu/) is used to assess the potential clinical efects of samples
in immunotherapy.

2.9. Nomogram. Te rms package was used along with the
risk score and clinical characteristics to create nomogram
that quantify the prognostic risk and likelihood of survival
for patients at 1, 3, and 5 years. Moreover, usefulness of the
model is also assessed by performing a decision curve
analysis (DCA).

2.10. Statistical Analyses. With R software (3.6.1) and
GraphPad Prism (9), statistical analyses were conducted, and
the ggplot2 package was adopted for visualization. Te
correlation between gene expression and the pathway score
was determined through Spearman correlation analysis and
compared between the groups using the Wilcox test,
p< 0.05.

3. Results

3.1. SLC9A1 Is Lowly Expressed in ccRCC. Te overall
fowchart is shown in Supplementary Figure 1. Comparison
of TCGA expression profles revealed lowly expressed
SLC9A1 in ccRCC tumor tissues as compared with normal
paracancerous tissues (Figure 1(a)). Moreover, qRT-PCR
results revealed downregulated SLC9A1 in RCC cell strains
as compared with normal kidney cell strains (Figure 1(b)).
Next, we sorted out the mutation information of SLC9A1
through the SNV data of TCGA, and 2 samples had mu-
tations in SLC9A1 gene, while 524 samples did not have
mutations. As shown in Figure 1(c), gene expression in
samples without SLC9A1 mutation was higher than that of
the sample with SLC9A1 mutation, but there was no sig-
nifcant diference (maybe because of the too small sample
size). Ten, based on the CNV data of TCGA, the samples
were divided into amplifcation, deletion, and diploid groups
based on the CNV mutation of SLC9A1. We found that the
samples without CNV mutation in SLC9A1 were signif-
cantly higher (Figure 1(d)).

3.2. Relationship between the Expression of SLC9A1 and
Immunity. We found that some immune cells’ scores
expressed diferently depending on the SLC9A1’s expression

level (Figure 2(a)). Te immune scores of the tumor samples
showed that the highly expressed group of SLC9A1 had
higher immune infltration than the lowly expressed one
(Figure 2(b)). Correlation analysis revealed a positive as-
sociation between SLC9A1 expression and the immune
score (Figure 2(c)). On the other hand, we also examined the
correlation of the SLC9A1 expression with 22 types of
immune cell scores. Among them, there was a positive
correlation between SLC9A1 expression and score about
Macrophages M0, T regulatory cells (Tregs), etc., and
a negative correlation between it and cells, scores such as NK
cells activated (Figure 2(d)). We extracted the genes of
immune-related pathways, and the expression of some genes
(e.g., IL6 and MMP9) in immune-related pathways also
increased with the increased expression of SLC9A1
(Figure 2(e)).

3.3. Relationship between the SLC9A1 and mTOR Pathway
and Gene Set Enrichment Analysis. Te Spearman correla-
tion analysis revealed positive association of SLC9A1 ex-
pression with the mTOR signaling pathway scores of the
patients calculated by the ssGSEA method (Figure 3(a)).
Further analysis screened 1502 genes positively associated
with SLC9A1 expression, 1077 ones negatively associated
with it, 3061 genes with positive association with the mTOR
signaling pathway score, and 1611 ones with negative as-
sociation with the score. By overlapping analysis, 564 genes
were found to be associated with both SLC9A1 and mTOR
(Figure 3(b)). Meanwhile, enrichment analysis of 564 related
genes was conducted and the genes were found to be as-
sociated with actin flament-related biological processes,
phagocytosis, and the cGMP-PKG signaling pathway
(Figure 3(c)).

3.4. Construction andValidation of the ccRCCPrognostic Risk
Model. We identifed 39 genes mostly associated with the
prognosis in both TCGA and ICGA datasets of ccRCC
through univariate Cox regression analysis. Supplementary
Table 1 presents the results of the one-way Cox analysis for
the 564 genes in both TCGA and the ICGC datasets. Ten,
Lasso regression was performed to further reduce model
genes for model optimization.Te change trajectory of every
independent variable was analyzed as shown in Figures 4(a)
and 4(b). According to the results, with the gradual increase
of lambda, the number of independent variable coefcients
close to 0 also increased gradually. We used 10-fold cross-
validation for model establishment. Te confdence interval
under every lambda was analyzed, and when
lambda� 0.0344, the model is optimal. For this reason, we
chose eleven genes with lambda� 0.0344 as the target genes.
Te risk score was calculated using the following formula:

Risk score � 0.158∗COL6A2 − 0.218∗EXTL3 + 0.357∗HEATR6 − 0.276∗HSPG2 − 0.015∗MAML3

+ 0.389∗PPP1R18 + 0.316∗RCC2 + 0.173∗ SEMA7A + 0.022∗ SERPINH1 − 0.484∗TLN1 + 0.177∗TM9SF4.
(2)

Journal of Oncology 3

https://tide.dfci.harvard.edu/
https://tide.dfci.harvard.edu/


Te expression of these 11 genes in cancer and normal
paracancerous tissues is described in detail in Supplemen-
tary Figure 2. Next, we used TCGA dataset as the training
dataset and calculated the risk score of every sample through
the expression of 11 genes. Te ROC curve assisted in
evaluating the accuracy of OS estimates derived from the
prognostic risk model. Te classifcation efciency of

1–5 year prognosis prediction was analyzed, and the area
under curve (AUC) in 1–5 years reached above 0.7. In ad-
dition, the patients were assigned to a high- or low- risk
group in the light of the mean value of the risk score. Te
K–M survival curve showed a notably worse overall survival
(OS) in the high-risk group than that in the other group
(Figures 4(c) and 4(d)). Te same method was used to
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Figure 1: SLC9A1 is lowly expressed in ccRCC samples. (a) Expression of SLC9A1 in ccRCC cancer tissues and normal tissues in TCGA
database. (b) qRT-PCR analysis of SLC9A1 in RCC cells vs. human normal renal cells (293T and HK-2). (c) Comparison of SLC9A1
expression between samples with or without SNV mutation. (d) Comparison of SLC9A1 expression between samples with or without CNV
mutation. Note: SNV: single nucleotide variants; CNV: copy number variation. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001.
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Figure 2: Continued.
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validate the ICGC dataset, and the similar results were
observed (Figures 4(e) and 4(f)). Compared with the pre-
vious studies, our model is superior as shown in Supple-
mentary Figure 3.

3.5. Association of the Prognostic Risk Model with Clinico-
pathological Characteristics. Te diferences in risk scores
were compared for diferent clinicopathological character-
istics, as shown in Figures 5(a)–5(f). Te higher risk scores
were signifcantly associated with higher TNM, histological
grade, and advanced clinical staging.Te risk score increases
with T, M, and N stage, clinical stage, and
histopathological grade.

3.6. Relationship between the Prognostic Risk Model and
Immune Infltration. We calculated scores for TCGA cohort
samples at diferent risk levels in terms of 22 immune cells
(Figure 6(a)), and the higher risk group had higher immune
cell scores in some cells including CD8 Tcells. Additionally,
we also found higher immune scores in the high-risk group
(Figure 6(b)). Immune checkpoint inhibitor therapy has
gradually become the dominant method of systemic ccRCC
treatment options [6]. Hence, the immune checkpoint genes
in the high- and low-risk groups were analyzed, and the
result showed signifcant diferences in some immune
checkpoint genes (Figure 6(c)). Next, as shown in
Figure 6(d), the high-risk group got a higher TIDE score

than the low-risk group, which indicated that the high-risk
group was more likely to have immune escape and less likely
to beneft from immunotherapy.

3.7. Establishment and Validation of a Nomogram for Pre-
diction of OS. Univariate and multivariate Cox regression
analyses of the risk score and clinicopathological charac-
teristics revealed that M stage, age, and the risk score were
signifcant prognostic factors (Figures 7(a) and 7(b)). For
quantifying the risk assessment and survival probability of
ccRCC patients, we combined the risk score with other
clinicopathological features to establish a nomogram
(Figure 7(c)). Moreover, the results suggest that the risk
score had the strongest infuence on survival prediction.
Furthermore, the calibration curve was adopted to evaluate
the prediction accuracy of the model. It can be observed
that the predicted calibration curves of the three calibration
points at 1, 3, and 5 years were nearly coincident with the
standard curve, which suggests the good performance of
the nomogram (Figure 7(d)). From the results of decision
curve analysis (DCA), the risk score and nomogram pro-
vided notably higher benefts than the extreme curves. In
contrast to other clinicopathological characteristics, both
the nomogram and the risk score exhibited the most
powerful survival prediction ability (Figures 7(e) and 7(f )).
Tese data demonstrate that our prognostic risk model is
reliable and efective at predicting the prognosis of ccRCC
patients.

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*
*

*

*

*

*

**

**

**
**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**
**

**

**

**

**

**

**

**

** **

**

**

**

**

**
**

**

**

**

**

**

**

**

**

**

**

**
**

***

***

***
***

***
***

***
***

***
***
***

***

***

***
***

***
***
***
***
***
***

***

***

***

***

***

***
***
***
***
***
***
***
***

***
***

***

***
***

***
***

***

***
***
***
***
***
***
***
***

***

***
***

***
***

***
***
***
***

***

***
***

***

***

***
***
***

***
***
***
***
***
***

***

***

***

***

***
***
***

***
***

***

***
***

***

***

***

***
***
***
***

***
***

***

***
***

***
***

***
***
***

***
***
***
***
***
***

***
***

***

***
***

***
***

***

***
***
***
***
***
***
***
***

***
***

***

***
***

***

***

***

***
***
***

***

***

***

***

***

***
***
***
***

***
***
***

***
***
***

***
***

***
***

***

***

***
***

***
***
***

***
***
***

***
***

***

***
***

***

***
***
***
***
***
***
***

***
***

***
***

***
***

***

***
***

***

***

***

***

***

***

***

***

***

***

−1 −0.5 0 0.5 1

B cells naive
SLC9A1

B cells memory
Plasma cells
T cells CD8

T cells CD4 memory resting
T cells CD4 memory activated

T cells follicular helper
T cells regulatory (Tregs)

T cells gamma delta
NK cells resting

NK cells activated
Monocytes

Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells resting
Dendritic cells activated

Mast cells resting
Mast cells activated

Eosinophils
Neutrophils

B 
ce

lls
 n

ai
ve

SL
C9

A
1

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
m

em
or

y 
re

sti
ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r
T 

ce
lls

 re
gu

la
to

ry
 (T

re
gs

)
T 

ce
lls

 g
am

m
a d

el
ta

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tr

op
hi

ls

(d)

CHEMOKINE_SIGNALING_PATHWAY
COMPLEMENT_AND_COAGULATION_CASCADES
HEMATOPOIETIC_CELL_LINEAGE

LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION
TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY

pathway

CCL19
CCL21
CXCL14

SLC9A1

C2
SERPINE1
F3
PLAU
C1R
C1S
CFH
F13A1
C7
BDKRB2

MME
EPO
CD44
IL6
ITGA5

MMP9
MMP2
MYL9
CLDN2
CLDN10

IL6
LBP
CTSK

SLC9A1

1
2
3
4
5

Row-Zscore Expression

0
1
-1
-2

2

(e)

Figure 2: Expression of SLC9A1 correlates with the immune score and promotes immune cell infltration. (a) Comparison of 22 types of
immune cell scores with high and low expression of SLC9A1. (b) Comparison of immune cell infltration between high and low expression
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4. Discussion

SLC9A1 expression and potential function are becoming
increasingly important in various cancers. For instance,
tumor tissues showed signifcantly higher SLC9A1 ex-
pression than normal tissues in HCC and revealed that
SLC9A1 expression can serve as a crucial prognostic factor
for immunotherapy against HCC [24]. By contrast, as
a novel prognostic biomarker in colorectal cancer, a lower
level of SLC9A1 mRNA expression was observed [25].
According to analysis of TCGA data and qRT-PCR analysis
in this study, SLC9A1 was downregulated in ccRCC. Prior
research has shown that cell proliferation, motility, sur-
vival, and metabolism are all under control by the mTOR

signaling pathway, and SLC9A1 may contribute to mTOR’s
tumor-promoting efects [17, 26, 27]. Te mTOR inhibitors
have been approved as a therapeutic option for metastatic
ccRCC [28]. Given this, this relationship between SLC9A1
and the mTOR pathway in ccRCC is worth investigating. By
analyzing genes related to prognosis step by step using Cox
regression, Lasso regression, K–M survival analysis, and
multi-cox regression, we constructed a prognosis gene
panel with eleven genes having a prognostic risk score
model (including COL6A2, EXTL3, HEATR6, HSPG2,
MAML3, PPP1R18, RCC2, SEMA7A, SERPINH1, TLN1,
and TM9SF4). Additionally, the prognostic risk model was
used to determine the risk scores for TCGA cohort and
ICGC cohort patients, and a high- and low-risk subgroup
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for ccRCC patients was identifed. Based on the K–M
survival analysis and ROC curve, the eleven genes exhibited
efective and reliable predictive abilities in the training set,
with a signifcantly shorter OS in high-risk patients than
that in low-risk ones. Furthermore, the association of the
prognostic risk model with clinicopathological character-
istics was verifed. Te results revealed association of the
risk score with clinicopathological characteristics. Te risk
Score and other clinicopathological characteristics were
combined to establish a nomogram, and the calibration
curve showed the efectiveness of the nomogram. We also
used DCA to evaluate the models, and the results showed
that the constructed prognostic risk model is strong and
generalizable.

In liver HCCs, SLC9A1 was strongly related with im-
mune cell infltration [24]. SLC9A1 blockade boosts im-
munity to glioma tumors by restoring oxidative stress in
myeloid cells [29]. During this research, we found that the
highly expressed group of SLC9A1 had higher immune
infltration in tumor samples and was closely associated with
multiple immune cell scores. Alternatively, SLC9A1 par-
ticipated in partial immune-related signaling pathways.
Immune cell infltrating tumors play an important prog-
nostic role [30]. Terefore, we explored the immune sig-
natures of the prognostic risk model. According to the
results, the high-risk group presented a stronger immune
cell infltration and got a higher TIDE score, which indicated
that the group was less likely to beneft from immuno-
therapy. Tese results may spark novel ideas for research,
diagnosis, and treatment of ccRCC.

Eleven genes, COL6A2, EXTL3, HEATR6, HSPG2,
MAML3, PPP1R18, RCC2, SEMA7A, SERPINH1, TLN1,
and TM9SF4, were selected as important prognostic
markers. COL6A2 is a member of the Collagen VI family
and widely expressed in various cancers and promotes
cancer progression. COL6A2 was also positively associated
with an increased risk in the model of the current study
(coefcient> 0). Zhong et al. found an up-regulation of
COL6A2, which could be a factor in poor prognosis in
metastatic ccRCC [31]. Exostosin-like glycosyltransferase 3
(EXTL3), belonging to the EXTfamily, takes a crucial part in
predicting the prognosis of various cancers and immune
defciencies [32], but its role in ccRCC remains unknown.
HEAT repeat containing 6 (HEATR6) is part of a highly
expressed breast cancer amplicon. Prior research indicated
that endometrial tumors from African-American women
express elevated levels of HEATR6 [33]. Tere are few re-
search studies of HEATR6 in ccRCC. A recent study showed
that heparan sulfate proteoglycan 2(HSPG2) participates in
tumor and stromal cell binding to the extracellular matrix of
ccRCC, and HSPG2 showed the strongest binding to FN1,
COL6, and COL12 in all cells [34]. Zhang et al. confrmed
that silencingMAML3 suppresses the proliferation of gastric
cancer by acting as a transcriptional coactivator in the Notch
signaling pathway [35]. Genetic alterations in MAML3 and
the Notch pathway in which it resides also appear to give
a better prognosis for patients with ccRCC [36]. As a bio-
marker for immunotherapy, protein phosphatase 1 regu-
latory subunit 18 (PPP1R18) serves as an oncogenic role in
ccRCC andwas signifcantly related with immunity [37].Te
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Figure 4: Construction of the prognostic risk model in TCGA cohort and ICGC cohort. (a) Te trajectory of each gene coefcient with
lambda. (b) 10-fold cross-validation was used to fnd the best values for the penalty parameter. (c) Te Kaplan–Meier (K–M) survival curve
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literature confrmed that chromosome condensation 2
(RCC2) was an oncogene and took a crucial part in pro-
moting the proliferation of lung adenocarcinoma, esopha-
geal squamous cell carcinoma, and acute myeloid leukemia
[38]. Te GPI-anchored semaphorin 7A (SEMA7A) afects
infammatory diseases, and Wang et al. found association of
a high SEMA7A level with poor outcomes in ccRCC [39].
Serpin peptidase inhibitor clade H member 1 (SERPINH1),
also known asHSP47, belongs to the serpin superfamily. Te
level of SERPINH1 is signifcantly elevated at the four TNM

stages of ccRCC tissues and strongly correlates with un-
favorable clinical outcomes [40].Te talin 1 (TLN1) receptor
mediates cell adhesion, regulates integrin signaling, and
promotes metastasis in various cancers, such as prostate,
colon, and oral cancer [41]. According to Guazzi et al.,
transmembrane 9 superfamily 4 (TM9SF4) is a highly
specifc cancer biomarker that can be adopted to detect and
stage gastrointestinal cancers [42], and its role in ccRCC
remains unclear. Te results of the present study show that
these 11 genes are related with the prognosis of ccRCC
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patients, but the exact mechanism still involves a huge
network of gene regulation, which needs further exploration.

Because of the sample specifcity of ccRCC, the dataset
that could be selected for this study was small. Further
validation of how SLC9A1 mediates mTOR signaling in
ccRCC through ex vivo experimental data will be the di-
rection of our subsequent studies. We also expect more
scholars to explore this direction and more relevant datasets
in the future for early validation of this risk model in
a clinical cohort.

5. Conclusion

In summary, we have constructed a risk model consisting of
11 genes based on SLCA9A1 and mTOR signaling-related
genes in ccRCC, which has great potential for prognostic
assessment in ccRCC. Te model can guide clinical im-
munotherapy to accurately identify high-risk patients for
early clinical intervention.
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