
Research Article
Prognostic 7-SLC-Gene Signature Identified via Weighted Gene
Co-Expression Network Analysis for Patients with
Hepatocellular Carcinoma

Lingfeng Xiong,1 Yongping Luo,1 Tianbai Yuan,2 Weipeng Lin,1 Bohui Lin,1 Chen Wu,1

Yuyou Duan ,3 and Yimeng Ou 1

1Department of Hepatobiliary Surgery, Te First Afliated Hospital of Guangdong Pharmaceutical University,
Guangzhou, China
2Department of Tyroid and Breast Surgery, Ward 1, Weifang People’s Hospital, Weifang, China
3Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine,
South China University of Technology, Guangzhou, China

Correspondence should be addressed to Yuyou Duan; yuyouduan@scut.edu.cn and Yimeng Ou; yimengou@126.com

Received 15 August 2022; Revised 13 October 2022; Accepted 24 November 2022; Published 17 February 2023

Academic Editor: Tian Yang

Copyright © 2023 Lingfeng Xiong et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Background. Solute carrier (SLC) proteins play an important role in tumor metabolism. But SLC-associated genes’ prognostic
signifcance in hepatocellular carcinoma (HCC) remained elusive. We identifed SLC-related factors and developed an SLC-
related classifer to predict and improve HCC prognosis and treatment. Methods. From the TCGA database, corresponding
clinical data andmRNA expression profles of 371HCC patients were acquired, and those of 231 tumor samples were derived from
the ICGC database. Genes associated with clinical features were fltered using weighted gene correlation network analysis
(WGCNA). Next, univariate LASSO Cox regression studies developed SLC risk profles, with the ICGC cohort data being used in
validation. Result. Univariate Cox regression analysis revealed that 31 SLC genes (P< 0.05) were related to HCC prognosis. 7
(SLC22A25, SLC2A2, SLC41A3, SLC44A1, SLC48A1, SLC4A2, and SLC9A3R1) of these genes were applied in developing a SLC
gene prognosis model. Samples were classifed into the low-andhigh-risk groups by the prognostic signature, with those in the
high-risk group showing a signifcantly worse prognosis (P< 0.001 in the TCGA cohort and P � 0.0068 in the ICGC cohort). ROC
analysis validated the signature’s prediction power. In addition, functional analyses showed enrichment of immune-related
pathways and diferent immune status between the two risk groups. Conclusion. Te 7-SLC-gene prognostic signature established
in this study helped predict the prognosis, and was also correlated with the tumor immune status and infltration of diferent
immune cells in the tumor microenvironment. Te current fndings may provide important clinical indications for proposing
a novel combination therapy consists of targeted anti-SLC therapy and immunotherapy for HCC patients.

1. Introduction

Liver cancer ranks as the second highest cause of tumor-
resulted mortality [1]. Hepatocellular carcinoma (HCC)
constitutes 90% of liver cancer cases. Despite signifcant
advances in therapeutic approaches, the recurrence, pro-
gression, and metastasis rates of HCC remain high, leading
to a poor HCC prognosis [2]. At present, the main treatment
options available for HCC are systemic transplantation, drug

therapy, transcatheter arterial chemoembolization and ra-
diotherapy, ablative therapy, and surgical resection [3].
However, a great number of HCC patients are already at an
advanced stage by the time of diagnosis. Due to the complex
molecular mechanisms and cellular heterogeneity of HCC,
traditional clinical indicators such as AFP, TNM staging,
and vascular invasion have limited ability for predicting the
prognosis of HCC.Terefore, for facilitating early detection,
predicting the prognosis, and guiding individualized
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treatment, novel, andmore accurate methods are required to
understand more clearly HCC developmental
mechanisms [4].

After G-protein-coupled receptors, the solute carrier
(SLC) superfamily encodes the second largest membrane
transporter protein and consists of 65 families and ap-
proximately 400 SLC transporter proteins that mainly
maintain the stability of the intracellular environment
through facilitating various soluble molecular substrates
exchange across the lipid membrane [5]. Approximately
80% of small chemical molecules are functionally SLC
proteins-dependent [6]. SLC proteins participate in various
diseases, for instance, cardiovascular diseases, mental dis-
orders, cancers, and some chronic diseases [7]. SLC proteins
play diferent roles in tumor development via regulation of
biological processes such as chemoresistance, angiogenesis,
proliferation, EMT, metastasis, migration, and immuno-
suppression as well as the regulation of regulating diferent
GFS, metalloproteinases (MMPs), TF, signaling cascades,
and cytokines [8]. However, the role and signifcance of the
SLC family in HCC was not completely clear. How genes are
associated in diferent modules and clinical phenotypes
could be systematically described by Weighed gene ex-
pression network analysis (WGCNA) [9]. Clinical data in-
formation of HCC patients with as well as their mRNA
expression profles were obtained publicly from databases.
Subsequently, WGCNA was performed using data from the
TCGA training cohort to screen module genes associated
with tumor staging, and analysis of univariate and LASSO
Cox data have both shown that SLC22A25, SLC2A2,
SLC41A3, SLC44A1, SLC48A1, SLC4A2, and SLC9A3R1
were prognostic SLC markers, which were validated using
data from the ICGC. To assess the underlyingmechanisms of
these genes, we then performed a functional enrichment
analysis.

2. Materials and Methods

2.1.AcquisitionofRNA-seqData. TeRNA-seq data (FPKM:
fragments per kilobase of exon per million mapped frag-
ments) and related clinical information of HCC patients
originated from the TCGA (https://portal.gdc.cancer.gov/
repository) and ICGC databases (https://dcc.icgc.org/
projects/LIRI-JP). For this study, 231 HCC cases from the
ICGC dataset and 371 HCC tissues, and 50 adjacent healthy
tissues from the TCGA dataset were selected. Single-cell
RNA sequencing (scRNA-seq) dataset (GSE149614) in-
cluded 25,479 genes and 71,915 cells from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE149614).

2.2. Co-Expression Network of SLC Family Genes.
Previously, using the human gene database GeneCards
(https://www.genecards.org/), SLC genes have been identi-
fed [10], and a co-expression network targeting the SLC
family was constructed using the WGCNA R package
(version 1.68) [9]. Initially, 397 genes of the SLC family in
the TCGA-LIHC cohort were selected as input genes for

network construction, and between a gene pair, the Pearson
correlation similarity matrix was determined and increased
to a soft threshold according to the scale-free topological
network criteria. Following this, clustering of the adjacency
matrix was carried out with topological overlap (1-TOM)
plus dissimilarity (1-TOM). Furthermore, to identify gene
modules on the dendrogram, a dynamic tree-cutting algo-
rithm was introduced, with 30 being set as the minimum
gene number in each module. In each module, module
eigengene (ME) refers to the main component in the gene
expression. A Pearson correlation was evaluated between
MEs and clinical features (tumor stage, tumor grade, and
AFP), and the most relevant modules were selected.

2.3. Developing and Validating a Gene Model with the SLC
Family. Genes not included in the ICGC database were
excluded from the modules. Our results from the univariate
Cox regression study suggested a relation of SLC genes to
a prognostic efect on overall survival; LASSO-Cox re-
gression analysis was conducted subsequently for genes with
P values of <0.05 via the glmnet R package [11] to avoid
overftting. Te risk score of HCC patients was evaluated
using the SLC risk score�Ʃ(βi∗Expi), βi is the LASSO co-
efcient of the gene, whereas Expi is the level of expression of
a gene. Using the median risk score, training cohort patients
were classifed into groups of low-risk and high-risk. Sub-
sequently, the diference in OS of the two groups was es-
timated based on Kaplan–Meier and ROC curves.
Subsequently, the validation of the SLC risk model in the
ICGC cohort was operated.

2.4. Genomics and Genome Studies Using KEGG and GO.
To determine biological functions (which include cellular
components [CCs], molecular functions [MFs], and bi-
ological processes [BPs]) and pathways (P values of <0.05
indicated signifcant enrichment), we analyzed Gene On-
tology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses on genes identifed
using univariate Cox regression analysis in clusterProfler R
package (version 3.14.3) [12].

2.5. Analysis of scRNA-seq Data. ScRNA-seq analysis was
carried out in the “Seurat” R package [13]. Te study in-
cluded at least 10,000 samples containing detected genes. As
part of quality control (QC), the following criteria were
introduced: (1) excluding genes detected in fewer than fve
cells; (2) excluding cells detected fewer than 200 genes
overall. By normalizing the merged data frst and then
identifying variable features with the FindVariableFeature
function, we collected the frst 2000 highly variable genes
(based on variance stabilization transformation). We also
used the scale data function to scale all the genes, and
principal meta-analysis with RunPCA function to reduce the
dimensionality of the frst 2000 highly variable genes
screened. To fnd cell clusters, we chose DIM� 1 :15 and
used the functions “FindNeighbors” and “FindCluster”
(resolution� 0.5). Next, DIM� 1 :15 was selected and
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further downscaled using UMAP.Ten, the FindAllMarkers
function with logFC� 0.25 (diference ploidy) and min-
pct� 0.25 (expression ratio of minimum diference genes)
was used to screen marker genes in 34 subgroups. In the fnal
step, an adjusted P< 0.05 was used for screening marker
genes. In addition to cluster classifcation, we identifed and
annotated the diferent cell clusters via “Celldex” and
“Singler” packages in R. Ten, the Monocle package [14]
analyzed single-cell trajectory data to discover cell-state
transitions and their relationship to the seven SLC genes.

2.6. Gene Enrichment Analysis. Using the enrichplot and
clusterProfler R packages, an analysis of gene set enrich-
ment (GSEA) was conducted to identify KEGG pathway
genes and enrich marker genes between risk groups. Mo-
lecular Signature Database (MSigDB) was used to obtain
“c2.cp.kegg.v7.4.symbol” and “h.all.v7.4.symbol” gene
sets [15].

2.7. Validation Using the Human Protein Atlas Database.
Immunohistochemical (IHC) staining images of the markers
genes in HCC tissues [16] from the Human Protein Atlas
(HPA) database (https://www.proteinatlas.org/) was
searched for, which allowed a direct observation of the
localization of target proteins.

2.8. Estimation of Immune Cell Infltration. Data regarding
tumor immune cell infltration were available on TISIDB
(https://cis.hku.hk/TISIDB/download.php), and the ESTI-
MATE package in R was used to calculate immune scores,
ESTIMATE scores, and tumor purity for each sample to
quantify the tumor immune microenvironment. In addition,
between the high- and low-risk groups of the TCGA and
ICGC cohorts, diferences in immune cell infltration were
compared.

2.9. Te Correlation between the SLC Gene Signature and
Immune Checkpoints. From the UCSC database (https://
xenabrowser.net/), we downloaded the uniformly normal-
ized pan-cancer data set TCGA TARGET GTEx (PANCAN,
N� 19131,G� 60499), and the expression data of 60 genes of
two types of immune checkpoint pathways (inhibitory, 24;
stimulatory, 36 [17]) and the marker gene expression data of
each sample were extracted from the dataset. Te samples
collected from primary solid tumors, primary tumors, and
primary blood-derived cancer (bone marrow or peripheral
blood) were screened. All healthy samples were refned, and
their expression values were log2 (x+ 0.001)-transformed. In
addition, the Pearson correlation coefcients were
calculated.

2.10. Somatic Alteration Data Collection and Analyses.
Somatic alteration data of the TCGA training cohort were
extracted from the Genomic Data Commons data portal
(https://gdc.cancer.gov/about-data/publications/mc3-2017)
[18], and the maftools R package [19] was used to identify

and visualize low-risk and high-risk SLC mutations in the
top 20 highest mutation frequencies.

2.11. Analysis of the Response to Chemotherapy Drugs. To
determine the sensitivity of samples to various chemo-
therapeutic agents, R package pRRophetic predicted drugs
with half-maximal inhibitory concentrations (IC50) in pa-
tients of HCC in diferent risk groups. Multiple studies have
used this algorithm previously and have been widely
published [20].

2.12. Statistical Analyses. R software (version R.4.1.0) per-
formed all the statistical analyses in this study. A two-sidedP

value of <0.05 referred to a statistical signifcance. In paired
comparisons, we employed the Wilcoxon test. To compare
overall survival, log-rank tests, and Kaplan–Meier curves in
this study were applied with the survival and survminer R
packages.

3. Results

3.1. Identifcation of SLC Family Genes Associated with the
Prognosis of HCC. Figure 1 shows the study fow chart.
Ultimately, we included 231 patients with HCC from the
ICGC (LIRI-JP) cohort and 365 patients with HCC from the
TCGA-LIHC cohort. We identifed 397 well-defned SLC
genes, and their expression data were taken from the
TCGA-LIHC dataset.

3.2. Co-Expression Network of SLC and Clinical Features.
WGCNA was performed using data from the TCGA-LIHC
cohort. Tree co-expression models were clustered in the
hierarchical clustering tree (Figure 2(a)). According to the
MEturquoise module, relatively strong positive correlations
with tumor stage (Cor� 0.28, P� 4e− 7) and grade
(Cor� 0.31, P� 3e− 8) were found (Figures 2(b) and 2(c)). A
total of 105 genes were included in theMEturquoise module.
As shown in Figure 2(d), 90.5% (95/105) genes in the
MEturquoise module were co-expressed in the ICGC (LIRI-
JP) dataset and were subsequently subjected to univariate
Cox regression analysis. Tirty one prognosis-associated
genes were identifed (P value <0.05) (Figure 2(e)). Next,
these 31 genes were subjected to GO and KEGG analyses.
Organic anion transport was the main enriched BP term,
whereas parietal plasma membrane and anion trans-
membrane transport protein activity were the main enriched
CC and MF terms, respectively (Figure 2(f )). GABAergic
synapses, central carbon metabolism in cancer, and bile
secretion were signifcantly enriched KEGG pathways
(Figure 2(g)).

3.3. Seven SLC Genes Were Verifed in HCC by scRNA-seq
Analysis. Te dataset GSE149614 consists of 71,915 single
cells that were then subjected to scRNA-seq analysis, and
unsupervised classifcation was successful in classifying the
cells into 34 clusters (Figure3(a)). Tese 34 cell clusters
showed diferent expression patterns (Figure 3(c)). Our
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analysis of CellMarker markers determined the nine cell types
using “celldex” and “SingleR” markers, namely, 1) hepato-
cytes; 2) B_cell; 3) endothelial_cell. 3) endothelial_cells; 4)
iPS_cells; 5) macrophage; 6) monocyte; 7) NK_cell; 8)
smooth_muscle_cells; 9) T_cells (Figure 3(b)). Moreover, we
evaluated the diferential expression characteristics of the nine
cell types (Figure 3(d)) and identifed the expression of 7 SLC
genes in the nine cells (Figures 3(e), 4(a)–4(o)).We found that
the expression of 7 SLC genes was higher in hepatocytes and
iPS_cells. Tis may be related to the involvement of SLCs in
the conversion of CSCs to HCC [21].

3.4. Construction of a 7-SLC-Gene Signature Using the
TCGA-LIHC Cohort. Due to the large sample size of the
TCGA cohort, from the ICGC cohort, 231 samples were
included in the validation set, and from the TCGA-LIHC
cohort, 365 HCC samples have been contained in the
training set. LASSO-Cox regression analysis was performed
on 31 SLC genes related to prognosis (Figures 5(a) and 5(b)),
and seven genes were fnally selected for constructing an
SLC-gene-based risk model. Te risk scores of patients were
evaluated using the following formula: SLC risk score-
� expression of SLC22A25∗−0.01176 + expression of
SLC2A2∗−0.00076 + expression of SLC41A3 ∗

0.07365 + expression of SLC44A1∗0.03687 + expression of
SLC48A1∗0.01975 + expression of SLC4A2∗
0.00288 + expression of SLC9A3R1∗0.00123 (Figure 5(c)).

Te risk scores were signifcantly higher in patients who
were deceased than in those who survived (P value <0.001)
(Figure 5(d)). Te heat map in Figure 5(e) shows a com-
parison of tumor and normal tissues in the expression levels
of the 7 SLC-related genes. Patients in the training cohort
were categorized into low- and high-risk groups by their
median risk score (Figure 6(a)), and a higher risk score
meant a greater likelihood of a shorter survival or death
(Figures 6(b) and 6(c)) demonstrated seven SLC genes’
expression profles in the two risk groups. Principal com-
ponent analysis showed a bidirectional distribution of pa-
tients in the diferent risk groups (Figure 6(d)). Te
predictive performance of the risk score was assessed based
on time-dependent ROC curves, with AUC values of 0.75,
0.67, and 0.68 for 1, 2, and 3 years, respectively (Figure 6(e)),
indicating that patients with HCC were accurately predicted
to survive by the SLC-gene-based signature. A prognostic
nomogram was additionally developed (Figure 6(f)), and
calibration curves demonstrated that the prediction of 1-
and3-year OS was similar to the ideal curve, indicating that
patients with HCC were accurately predicted by the no-
mogram (Figures 6(g) and 6(h)).

TCGA-LIHC
50 normal samples and 365 tumor samples

MEturquoise models were selected
(105 genes)

397 SLC family genes

95 genes

7-gene signature model

Survival analysis Function analysis

Building and validating a predictive nomogram

31 genes significantly correlated with
overall survival (pvalue<0.05) 

Co-expression networks construction

ICGC-LIHC
231 tumor samples

Univariate Cox regression analysis

Lasso penalized cox analysis

Validation

Figure 1: Workfow of this study.
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3.5. Verifcation of the 7-Gene Signature in the ICGC Cohort.
Te accuracy of the constructed risk signature was validated
using data from the ICGC dataset though dividing patients into
the groups at high- or low-risk as outlined above (Figure 7(a)).
We found similar dot plots and heatmaps to those in the TCGA
cohort (Figures 7(b) and 7(c)). Using principal component
analysis, patients in both subgroups showed a distinct distri-
bution, similar to the TCGA cohort results (Figure 7(d)). As
a result, the AUC of the 1-, 2-, and 3-year OS prediction were
0.81, 0.72, and 0.73, respectively (Figure 7(e)). Furthermore,
a prognostic nomogramwith calibration curves was constructed
(Figures 7(f)–7(h)), and the nomogram accurately predicted the
outcome of HCC patients. In addition, an analysis using
Kaplan–Meier survival data (Figure 8(a), P< 0.0001) revealed
that the high-risk group of the TCGA training cohort had
a worse HCC prognosis for HCC. Validation results on the
ICGC cohort were similar (Figure 8(b), P � 0.0068).

3.6. Association of the Risk Signature with Clinical
Characteristics. Considering the diferent clinical characteris-
tics associated with prognosis in the two risk groups, we in-
vestigated the predictive ability of HCC-independent prognostic
factors and the risk signature (Figure 8(c)). In addition, whether
the clinical characteristics of HCC were associated with the risk

signature was explored. TNM stage and tumor grade were both
higher in the high-risk group (Figures 8(d)–8(f)). Te current
data indicated that the risk signature could be either used in
combination with the clinical indicators available at present or
serve as an independent prognostic factor.

3.7. GSEA for the Seven-Gene Signature. TeGSEA technique
was applied to the high-risk and low-risk groups of the TCGA
training set for studying the functional enrichment of SLC genes.

Te R package “limma” detected 12,363 diferentially
expressed genes (DEGs) in two risk groups (Figure 9(a)). Te
KEGGpathways were identifed byGSEA, and complement and
coagulation cascades, retinol metabolism, chemical carcino-
genesis, and cytochrome P450 pathways were found to be
signifcantly enriched (Figures 9(b) and 9(c)). On verifying these
results in the ICGC cohort, 13,071 DEGs were identifed
(Figure 10(a)), and bile secretion, chemical carcinogenesis,
complement and coagulation cascades, and cytochrome P450
pathways were signifcantly enriched (Figures 10(b) and 10(c)).

3.8.Correlation between SomaticVariations and the SLCGene
Signature. On waterfall plots, in the low- (Figure 9(g)) and
high-SLC-risk (Figure 9(e)) subgroups, we identifed the top 20
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Figure 2: Identifcation of the candidate SLC-related genes in the TCGA cohort. (a) Clustering dendrograms showing genes with similar
expression patterns were clustered into co-expression modules. Genes not assigned a module are indicated by gray modules. (b, c) Te
module-trait relationships reveal the relationship between each gene module eigengene and the clinical characteristics determined by the
TCGA-LIHC. (d) Te fraction of module genes not included in the ICGC cohort is shown in the venn diagram. (e) Gene expression along
with OS is shown in forest plots between univariate Cox regression analysis. (f, g) Analyses of gene ontology (GO) that enriched the
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geneswith the highestmutation frequencies.Terewere several
genes frequently mutated in both groups, including TP53,
TTN, CTNNB1, MUC16, PCLO, OBSCN, LRP1B, ABCA13,

ALB, CSMD3, XIRP2, FLG, and RYR2. Among these genes, ten
mutated genes (TP53, MUC16, PCLO, OBSCN LRP1B,
ABCA13, CSMD3, XIRP2, FLG, and RYR2) showed a higher
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mutation frequencies and richer mutation profles in the high-
risk group. Nevertheless, two genes (CTNNB1 and ALB) with
mutation had lower mutation frequency and narrower mu-
tation profles in the high-risk group.

3.9. Te Relation of SLC-Gene-Based Signature to the Tumor
Immune Microenvironment and Immune Cell Infltration.
Te ESTIMATE algorithm was used to calculate the
proportion of 28 infltrating immune cells in diferent
risk groups to examine the association between the SLC-
gene-based risk signature and the immune

microenvironment. In ICGC and TCGA cohorts, the
proportion of activated CD4 Tcells, central memory CD4
T cells, regulatory T cells, myeloid-derived suppressor
cells, natural killer T cells, and activated dendritic cells
were higher in the high-risk group, and that of efector
memory CD8 T cells, activated B cells, memory B cells,
natural killer cells, eosinophils, and neutrophils was
lower in the high-risk group than in the low-risk group
(Figures 9(d), 9(f ) and 10(d), 10(e)). In addition, the
relationship between SLC-related genes and immune
checkpoint genes in patients with HCC was examined
using TCGA pan-cancer data (Figure 11).
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Figure 6: Continued.
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3.10. Prediction of Chemotherapy Treatment Response in
Diferent Risk Groups. For patients with advanced liver
cancer, chemotherapy is a standard treatment. We analyzed
the efects of 24 chemotherapeutic agents on HCC in the
GDSC database based on the drug “pRRophetic” software
package to predict the IC50 of chemotherapeutic agents in
HCC patients from diferent SLC risk score groups in the
training and testing cohorts. Lower IC50 indicated higher
sensitivity to chemotherapeutic drugs. In both TCGA and
ICGC cohorts, a higher sensitivity of the high-risk group to
sunitinib, cyclopamine, VX-680, imatinib, S-trityl-L-cyste-
ine, Z-LLNIe-CHO, GNF-2, and CGP-082996 was observed,
and WZ-1-84 than low-risk group (P< 0.05, Figures 12(a)
and 12(b)).

3.11.MultidimensionalValidationof theKeyGenes in theHPA
Database. To determine the protein expression of the 7 SLC
genes, using the HPA database, images of IHC were ana-
lyzed. We found that SLC22A25 and SLC2A2 were intensely
stained in normal tissues, whereas SLC44A1, SLC9A3R1,
SLC48A1, SLC41A3, and SLC4A2 were deeply stained in
HCC tissues (Figure 13). Tese results suggested that these
seven genes were specifc markers for SLC.

4. Discussion

HCC, a polygenic disease, is a complex, multistep pro-
cess, and the late diagnosis of HCC is a major cause of
poor prognosis. Developing new tools for diagnosing
HCC can improve its prognosis. High-throughput se-
quencing facilitates precise treatment, and its use to mine
genetic features to predict the prognosis of HCC has
become a focus of research. According to a previous
study, Zhang et al. constructed a 10-immune-related-
lncRNA model using the TCGA and GSE76427 datasets
[22]. Li et al. established a 6-gene model related to energy
and amino acid metabolism through analyzing TCGA,
GSE76427, and ICGC datasets [23]. Liao et al. applied the
TCGA database and constructed a 4-gene model based

on methylation-related diferentially expressed lncRNAs
(MDEs) [24]. Wu et al. analyzed TCGA data, 37 HCC
tissues from patients in the Shandong Provincial Hos-
pital, and 11 healthy liver tissues collected from surgi-
cally treated patients with liver trauma, and they
developed a 4-gene model based on autophagy-related
lncRNAs [25]. Song and Chu used the GSE16757,
GSE14520, and ICGC datasets and built a 4-gene model
based on autophagy-related lncRNAs [26]. Jiang et al.
developed a hypoxia-related10-gene model using the
TCGA, GSE14520, and ICGC datasets [27]. Despite
relatively limited studies of SLC proteins in recent de-
cades, the SLC superfamily is now known to be involved
in tumourigenesis, including apoptosis, invasion, pro-
liferation, metastasis, chemoresistance, and other
cancer-related processes. Overexpression or suppression
of SLC may ofer novel strategies for diagnosis, treat-
ment, or prognosis [28]. Two TS-SLC genes, SLC29A1
(ENT1) and SLC8A1 (NCX1), are downregulated in
tumor cells (TCS) via the EMT-induced zinc fnger E box
binding homology box 2 (ZEB2)/transforming growth
factor (TGF)-BR/nuclear factor (NF)-kB pathway, or
miR-223 in HCC, respectively [29]. As a result of en-
hanced amino acid uptake by SLC38A1 and SLC7A5
(LAT1), and in HCC and TCS grows faster due to YAP/
TAZ pathway activation [30]. Te association between
metal ion-mediated tumorigenesis and regulation of
various metal transport proteins, including DMT1
(SLC11A2) for iron transport in HCC has been found
[31]. Te SLC13A5 gene encodes NaCT, which is seen as
a sodium-coupled citrate transporter. NaCT plays a role
in fatty acid synthesis, cellular glycolysis, gluconeo-
genesis cholesterol synthesis, and mitochondrial energy
production in the liver [32]. A previous study observed
that in liver samples from patients with obesity with
insulin resistance and NAFLD, the mRNA expression of
SLC13A5 was signifcantly increased, and was correlated
with hepatic steatosis [33]. At the inner mitochondrial
membrane, the SLC25A13 gene encodes aspartate-
glutamate carrier 2 (AGC2) to facilitate the calcium-
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Figure 6: Prognostic analysis of the 7-gene signature model in the TCGA cohort. (a) Te distribution of risk scores within the training
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dependent exchange of cytoplasmic glutamate with
mitochondrial aspartate. Te SLC25A13 mutation could
not be compensated by other transporter systems in the
liver, which would also lead to HCC [34]. In HCC and
SLC1A5 directly regulates the mTOR pathway, sub-
sequent growth of HCC cells, and survival signals [35].
Tus, these studies suggested that SLC plays a role in the
development and progression of HCC. In this study, the
SLC family genes were comprehensively analyzed in
HCC and SLC genes associated with the clinical features
of HCC were identifed via WGCNA. In addition, a 7-
gene prognostic model of SLC (SLC22A25, SLC2A2,
SLC41A3, SLC44A1, SLC48A1, SLC4A2, and SLC9A3R1;
univariate Cox and LASSO regression algorithms) was
designed and validated. Te overall survival of training
and validation cohort patients was consistently lower in
the high-risk group, suggesting that the SLC-based
signature assessment of HCC prognosis was accurate
and generalizable. Furthermore, ROC analysis was
performed to validate the sensitivity and specifcity of the
prognostic signature.SLC2A2 encodes glucose trans-
porter protein 2 (GLUT2), which is associated with
glycolysis and gluconeogenesis in the liver via the
HNF4a-GLUT2 pathway that can afect the uptake and
utilization of glucose by HCC cells and is involved in the
systemic metabolism of cancer cachexia [36, 37]. Te
SLC4A2 gene encodes bicarbonate-chloride anion ex-
change protein 2 (AE2), which mediates proton leakage
across the Golgi membrane and allows the Golgi appa-
ratus to act as a proton reservoir in cancer cells, thereby
regulating the pH microenvironment of TCS and pro-
moting tumourigenesis and progression [38]. Malfunc-
tion of the acid-base homeostasis caused by SLC4A2 can
also afect mitochondrial gradients and trigger ROS
damage, leading to apoptosis, proliferation, and mor-
phological alterations [39]. SLC9A3R1 encodes the
sodium-hydrogen exchange regulator protein (NHERF1)
and directly interacts with the PTEN pathway, and its

deletion results in increased cell proliferation and Akt
activation. Terefore, NHERF1 plays a tumor-
suppressive role [40]. NHERF1 regulates Wnt signal-
ing through maintaining a low level of β-catenin protein
activation [41]. SLC9A3R1 regulates cancer cell pro-
liferation and metastasis by enhancing PTEN levels to
stimulate autophagy, subsequently inhibiting the PI3K-
AKT1-MTOR pathway [42]. Te SLC22 family proteins
are known as “drug” transporters. Tis family of organic
ion transporters mediated the excretion of drugs, en-
dogenous substances, and environmental toxins in vivo,
including the subgroups of OATs, OCTs, and OCTNs.
Te OATS4 member SLC22A25 is associated only with
bound hormones, making it a relatively single specifc
transporter protein [43]. SLC22A25 is found in the liver,
wherein high co-localization of glucuronide and sulfate
is found with androgens and other gonadal steroids [44].
SLC41A3 encodes a mitochondrial Na+-dependent Mg2+
efux system that regulates the intracellular Mg2+ ho-
meostasis [45]. Mg2+ binds to various proteins and is
involved in various cellular functions, including genome
stabilization and immune responses [46]. Aberrant Mg2+
levels in cancers have been detected and this could
promote cancer progression [47]. In several GEO
(GSE36376, GSE22058, GSE64041, GSE76427,
GSE63898, GSE14520, GSE54236) and ICGC (ICGC-
LIRI) datasets, an increase in SLC41A3 level was found in
tumor tissues compared to healthy tissues. A study by Liu
et al. demonstrated that HCC patients with low levels of
SLC41A3 expression have signifcantly better outcomes
(OS). Compared to healthy tissues, LIHC had a signif-
cantly lower DNA methylation level of SLC41A3, which
may account mainly for a high-expressed SLC41A3 in
tumor tissues [48]. SLC44A1 encodes choline
transporter-like protein 1 (CTL1) and is found in both
plasma and mitochondrial membranes. SLC44A1
transports choline in a sodium-ion-non-
dependentmoderate-afnity manner [49]. CTL1-
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Figure 7: Validation of the 7-gene signature model in the ICGC cohort. (a)Te distribution of risk scores within the testing cohort. (b) Vital
status and follow-up time for patients in two risk groups. (c) A comparison of normal and tumor tissues expressing the SLC gene. (d) PCA
plot of the training cohort. (e) ROC curve analysis of the seven-gene signature predicts overall survival in the training cohort. (f ) Te
nomogram is based on the seven-gene signature. (g, h) Nomogram calibration curves for HCC patients from ICGC cohorts predict an
overall 1- and 3-year survival.
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mediated choline transport is a critical step in synthe-
sizing phospholipids that form a plasma membrane.
Apoptosis can be induced by inhibiting choline uptake
[50]. Cancer cells have enhanced choline uptake via
CTL1, which promotes membrane phospholipid syn-
thesis and cell proliferation. Terefore, CTL1 could be
a new target molecule for cancer therapy [51]. SLC48A1
is a heme transporter mainly found in endosomes and is

involved in the transport of heme iron during iron
metabolism. It encodes a facilitator transporter protein
(HRG-1), which regulates the V-ATPase activity, en-
hances glucose transporter-1 (GLUT-1) transport, in-
creases glucose uptake and lactate production, and
promotes insulin-like growth factor I receptor (IGF-1R)
transport [52]. Furthermore, overexpression of SLC48A1
promotes invasion, migration, and glycolysis, and cancer
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Figure 10: Functional analysis in the ICGC cohort. (a) Volcano plot of diferentially expressed genes in low- and high-SLC risk groups based
on data from ICGC. (b, c) GSEA of KEGG pathways in high- and low-SLC risk groups. (d, e)Te violin plots display the scores of 28 immune
cells in two risk groups.
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cell growth, which are associated with less favorable
outcomes [53]. Still, this study had certain limitations.
We utilized a public database to conduct a retrospective
bioinformatics analysis, but it would be more convincing
if the SLC-gene-based risk signature was cross-validated

in more samples. In addition, the specifc biological role
of the seven prognostic SLC genes in HCC should be
validated via molecular and animal experiments.
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Figure 12: Analysis of cell line data from the GDSC database to
evaluate IC50 for chemotherapeutics in high-risk and low-risk
groups. (a) Treatment responses are evaluated by the new 7-
SLC-gene signature prognosis score in TCGA cohort. (b) Treat-
ment responses are evaluated by the new 7-SLC-gene signature
prognosis score in ICGC cohort.
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5. Conclusion

In conclusion, the 7-gene signature based on SLC genes showed
a satisfactory accuracy and generalizability in predicting the
survival outcomes of patients with HCC. In addition, in the
tumor microenvironment, the signature was related to the
tumor immune status and infltration of diferent immune
cells. Terefore, this study provided novel insights into de-
veloping SLC-based treatment strategies for HCC.
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