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Objective. Uterine corpus endometrial carcinoma (UCEC) is a frequent epithelial cancer in females.Te rate of UCEC occurrence
increases year by year and the age is getting younger and younger, which requires more active treatments to improve its prognosis.
Ferroptosis is a kind of regulatory cell death that relies on iron and may be triggered by sorafenib, which has been elucidated in
several cancers, but the mechanism of ferroptosis-related genes in UCEC has yet to be fully defned and will need more in-
vestigation.Methods. Te mRNA expression profles and accompanying clinical data of UCEC patients included in this research
were obtained from a publicly available database.We subsequently classifed the patients into experimental and training sets. Next,
utilizing the least absolute shrinkage and selection operator (LASSO) Cox regression model, we established the multigene features
of the TCGA experimental set and verifed them in the validation set. Results. Per the fndings of our investigation, the TCGA
experimental set cohort had four diferentially expressed genes (DEGs) that were linked to overall survival (OS). An analysis was
conducted using univariate Cox regression (with all variables corrected for P< 0.05). To stratify the patients into two distinct
categories, high- and low-risk, a diagnostic model premised on the identifed four genes was formulated. In contrast with the low-
risk population, the high-risk category exhibited a considerably lower OS (P< 0.0001). Te fndings of the multivariate Cox
regression analysis illustrated that the risk score independently served as a predictor of OS (HR> 1, P< 0.01). Te predictive
capability of the model was verifed by ROC curve analysis. Immune-related pathway enrichment was found using functional
analysis, which illustrated that the two risk groups had signifcantly diferent immunological statuses. Conclusions. A unique
model of genes linked to ferroptosis has the potential to be a treatment option for UCEC and can be utilized for the prognostic
prediction of the disease.

1. Introduction

Uterine corpus endometrial carcinoma (UCEC) is an epi-
thelial neoplasm that often develops in the endometrium of
females. Globally, the incidence of this condition is rising in
the reproductive system, while the average age at which it
frst appears is getting younger [1]. Te stage of the illness as
well as the specifc histology of the tumor play a signifcant
role in determining the prognosis for patients diagnosed
with UCEC. In comparison, the fve-year survival rate for

stages I and II UCEC is around 80–90% and 70–80%, re-
spectively, compared to the percentage of stage III and stage
IV illness, which is 20–60% [2, 3]. Estimating the prognosis
of UCEC has sparked the interest of numerous research
studies in the past that have made use of biomarkers.

Ferroptosis is a type of regulatory cell death (RCD) that
is reliant on iron and is caused by a potentially deadly
buildup of lipid peroxidation [4, 5]. Recently, triggering
ferroptosis in cancer cells has emerged as a potentially useful
treatment strategy that induces death, particularly in the case
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of malignant tumors [6, 7] that do not respond to standard
treatment. Tumor metabolism promotes immune evasion
via inducing T cell dysfunction and exclusion [8, 9]. In
addition to apoptosis and senescence, tumor cell ferroptosis
is a previously unappreciated mechanism for Tcell-mediated
tumor clearance in vivo. Wang et al. [10] reported that
cystine restriction may be a potential endogenous trigger for
tumor cell ferroptosis in the tumor microenvironment, but
the endogenous mechanism(s) triggering tumor cell fer-
roptosis remain to be defned in cancer patients. In addition
to the mechanisms that are known to activate ferroptosis,
a large number of genes that function as modulators or
indicators of ferroptosis have been uncovered. P53 is the
most studied oncogene and can promote or inhibit fer-
roptosis by regulating the transcription of its diferent target
genes [11]. Researchers found that downregulation of SQLE
are essential for p53-mediated tumor suppression [12]. Te
activation of SAT1 expression induces lipid peroxidation
and sensitizes cells to undergo ferroptosis upon reactive
oxygen species (ROS)-induced stress, which also leads to
suppression of tumor growth in xenograft tumor models
[13]. Furthermore, other genes such as GPX4 (GPX4) [14],
nuclear factor erythroid 2-related factor 2 (Nrf2) [11], and
NF-kB [15] are also reported to be closely associated with
ferroptosis. Furthermore, researchers have reported that the
process of ferroptosis was aberrantly regulated in UCEC
cells, and ferroptosis activator can bring out cell death in
UCEC cells [16, 17]. It is uncertain at this time, however,
whether or not these ferroptosis-related genes (FRGs) have
any link to UCEC patients’ prognoses.

In this research, we started by collecting the mRNA
expression patterns and the associated clinical data for
UCEC patients from an online database that is accessible to
the public. After that, we built a predictive polygenic sig-
nature of diferentially expressed genes (DEGs) linked to
ferroptosis in the TCGA cohort and verifed the model.
Lastly, we carried out a new prognostic model for four genes
linked to ferroptosis. Tis model was demonstrated to be
independently linked to OS in both the derived and vali-
dation set, which has implications for predicting UCEC
prognoses.

2. Materials and Methods

2.1. Data Acquisition. RNA-Seq expression data and clinical
follow-up data from UCEC patients were acquired from
TCGA using TCGA bio-links, until March 10, 2021. We
eliminated the samples that had no survival time or a sur-
vival time of 0.Te scaling approach that was included in the
“limma” R package was employed to conduct the normal-
ization of the gene expression profles. Te ID was converted
to gene symbol and we classifed high grade toG3 category in
clinical grade. Te TCGA sample size included in the sta-
tistics was 539 and was separated into training and validation
sets for subsequent subtype analysis and modeling analysis
(Table 1). Next, sixty genes associated with ferroptosis were
obtained from previously published research [5, 6, 18, 19].
Tis research did not need clearance from the local ethics
committee since the TCGA data had already been made

available to the public, and we followed the TCGA’s data
acquisition policy and publication guidelines.

2.2. Ferroptosis-Related Gene Features of Construction and
Validation. With a false discovery rate (FDR) of <0.05, the
“limma” R program was utilized to fnd DEGs in the TCGA
cohort between tumor tissues compared to surrounding
nontumor tissues. To search for ferroptosis-associated genes
(FRGs) that have potential prognostic use, a univariate Cox
analysis of OS was undertaken. Benjamini and Hochberg’s
(BH) approach was utilized to perform the corrections on
the P values. Trough the use of the STRING database
(version 11.0) [20], interactive networks that overlap
prognostic DEGs were produced. In developing the prog-
nostic model, a Cox regression analysis of LASSO penalties
was utilized to lower the likelihood of the model overftting
[21, 22]. We employed the LASSO technique, and the
“glmnet” R package was utilized to conduct variable se-
lection and shrinkage.Te standardized expressionmatrix of
the putative prognostic DEGs served as the regression’s
independent variables, and the OS and status of the patients
included in the TCGA cohort served as the response vari-
ables in this study. By using ten-foldcross-validation and
basing our decisions on the minimal criteria, we were able to
establish the model’s penalty parameters (λ) (i.e., the λ value
corresponds to the minimum partial probability deviation).
Patients’ risk scores were determined by using the nor-
malized expression levels of each gene in conjunction with
the regression coefcients that corresponded to those levels.
Te equation may be established in the following way:
score� e sum× corresponding coefcient for each gene.

Patients were classifed into categories considered to be
at high- and low-risk groupings predicated on the risk score
median value. Te “surv-cutpoint” function of the resultant
version of the “survminer” R package was utilized for the
purpose of calculating the optimum cuf-of expression value
and performing a survival analysis on each gene that was
expressed in the results. A time-dependent ROC curve
analysis was performed utilizing the “survival ROC” in the R
package to examine the predictive efcacy of gene features.

2.3. Functional Richness Analysis. Te GO and KEGG an-
alyses were executed according to the DEGs between the
high- and low-risk groupings (|log 2FC|≥ 1, FDR <0.05)
using the “Cluster Profler” included in R. Te BH approach
was used to make the relevant adjustments to the P value.
Single-sample gene set enrichment analysis (ssGSEA) in the
“gsva” R package [23] was employed to evaluate the stromal,
immune, and ESTIMATE scores. Te scores of 10 immune
cells were examined utilizing the ESTIMATE function in R
and the MCP counter, whereas the scores of 28 diferent
immune cells were evaluated utilizing the GSVA package’s
ssGSEA technique [24].

2.4. Statistical Analysis. When comparing gene expression
in tumor and neighboring nontumor tissues, the in-
dependent sample t-test was the statistical method of choice.

2 Journal of Oncology



Te chi-square test was utilized to analyse the data and
determine the signifcance of the proportional diferences.
To make a fair comparison between the high- and low-risk
categories in terms of the ssGSEA scores of immune cells or
pathways, the BH was utilized to adjust the P values via the
Mann–Whitney test. Te Kaplan–Meier analysis along with
the log-rank test was implemented to contrast the OS across
various groupings. To fnd independent determinants of OS,
we conducted both univariate and multivariate Cox re-
gression analyses. SPSS version 25.0 or R software, version
3.5.3, was utilized to execute all analyses of statistical data. In
the absence of a specifc statement to the contrary, the
signifcance level was established at a P value <0.05 and all P

values were two-tailed.

3. Results

3.1. Molecular Subtypes Were Identifed Using a Consensus
ClusteringAlgorithm. Te expression of 60 ferroptosis-related
genes (FRGs) was derived from the TCGA training set ex-
pression profle data, and then one-way Cox analysis was
undertakenwith the aid of the coxph function included in theR
program to acquire the four genes linked to UCEC prognosis
(P< 0.05). Te fndings of the one-way analysis were used to
guide the generation of a forest plot (Figure 1(a)). Consensus
Cluster Plus was utilized to reliably cluster the four genes that
proved to be signifcant in the univariate Cox analysis. Tese
genes were clustered depending on their signifcance in the
one-way Cox analysis. Te km and Euclidean distances were
employed as clustering algorithms and distance measures,
correspondingly; with the threshold value of k� 2, the samples
were able to be clustered together (Figure 1(b)). Prognostic
ferroptosis-related gene expression in 2 subclasses (Figure 1(c))
shows remarkable diferences (variations) in the expression
levels of genes in C1 and C2. Subsequent investigation into the
prognostic relationship (Figure 1(d)) between the two clusters
illustrated statistically signifcant variations in C1 and C2.
Additionally, substantial variations were seen in the clustering
heatmap analysis of the four genes when comparing C1 and C2
(Figure 1(e)).

3.2. Determination of Diferentially Expressed Genes.
DEGs between C1 and C2 molecular isotypes were identifed
separately with the limma package and screened predicated
on the criteria of FDR <0.05 and |log 2FC|> 1. Te detailed

results are shown in a volcano map of DEGs with 52
upregulated genes (Figure 2(a)) and 125 downregulated
genes and 50 upregulated and downregulated genes each,
and a heatmap is shown in Figure 2(b).

3.3. Functional Analysis of Diferentially Expressed Genes.
GO functional enrichment and KEGG pathway analyses of
DEGs between C1 and C2 molecular isotypes were per-
formed by the R package Cluster profler. Te GO functional
annotation of DEGs with 373 entries enriched in BP
(P< 0.05), top 8 for Figure 3(a); 22 to CC (P< 0.05), top 8 in
Figure 3(b); and 49 enriched in MF (P< 0.05) in Figure 3(c).
Te KEGG pathway enrichment for diferential genes
(P< 0.05) resulted in 23 entries, which are shown in Figure
3(d). As shown in Figure 3(d), the eight of these pathways are
viral protein crosstalk with cytokines and cytokine receptors,
cushing syndrome, p53 signaling pathway, cell cycle, fer-
roptosis, Wnt signaling pathway, estrogen signaling path-
way, and IL-17 signaling pathway.

3.4. Immune Score Comparisons between Diferent Molecular
Subgroups. To evaluate the association between immune
scores of various molecular subgroups, the immune, stro-
mal, and ESTIMATE scores as well as the scores of 10
immune cells were computed utilizing the ssGSEA approach
of the GSVA package which was applied to 28 immune cells
and the variations in immune scores between subgroups
were compared (Figure 4). Te ssGSEA results (Figure 4(a))
indicate that as opposed to C1, C2 had a signifcant elevation
in the levels of T follicular helper cells, central memory
CD4 T cell, activated CD8 T cells, efector memory CD8 T
cells, activated B cells, Type 17 T helper cells, Type 2 T helper
cells, Type 1 T helper cells, immature B cells, CD56dim
natural killer cells, MDSC, immature dendritic cells, mac-
rophages, CD56bright natural killer cells, mast cells, acti-
vated dendritic cell, neutrophils, natural killer cells,
monocytes, eosinophils, and immune score for the plas-
macytoid dendritic cells. In addition, the C1 had a signif-
cantly higher immune score for the efector memory CD4 T
cells in contrast with the C2. Te MCPcounter results
(Figure 4(b)) indicate that, as opposed to C2, C1 exhibited
a signifcant elevation in the levels of neutrophils, myeloid
dendritic cells, endothelial cells, cytotoxic lymphocytes,
CD8 T cells, and immune score for the fbroblasts. Te

Table 1: Te 4-gene signature model in clinical application, information on age, grade, stage as well as risk score.

Variables
Univariable analysis Multivariable analysis

HR HR. lower HR. upper P values HR HR. lower HR. upper P values
Age
(>65 vs. ≤65) 1.1 0.75 1.6 6.80E− 01 0.99 0.69 1.4 9.70E− 01

Stage
(III-IV vs. I-II) 3.5 2.4 5 1.30E− 11 2.8 1.9 4.2  .60E− 0 

Grade
(G3 vs. G1-G2) 2.1 1.4 3.1 5.40E− 04 1.4 0.84 2.2 2.10E− 01

Risk score 2.6 1.8 3.7 4.50E− 07 1.6 1.1 2.4 2.90E− 02
Te bold values represents a signifcant diference in the COX regression analysis. As a result, we can found that risk score and stage were signifcantly
associated with survival in both univariate analysis and multifactor analysis.
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estimate results (Figure 4(c)) indicate that in contrast with
C2, C1 has signifcantly higher stromal, immune, and ES-
TIMATE scores. In addition to this, we evaluated the im-
mune scores of three diferent immune software programs
across diferent molecular subsets (Figure 4(d)), which
revealed signifcant variations.

3.5. Development of a Prognostic Risk Model Premised on
Module Genes. Using the data from the training set data, an
FRG expression matrix was established based on the ex-
pression matrix as well as survival data, the univariate Cox

analysis utilizing the coxph function of the R package
survival, and P< 0.05 as the threshold to flter the 4 genes
related to prognosis, as illustrated in Figures 5(a)–5(d).
Further LASSO analysis was conducted for these four genes.
Te LASSO (least absolute shrinkage and selection operator)
technique is a compressed estimate that yields a highly
accurate model via the formulation of a penalty function, in
such a way that it may condense specifc coefcients whilst at
the same time adjusting some other values to zero. Tus,
while retaining the advantage of subset shrinking, a biased
estimate approach with complicated collinearity data may
realize the choice of variables when conducting parameter
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Figure 1: Determination of molecular subtypes utilizing consistent clustering algorithms. (a) Prognosis-related genetic forest maps. (b)
Heatmap for consistent clustering k� 2. (c) Cumulative distribution of clustering consistency. (d) Time prognostic survival curves of
diferent molecular subtypes of PFI. (e) Cluster heatmap of 4 prognostic-related genes.
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Figure 4: Continued.
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estimation and efectively tackle the multicollinearity issue in
regression analysis. As part of our investigation, we worked
with the glmnet function in the R program to carry out LASSO
Cox regression. As can be seen in Figure 6(a), the initial step
included analyzing the change trajectories for every in-
dependent variable. Te number of independent variables that
had coefcients that were approaching zero likewise pro-
gressively rose as the lambda steadily increased. Model con-
struction was conducted by means of ten-foldcross-validation.
Figure 6(b) presents the results of an investigation of the
confdence intervals for each lambda. When lambda equals
0.001460945, the value is at its most desirable level. As a result,
four genes at lambda=0.001460945 (CBS, LPCAT3, SAT1, and
SQLE) were chosen as the target genes for the next step.
Figure 5 portrays the prognostic KMcurves for the four distinct
genes. Te resultant formula for the 4-gene signature is shown
below. Risk score=CBS∗ 0.77+LPCAT3∗−0.3+ SAT1∗
−0.24+ SQLE∗ 0.14.

3.6. Development and Assessment of the Risk Models. Te
expression level of the sample was taken into consideration
while determining the risk scores for each individual sample.
As illustrated in Figure 7(a), the distribution of risk scores
for the samples has also been plotted.Te heatmap illustrates
the variation in the expression of four distinct signature
genes associated with elevated risk levels. Te fndings
highlight that the rate of deaths that occurred in the samples
with higher risk scores was noticeably elevated in contrast to
that of those with lower scores, suggesting that higher risk
scores were linked to unfavorable prognoses. With the aid of
the R package, further ROC analysis of prognosis

stratifcation was carried out, and the efectiveness of
prognostic prediction stratifcation over one, three, and fve
years were studied. As can be seen in Figure 7(b), the model
has a large AUC area. Lastly, we distributed the samples into
groups as per the risk score. Samples with a score above the
median were allotted to the high-risk group, while those
having a score below the median were assigned to the low-
risk group. A remarkable variation could be seen in the KM
curve, as illustrated in Figure 7(c) (P � 0.001). Ten, the 162
samples were grouped under the high-risk groups, and the
other 163 samples were allocated to the low-risk groups.

3.7.Verifcationof theReliability of the4-GeneSignatureUsing
an in-House Dataset for the Risk Model. We employed
a similar model and coefcients comparable to the ones in
the training set and the whole data set to assess the model’s
robustness. We then computed each sample’s risk score
predicated on their expression levels and charted the dis-
tribution of the risk scores for these samples. Figure 8(a)
depicts the risk score distribution that was obtained from the
validation set which illustrated statistically signifcant var-
iation between the proportion of dead samples having higher
risk scores and those having lower risk scores, implying that
higher risk scores were linked to unfavorable prognosis.
With the help of the pROC package in R, we performed
a ROC analysis of the prognostic stratifcation. One-year,
three-year, and fve-year outcomes are shown in Figure 8(b).
Te AUC area of the model is rather high. Lastly, we
classifed the samples premised on the risk scores. Te
samples that were less than themedian were considered to be
in the low-risk category, while those that were over it were in
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the high-risk population. After plotting the KM curve as
depicted in Figure 8(c), we observed signifcant variations
(P � 0.008). Of these, 107 samples were classifed into the
high-risk category, and 107 samples were determined to
belong to the low-risk category.

Figure 9(a) depicts the distribution of risk scores over the
whole dataset. Te proportion of dead samples associated with
higher risk scores was considerably elevated in contrast with
that associated with lower scores, which demonstrates that
higher risk score samples had a direr prognosis. Furthermore,
with the R software package (pROC), we conducted a study of
the ROC curve to ascertain the prognostic stratifcation of the
risk score. Figure 9(b) depicts the results of an examination of
the one-, three-, and fve-year prognoses, correspondingly. Te
AUC area of the model is rather high. Afterward, we grouped
the samples based on the risk score, whereby those exceeding
the median were assigned to the high-risk subgroup, while

those less than the median were placed under the low-risk
subgroups. As displayed in Figure 9(c), the plotted KM curve
illustrated extremely signifcant diferences (P< 0.0001), of
these, 269 and 270 samples were classifed into the high- and
low-risk groupings, respectively.

3.8. RiskModel andPrognosisAnalyzes ofClinical Parameters.
Subsequent risk score analysis of 4 genes found that risk scores
scored higher in stage III-IV in patients older than 65 years and
were signifcantly diferent in grade G3 patients. When we
evaluated the variations in the risk scores of the various mo-
lecular subtypes, we found that the prognosis of patients with
the C2 subtype had signifcantly higher risk scores in contrast
with those with C1 subtypes (Figures 10(a)–10(d)).Te fnding
indicated the risk score was able to diferentiate between grade
G3, stage III-IV, >65 years, and <65 years when various clinical
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Figure 5: Te KM curves of the 4 genes (on the TCGA training set).
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variables substantially difered between high- and low-risk
populations (Figures 11(a)–11(d)), which ofered additional
support that our model possesses potent predictive perfor-
mance in various clinical parameters.

3.9. Univariate and Multivariate Analyses of the 4-Gene
Signature. To ascertain if the 4-gene signature model might be
used independently in clinical settings, data on age, grade, stage,
and risk score (Table 2) were systematically analyzed. We
subjected the whole set of clinical data to an integrated complete

data Cox regression analysis and utilized the univariate and
multivariate Cox regression analyses to examine the applicable
HR, 95% CI of HR, and P value. In both the univariate and the
multivariate analyses, we observed that there was a substantial
link between survival and the risk score as well as the stage.Tese
data illustrate that our model 4-gene signature has strong
prediction ability when it is applied to clinical settings.

Mapping of the calibration curves, nomogram, and DCA
(decision curve analysis) curves was conducted predicated
on the two variables of risk score and stage, which are il-
lustrated in Figures 12(a)–12(c).
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3.10.RelationshipbetweenRiskScoreand theKEGGPathways.
To ascertain the association of risk scores with biological
function across a variety of samples, we employed the R
package GSVA to choose the gene expression patterns that
correspond to these samples for single-sample GSEA. After
doing so, we computed each sample’s score and assigned the
ssGSEA score that corresponds to each function. Following
additional analysis of the association of these functions with

risk scores, it was determined that the absolute value of the
Pearson correlation coefcient was >0.4, and the KEGG
pathway that had a P value of <0.05 is depicted in Fig-
ure 13(a). Tere was a positive correlation between four of
these pathways and the risk scores, whereas seven of these
pathways had an inverse relationship with the risk scores. As
depicted in Figure 13(b), the heatmap of 11 KEGG pathways
was displayed depending on their enrichment scores. We
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found that the enrichment scores of CELL_CYCLE,
HOMOLOGOUS_RECOMBINATION, MIS-
MATCH_REPAIR, and DNA_REPLICATION increased
with increasing RiskScore, whereas the enrichment score of

SPHINGOLIPID_METABOLISM, ALPHA_LINOLENI-
C_ACID_METABOLISM, ETHER_LIPID_METABOLISM,
FATTY_ACID_METABOLISM, NICOTINATE_AND_N-
ICOTINAMIDE_METABOLISM, GNRH_SIGNALING_P-
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Figure 10: Diferences in risk scores among molecular subtypes. (a) Risk score comparisons between age-grouped samples. (b) Risk score
between stage-grouped samples. (c) Risk score between grade-grouped samples. (d) Risk score between molecular subtype samples.
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ATHWAY, and VASOPRESSIN_REGULATED_WAT-
ER_REABSORPTION decreased with increasing risk score.

4. Discussion

Ferroptosis is a new type of programmed cell death that
functions as an interface between the ferritin gene and
cancer therapy and prognoses. Ferphotography has garnered
a lot of interest as a result of its possible antitumor capability.
According to the fndings of Xu et al. [25], the three primary

links that contribute to iron poisoning are the dependence
on Fe2+ (which supplies an electron for the oxidation re-
action), the GPX oxidation process, GPX4 inactivation (an
imbalance of antioxidants), and ROS production (primarily
as a result of the Fenton reaction). Te process of ferroptosis
is a cascade that involves multiple enzymes, and it has been
shown that several FR genes perform a crucial function in
the development of malignancies. In this work, we carried
out a comprehensive evaluation of the expression of sixty
genes relevant to ferroptosis in UCEC tumor tissue, and we
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Figure 11: RiskScore could efectively diferentiate between high- and low-risk categories for grade G3, stage III-IV, >65 years, and
<65 years for multiple clinical characteristics. (a) Survival study of G3 patients in the high-risk category. (b) Survival study of high-risk
patients in stages III-IV. (c) Survival analysis of patients aged >65 years in high- and low-risk populations. (d) Survival analysis of patients
aged <65 years in high- and low-risk populations.
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analyzed how these genes are associated with OS. We dis-
covered that half of the FRGs was linked to OS, and the
diferential expression of FRGs was seen between the tumor
and surrounding nontumor tissues in 70.6% of the cases.
Tese data strongly imply the likelihood of a function for
iron mortality in UCEC, as well as the feasibility of de-
veloping prognostic models using iron mortality-related
genes. Terefore, we attempted to construct a new ferrop-
tosis model by LASSO regression analysis with a prognostic
model consisting of four ferroptosis disease-associated genes
(SQLE, SAT1, LPCAT 3, and CBS). Te four genes may be
generally sorted into three distinct types, notably, lipid
metabolism (SQLE and SAT1), iron metabolism (LPCAT 3),
and energy metabolism (CBS) [6]. LPCAT3 is an enzyme
that converts lytic phosphatidylcholine to phosphatidyl-
choline in the liver. It also maintains systemic balance and is
involved in phospholipid remodeling, the growth of in-
testinal stem cells, and tumorigenesis [26, 27]. Cholesterol
esterifcation mediated by SAT1 alleviates the inhibitory
efect of SREBPs. SAT1 is a crucial intrinsic driver of

cholesterol metabolism, and it performs an indispensable
function in lowering the amount of cholesterol found inside
cells, which helps to counteract the inhibiting impact of
SREBPs [28]. Squalene epoxidase (SQLE) is an essential
enzyme that regulates the rate of cholesterol production.Te
cBioPortal for Cancer Genomics Gene copy number or
expression amount [29, 30] of cholesterol synthesis genes
analyzed in Te Cancer Genome Atlas (TCGA) cohort
showed that SQLE is among the genes that are remarkably
elevated in expression in the majority of cancers. Tere is
mounting support for the hypothesis that a positive cor-
relation exists between high levels of SQLE expression and
a dismal prognosis in a variety of tumor types [31]. CBS is
a pyridoxal 50-phosphate (PLP) enzyme that catalyzes the
conversion of homocysteine (Hcy) and serine into cysteine
by the transsulfuration pathway and regulates the meta-
bolism of hydrogen sulfde (H2S), with higher H2S levels
related to the proliferation of multiple tumor types [32]. In
this study, the expression levels of these genes were shown to
be elevated in UCEC tissues and had an unfavorable

Table 2: Group results of all the patients in this study.

Clinical features TCGA total TCGA test TCGA train P values
Age
≤65 304 114 190 0.271>65 235 100 135

Stage
I-II 387 151 236 0.674III-IV 152 63 89

Grade
G1-G2 218 94 124 0.213G3 321 120 201

PFI
0 415 168 247 0.568
1 124 46 78
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association with patients’ prognoses. Because only limited
relevant research data on these have been published on genes
other than LPCAT3 and CBS, it is not yet known whether or
not these genes are implicated in UCEC patients’ prognoses
by afecting the process of ferroptosis illness. Although the
mechanism of tumor sensitivity to ferroptosis illness has
been the subject of much inquiry over the last several years,
the possible link between tumor immunity and ferroptosis
disease is yet to be clarifed. We conducted a GO analysis
premised on the DEGs across the various risk groups and
discovered that a great number of biological processes and
pathways associated with the immune system were enriched.
Tere is evidence to support the hypothesis that ferroptosis
illness may have some connection to tumor immunity. Our
research contains several noteworthy caveats. First, we
generated and verifed our prognostic model retrospectively
by utilizing data from public sources. To prove its thera-
peutic value, additional analysis of prospective data will be
required. Second, it is unavoidable to merely evaluate
a single marker to show the inherent faws of the prognosis
model, since several important prognostic genes in UCEC
could be excluded. Furthermore, it is important to note that

there has been no conclusive experimental work done on
UCEC to address the relationship between risk scores and
immunological activation.

5. Conclusions

In this work, we describe a new prognostic model for four
genes linked to ferroptosis. Tis model was demonstrated to
be independently linked to OS in both the derived and
validation sets, which has implications for predicting UCEC
prognoses. Nonetheless, the exact mechanisms behind FRGs
in UCEC and tumor immunity are not well known at this
time and should be the subject of additional research.

Data Availability

Tis research study examined publicly accessible datasets.
Te following website has this information: https://www.
cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga. Datasets were derived or evaluated in this
study. All data are presented in the article and accompanying
documents.
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