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Background. In cancer pathology, cell senescence not only alters cell function but also reshapes the immunemicroenvironments in
tumours. However, the association between cell senescence, tumour microenvironment, and disease progression of hepatocellular
carcinoma (HCC) is yet to be fully understood. Terefore, the role of cell senescence-related genes and long noncoding RNAs
(lncRNAs) in evaluating the clinical prognosis and immune cell infltration (ICI) of HCC patients requires further investigation.
Methods. Te limma R package was utilised to investigate diferentially expressed genes according to the multiomics data. Te
CIBERSORT R package was utilised to assess ICI, and unsupervised cluster analysis was conducted using the R software’s
ConsensusClusterPlus package. A polygenic prognostic model of lncRNAs was constructed by conducting univariate and least
absolute shrinkage and selection operator (Lasso) cox proportional-hazards regression analyses. Te time-dependent receiver
operating characteristic (ROC) curves were used for validation. We utilised the survminer R package to evaluate the tumour
mutational burden (TMB). Moreover, the gene set enrichment analysis (GSEA) helped in pathway enrichment analysis, and the
immune infltration level of the model was evaluated using the IMvigor210 cohort. Results. Te identifcation of 36 prognosis-
related genes was achieved based on their diferential expression between healthy and liver cancer tissues. Liver cancer individuals
were categorised into 3 independent senescence subtypes using the gene list, revealing considerable survival diferences (var-
iations). We observed that the prognosis of patients in the ARG-ST2 subtype was substantially better as compared to that in the
ARG-ST3 subtype. Diferences were observed in gene expression profles among the three subtypes, with the diferentially
expressed genes predominantly associated with cell cycle control. Te enrichment of upregulated genes in the ARG-ST3 subtype
was observed in pathways related to biological processes, for instance, organelle fssion, nuclear division, and chromosome
recombination. ICI in the ARG-ST1 and ARG-ST2 subtypes, with relatively better prognosis, was substantially higher as compared
to the ARG-ST3 subtype. Furthermore, a risk-score model, which can be employed as a reliable prognostic factor in an in-
dependent manner for individuals sufering from liver cancer, was constructed based on 13 cell senescence-related lncRNAs
(MIR99AHG, LINC01224, LINC01138, SLC25A30AS1, AC006369.2, SOCS2AS1, LINC01063, AC006037.2, USP2AS1,
FGF14AS2, LINC01116, KIF25AS1, and AC002511.2). Te individuals with higher risk scores had noticeably poor prognoses in
contrast with those having low-risk scores. Moreover, increased levels of TMB and ICI were observed in individuals with low-risk
scores and gaining more beneft from immune checkpoint therapy. Conclusion. Cell senescence is an essential factor in HCC onset
and progression. We identifed 13 senescence-related lncRNAs as HCC prognostic markers, which can help understand their
function in the onset and progression of HCC and guide clinical diagnosis and treatment.
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1. Introduction

Liver cancer is a prevalent disease and a global health
problem; by 2025, over 1 million people will be afected by it
each year [1–3]. Studies have identifed that hepatocellular
carcinoma (HCC) is the most widely occurring lung cancer
type, which accounts for around 90% of all cases. Upon
initial diagnosis of HCC, most individuals are in the ad-
vanced stages. Tus, they lose the benefts of early surgical
treatment. Terefore, the treatment of choice for advanced
HCC is targeted therapy. Presently, the only drug approved
by the FDA for targeted therapy in advanced HCC is sor-
afenib. However, most patients develop primary or sec-
ondary drug resistance over time [4]. Although
immunotherapy ofers a promising new approach to
treatment, not all HCC patients can be efectively treated
with this strategy [5]. Terefore, the development of new
personalised treatment options and intervention strategies is
essential for HCC.

Cell senescence is an inherent process in all cells and
performs a two-way function in tumour development.
Cellular senescence can hinder the development of early
tumours, as the senescent cells undergo cell cycle arrest and
are subsequently cleared by the immune system [6], which
ensures tissue homoeostasis and prevents tumourigenesis
[7–9]. On the other hand, if senescent cells are not recog-
nised and cleared by the immune system in time, the ac-
cumulated cells release senescence-associated secretory
proteins (SASPs), such as cytokines, growth factors, extra-
cellular matrix (ECM) components, and ECM-degrading
enzymes, to promote tumour development [10–13]. Fur-
thermore, long noncoding RNAs (lncRNAs) related to other
metabolic pathways similar to senescence, such as iron death
[14] and autophagy [15], have been used to establish
prognostic models of HCC, indicating that metabolic ab-
normalities perform an essential function in the onset and
progression of HCC. However, the correlation between
senescence and cancer, especially liver cancer, is highly
complicated. According to our knowledge, only a few studies
have been conducted to investigate this relationship and
explore its clinical applications.

In our research, the assessment of the diferentially
expressed genes in healthy and tumour tissues was carried
out based on the TCGA-LIHC dataset. In total, 36 genes
related to disease prognosis were identifed. Based on these
genes, 3 independent ageing subtypes were identifed. Tese
subtypes signifcantly difer in survival rate, gene expression
profles, pathways, and immune cell infltration. Further-
more, a combined analysis of overall and cell ageing-related
gene (ARG) mutations revealed TP53 and CTNNB1 as the
primary mutated genes in liver cancer, and mutations in
these genes signifcantly altered the ARG expression. In
order to further enhance the clinical utility of this research,
we looked at the diferential expression profles of lncRNAs
associated with ageing among the various subtypes. Tirteen
cell ageing-related lncRNAs were then verifed as in-
dependent prognostic markers for patients sufering from
liver cancer, and a risk-score model was developed on the
basis of these markers. Patients exhibiting various risk scores

had diferent clinical features concerning immunotherapy
response, immune cell infltration (ICI), and tumour mu-
tational burden (TMB). Patients displaying low-risk scores
had a good prognosis and responded well to immuno-
therapy. Overall, the research conducted by our group
provides a further comprehension of the regulatory mech-
anisms of ageing in liver cancer cells and their utility in the
clinical assessment of disease prognosis and personalised
immunotherapy response.

2. Methodology

2.1. Clinical Information and Expression Profle Data
Acquisition. Te TCGA (https://portal.gdc.cancer.gov/) was
utilised to download the clinical follow-up and expression
data of patients sufering from LIHC. In the TCGA-LIHC
dataset, we found preprocessed RNA-seq data of 344 tumour
samples, which were processed by following these steps: (1)
samples having no clinical follow-up data were eliminated,
(2) samples having no specifed survival time were elimi-
nated, i.e., <30 days, or absolutely no survival record, (3)
conversion of probes to gene symbols, (4) probes that
revealed correspondence with multiple genes were elimi-
nated, and (5) evaluation of levels of gene expression in
accordance with the median value. Te demographic and
clinical data are presented in Table 1.

2.2. Tumour Immunophenoscore Database. Te Cancer
Immune Database (TCIA) (https://tcia.at/patients) was
employed to acquire tumour immunophenoscore (IPS),
which was described according to the characteristics of the
ICI in tumours. It is a bridge between ICI and genetic
subtypes [16].

2.3. Evaluation of Tumour Immune Cell Infltration. We
employed the CIBERSORT R package for infltration level
quantifcation of a total of 22 cells in the immune system in
LIHC in accordance with the LM22 signature at 1000
permutations. Te fractions of the following cells were
distinguished from each other: resting and activated
memory CD4+ T cells, näıve B cells, memory B cells, plasma
cells, CD8+ T cells, naı̈ve CD4+ T cells, follicular helper
T cells, regulatory T cells (Tregs), gamma delta T cells, ac-
tivated and resting NK cells, activated and resting dendritic
cells, monocytes, M0, M1, and M2 macrophages, activated
and resting mast cells, neutrophils, and eosinophils.

2.4. Consistent Clustering of Tumour Ageing-Related Gene
Expression Profles. TeHuman Ageing Genomic Resources
(HAGR) helped us identify the central genes related to
ageing through the comprehensive analysis of the biology
and genetics of human ageing, and ARGs were considered
the centre of the network. Te R Consensus Cluster Plus
package was utilised, and Ward’s linkage was employed for
unsupervised clustering using the Pam method depending
on the Euclidean distance. Te repetition was conducted
1000 times in order to confrm the classifcation stability.
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2.5. Identifcation of the Diferentially Expressed Genes among
Tumour Ageing Subtypes (ARG_DEGs). Based on the ARG
expression in tumours and the outcomes of consistent
clustering, the 3 subtypes of tumour samples were estab-
lished: ARG-ST1, ARG-ST2, and ARG-ST3 groups. Fur-
thermore, the limma R package was utilised to study the
diferentially expressed genes in the iron death subtypes of
TCGA-LIHC tumour samples. Moreover, P< 0.05 and |log2
(fold change)|> 1 were set as the screening threshold for

elucidating diferential expression of genes, and their
lncRNAs were obtained utilising the annotation fle (∗.GTF)
of genome assembly.

2.6. Dimensionality Reduction of Gene Features and Devel-
opment of a lncRNA Risk-Score Model Related to Ageing.
Te risk-score model construction for LIHC was carried out
in accordance with the ageing-related lncRNAs. Moreover,
we employed the univariate Cox regression analysis to de-
crease noise, eliminate redundant genes, and reduce the
lncRNA gene set associated with the ICI subtypes in its size.
Followed by the size reduction, the variables were screened
via the Lasso [17] method to narrow the gene number in the
risk model. Subsequently, we employed multivariate Cox
regression analysis in order to carry out the construction of
the tumour ICI risk-score model. Finally, the evaluation of
the risk score was conducted with the help of the formula
given as follows:

Riskscores � Coef(i)∗ Exp(i). (1)

2.7. Gene Set Enrichment Analysis. For the interpretation of
genome-wide expression profles, a knowledge-based ap-
proach was established in 2005 known as Gene set en-
richment analysis (GSEA). In our investigation of gene
expression data, the analysis’s purpose was determined by
choosing one or multiple functional gene sets in MSigDB
(gene matrix transposition fle format [∗.GMT]). Sub-
sequently, all the data were classifed in accordance with the
link between the expression data of genes and phenotypes
(interpretable as the change in the expression of genes).
Finally, the genes in all the gene sets were checked for
enrichment in the lower or upper part of the list after
phenotypic association ranking for the examination of the
infuence of the synergistic change in genes on phenotypic
change.

2.8. Acquisition of Tumour Somatic Mutation Data.
Additionally, the TCGA database (https://www.cancer.gov/
tcga/) was employed to download the mutation data of
patients available in the TCGA-LIHC dataset. For the as-
sessment of the LIHC’s somatic mutation burden, the cal-
culation of the overall nonsynonymous mutations was
performed as a quantitative index. Te survminer R package
was utilised for the evaluation of the optimal density gra-
dient threshold linked to survival and TMB, and the clas-
sifcation of samples was carried out into a couple of TMB
groups: the low-TMB group and the high-TMB group.
Moreover, the Maftools R package was utilised to perform
the comparison of the mutation status of the 30 driver genes
between the low- and high-risk score groups.

2.9. Acquisition of Immunotherapy Datasets. For the ex-
amination of the correlation between immunotherapy and
ICI scores and the efectiveness of ICI scores in the pre-
diction of the therapy response of patients, the samples were

Table 1: Clinical and demographic data of samples included from
the TCGA-LIHC dataset.

Number of samples
Survival
OS
Status 0 221
Status 1 123

Grade
G1 53
G2 162
G3 112
G4 12
G unknown 5

Age
Age >60 years 179
Age ≤60 years 165

Sex
Female 109
Male 235

Stage
Stage I 162
Stage II 78
Stage III 80
Stage IV 3
Stage V 21

M stage
M0 245
M1 3
MX 96
Mun 0

N stage
N0 240
N1 3
N2 1
NX 100
Nun 0

T stage
T1 169
T2 85
T3 74
T4 13
Tun 3

Pharmaceutical therapy (PT)
Yes 29
No 110
Un 205

Radiation therapy (RT)
Yes 9
No 129
Un 206
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classifed into a couple of groups: the high-rating group and
the low-rating group, in accordance with the ICI scoring
model by utilising the clinical information and expression
data of the IMvigor210 cohort (https://research-pub.gene.
com/IMvigor210CoreBiologies/).

2.10. Statistical Analysis and Hypothesis Testing. We
employed R software (version 3.6) to carry out all the sta-
tistical analyses.

3. Results

3.1. Molecular Parameters of Ageing-Related Genes in Liver
Cancer. Our analyses of the diferential expression of 307
ARGs in healthy and tumour tissues using the TCGA-LIHC
dataset revealed 77 diferentially expressed genes among both
groups (Table S1). In total, 45 genes were upregulated, and the
downregulation of 32 was observed in LIHC tumour tissues
(Figure 1(a)). Moreover, we employed the univariate Cox
analysis for the evaluation of the link between the prognosis
and diferentially expressed genes of LIHC. Furthermore, with
the fltering threshold set at P< 0.05 and |beta|> 0.1, 36 genes
were identifed to exhibit a correlation with disease prognosis
(Table S2). Visualising the interaction network of the 36
prognostic genes using the STRING database showed strong
interactions between the molecules (Figure 1(c)). Te survival
curves based on the top 15 of the 36 genes with prognostic
signifcance are illustrated in Figure 2(b). Additionally, the
optimal density algorithm was utilised for the classifcation of
the genes into two groups: the low- and high-expression
groups. It was observed that high levels of expression of
ESR1, SOCS2, and GHR, and low levels of expression of
BUB1B, IGFBP3, CDK1, CCNA2, RAD51, FOXM1, E2F1,
BLM, PCNA, HELLS, FEN1, and TOP2A were substantially
associated with better overall survival (OS) (Figure 1(b)).

Our analyses of gene mutation frequencies using the
TCGA-LIHC dataset showed that 95.06% of tumour samples
had gene mutations. Among all genes identifed, TP53,
CTNNB1, TTN, MUC16, and ALB had the highest mutation
rates of 30%, 25%, 24%, 14%, and 13%, respectively
(Figure 2(a)). Te mutation spectrum of ARGs was further
assessed (Figure 2(b)), and the top fve mutated genes were
found to be TP53 (33%), CTNNB1 (28%), PRKDC (6%),
RB1 (6%), and LRP2 (5%).

A hypothesis test was conducted to examine whether
TP53, CTNNB1, and TTN mutations afected the expression
of ARGs. It was observed that the TP53 gene mutations were
substantially associated with high levels of expression of BLM,
CCNA2, PCNA, BUB1B, RAD51, HELLS, FOXM1, FEN1,
CDK1, E2F1, and TOP2A, and low expression levels of ESR1,
GHR, and SOCS2 (Supplementary Figure 1). Meanwhile,
mutations in the CTNNB1 gene were considerably linked to
low levels of expression of GHR, BLM, SOCS2, and IGFBP3
(Supplementary Figure 2). Furthermore, the TTN gene
mutations were notably associated with overexpression of
ESR1, GHR, SOCS2, and IGFBP3, and low levels of ex-
pression of CCNA2, PCNA, BUB1B, HELLS, FOXM1, FEN1,
CDK1, E2F1, and TOP2A (Supplementary Figure 3).

3.2. Screening of Ageing Subtypes and Diferentially Expressed
Genes in Hepatocellular Carcinoma. Te consistent cluster
analysis was carried out in accordance with the expression of
the 36 ARGs in our list and classifed 3 independent ageing
subtypes (ARG-ST) with evident survival variations. Among
the 3 subtypes, disease prognosis in the ARG-ST2 subtype
was substantially better compared to the ARG-ST3 subtype,
with 2488 days median survival time. Meanwhile, the
ARG-ST3 subtype was observed to have a poor prognosis,
with 747 days median survival time (Figures 3(a)–3(j)).

In order to characterise the diferent ageing states, dif-
ferential gene expression among the subtypes in the
TCGA-LIHC dataset was investigated by employing the
limma R package. Te identifcation of the expression of
a total of 5363 DEGs was carried out in accordance with the
screening threshold of adjusted P< 0.05 and |log2 (fold
change) |> 1 (Table S3). Out of the total genes, 2867 and 2496
were found to be highly expressed in the ARG-ST3 and
ARG-ST2 subtypes, respectively (Figure 4(a)). Subsequently,
gene ontology (GO) functional enrichment analysis was
carried out on the upregulated genes in various ageing
subtypes, and the bubble diagram (Figures 4(b) and 4(c)) was
utilised to illustrate the enrichment of 10 pathways in the 3
functional classifcations (CC, BP, and MF). Genes with low
levels of expression in the ARG-ST3 subtype were enriched in
pathways correlated with the biological processes, i.e., small
molecule metabolism, cell stress response, and lipid meta-
bolism. Whereas genes with high levels of expression in the
ARG-ST3 subtype were enriched in pathways associated with
the biological processes, i.e., chromosome recombination,
nuclear division, and organelle fssion.

Furthermore, GSEA indicated that the frst 15 KEGG
pathways correlated with the diferentially expressed genes
were related to cell cycle; homologous recombination;
complement and coagulation cascades; metabolism of gly-
cine, serine, threonine, beta-alanine, fatty acid, butanoate,
tryptophan, tyrosine, histidine, retinol; primary bile acid and
steroid hormone biosynthesis; drug and xenobiotic meta-
bolism via cytochrome p450 (Figure 4(d)).

Moreover, we employed principal component analysis
(PCA) in our study to observe the expression profles of ARGs
and investigate the link of the immune cells with tumour
ageing subtypes. Te samples exhibited good aggregation in
the frst and second dimensions (Figure 4(e)), demonstrating
the reliability of the classifcation method of ageing subtypes.

In addition, variations in ICI among diferent ageing
subtypes were also compared (Figure 4(f )). Te results
revealed considerably high infltration levels of natural
B cells (näıve B cells), natural CD4+ T cells (näıve CD4+
Tcells), memory CD4+ Tcells, resting mast cells, resting NK
cells, monocytes, and M2 macrophages in the ARG-ST1 and
ARG-ST2 subtypes. Meanwhile, the ARG-ST3 subtype had
signifcantly high infltration levels of memory B cells, M0
macrophages, Tregs, and follicular helper T cells.

3.3. Construction of a Risk-ScoreModel for Liver Cancer Based
on Ageing-Related lncRNAs. Tis study examined the
function of ageing-related lncRNAs in predicting overall
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Figure 1: Continued.
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(c)

Figure 1: Characteristics of ageing-related genes in TCGA-LIHC dataset: (a) the expression of DEGs illustrated by volcano plot, between
LIHC and normal tissue samples, (b) survival curves in accordance with individual gene expression of the leading 15 ageing-related genes
and overall survival in the TCGA-LIHC dataset, and (c) string network diagram showing molecular interactions.
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Figure 2: Waterfall plot of gene mutations in TCGA-LIHC dataset: (a) mutation profles of all gene sets and (b) mutation spectrum of
ageing-related genes.
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Figure 3: Continued.
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Figure 3: Consistent clustering of the expression profles of tumour ageing-related genes. Clustering analysis results when the classifcation
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survival (OS). A total of 346 diferentially expressed
lncRNAs among the diferent ageing subtypes were iden-
tifed (Table S4). Furthermore, analyses revealed that 180
were upregulated and 166 were downregulated in the
ARG-ST3 subtype. Te construction of a risk-score model
for ICI was carried out in accordance with the diferential
expression of the lncRNAs. Samples from the TCGA-LIHC
dataset (n� 344) were grouped into the training (n� 230)
and test (n� 114) sets in an approximate ratio of 2 :1. From
a total of 346 candidate lncRNAs identifed in the training set
by utilising univariate Cox analysis, 116 were retained on the
basis of the threshold of P value <0.05 (Table S5). Moreover,
for the investigation of clinical utility, Lasso was used for
screening the variables, further highlighting 13 lncRNAs
from the initial list (Figures 5(a) and 5(b)), and based on
these lncRNAs, construction of a risk-score model related to
ICI was carried out via multivariate Cox regression
(Figure 5(c)).

Te formula for the computation of the risk score on the
basis of 13 lncRNAs gene signature is as follows:

Risk Score� (−0.025)∗MIR99AHG+ (0.030)∗ LINC01224
+(0.182)∗ LINC01138+(−0.326)∗ SLC25A30AS1+(−0.194)∗
AC006369.2+(−0.170)∗ SOCS2AS1+(0.204)∗ LINC01063+
(−0.155) ∗AC006037.2 + (0.256) ∗USP2AS1 + (0.226)
∗ FGF14AS2+ (0.177)∗ LINC01116+ (0.109)∗KIF25AS1+
(0.115)∗AC002511.2.

Te link between the OS and risk score was investigated
using the constructed model. Te samples were classifed into
two groups: the low- and high-risk groups by utilising the R
software package ggrisk and the optimal density gradient
algorithm (Figure 5(d)). A higher death proportion was
observed in samples of the high-risk group. Moreover,
Kaplan–Meier analysis revealed that the patients’ OS in the
high-risk group were considerably lower in comparison with
the low-risk group (Figure 5(e)). Additionally, our risk-score
model reliably predicted the patients’ OS in the TCGA-LIHC
dataset, as shown by the respective AUC values, predicting 1-,
3-, and 5-year OS at 0.8317, 0.8266, and 0.8169 (Figure 5(f)).

We employed a similar strategy in evaluating the risk
score model’s efectiveness in estimating the OS of the test
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group and entire TCGA-LIHC datasets. As previously
described, the samples were classifed into the high- and
low-risk groups using the R software package ggrisk and
the optimal density gradient algorithm (Figures 6(a) and

6(d)). Consistent with our results in the training group, the
samples in the high-risk group displayed a higher pro-
portion of death events. Similar to previous results,
Kaplan–Meier analysis revealed that the OS of the
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individuals in the high-risk group was considerably lower
in comparison to the individuals in the low-risk group
(Figures 6(b) and 6(e)). Furthermore, our risk-score model
had a good ability to calculate the OS of patients in the test
set as shown by the respective AUC values, predicting 1-, 3-
, and 5-year OS at 0.8270, 0.8288, and 0.8454 (Figure 7).
Similarly, in the overall TCGA-LIHC dataset, the risk-score
model displayed a good ability to predict the OS of in-
dividuals, revealed by the respective AUC values, pre-
dicting 1-, 3-, and 5-year OS at 0.8149, 0.7817, and 0.7776
(Figure 6(f )).

For further evaluation of the efectiveness of our risk-
score model, an assessment of the OS of patients included in
the GSE14520 dataset from the GEO database was con-
ducted. Samples classifcation was performed to establish
two groups: the low- and high-risk groups, as previously
described (Supplementary Figure 4(a)). Consistent with
previous fndings, individuals in the high-risk group

displayed a high percentage of death and a considerably
lower OS than individuals in the low-risk group (Supple-
mentary Figure 4(b)). Furthermore, high AUC values were
also noted during the prediction of 1-, 3-, and 5-year OS.

3.4. Comparison of Diferent Signatures. Based on previous
publications, 5 prognostic risk models were selected, in-
cluding 8-gene [18], 8-gene [19], 10-gene [20], 2-gene [21],
and 5-gene signatures [22], and compared these signatures
with our model. Te rms package in R was employed to
calculate the concordance index (C-index) of the various
signatures and to compare the prediction performance of
these models in HCC samples. Our results demonstrated
that our signature’s average C-index was substantially higher
than the other signatures (Figure 7), suggesting that the
overall performance of the 13-gene signature outweighed
that of the other 5 signatures.
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Figure 6: Validation of the risk model in the test and TCGA-LIHC sets: (a) distribution map of the risk scores of the test set, (b) the test set-
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3.5. Relationship between the Clinical Characteristics and Risk
Score. It is necessary to describe the correlation between
clinical characteristics (age, tumour grade, etc.) and patients’
risk scores. Terefore, the multivariate Cox analysis was
utilised to examine the efectiveness of the risk score as
a prognostic factor irrespective of age, sex, tumour stage, and
M-, N-, and T-stages (Figure 8(a)). Te M-stage and risk
score were recognised as independent prognostic factors and
were utilised for the construction of a nomogram for
assessing clinical utility (Figure 8(b)). Moreover, the cali-
bration curves of the nomogram for predicting 1-, 3-, and 5-
year OS indicated good stability of the system (Figure 8(c)).
For further assessment of the clinical efectiveness of the
nomogram, we conducted DCA and found that the net
ability of the nomogram in predicting 3-year OS was con-
siderably higher than its ability in predicting 1- and 5 -years
OS (Figure 8(d)). Additionally, the ROC curve revealed that
the prognostic ability of the nomogram in OS prediction of
1, 3, and 5 years (AUC >0.80 for all) was higher than that of
other indicators (Figures 8(e)–8(g)).

3.6. Correlation between the Tumour Mutational Burden and
Risk Score. Several studies have suggested that TMB de-
termines an individual’s response to cancer immunotherapy.
Te correlational analysis of the risk scores and TMB was
conducted to evaluate the genetic characteristics of all the

ageing subgroups. Te optimal density gradient threshold
was evaluated by employing the survminer R package linked
to survival and TMB. Te classifcation of the tumour
samples in the TCGA-LIHC dataset was completed by
creating two groups: the low-TMB score group and the high-
TMB score group. Te subsequent study suggested that the
low TMB score (Figure 9(a)) had a higher survival rate.
Linear regression analyses revealed a highly positive asso-
ciation between the risk score and TMB (Figure 9(b)). In
addition, the TMB of patients was considerably higher in the
high-risk subgroup compared to the individuals in the low-
risk subgroup (Figures 9(c) and 9(d)).

Subsequently, for the characterization of the mutational
burden, the somatic variation distribution in LIHC driver
genes across the high- and low-risk subgroups was evaluated,
and a comparison of the 30 essential driver genes with the
highest variation frequencies was performed (Figures 9(e) and
9(f)). Analyses of the mutation annotation fle of the
TCGA-LIHC cohort displayed substantial variations in the
mutation spectrum between the patients in the low- and high-
risk subgroups. Our fndings may serve as bases for future
research on the impacts of ageing on gene mutations in
immune checkpoints during cancer development.

3.7. Correlation between the Risk Score and Immune Cell
Infltration. Te link between the tumour immune
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microenvironment and risk score was studied using the
CIBERSORT tool and determining the infltration status of 22
immune cells in the TCGA-LIHC dataset. High levels of in-
fltrating immune cells, including resting memory CD4+ Tcells,
CD8+ T cells, follicular helper T cells, Tregs, activated NK cells,
monocytes, resting mast cells, and M1/M2 macrophages, were
observed to be common in LIHC. Meanwhile, low infltration
levels of natural CD4+ Tcells (näıve CD4 Tcells) and activated
memory CD4+ T cells were observed (Figure 10(a)).

A hypothesis test was carried out to examine the vari-
ations in ICI among patients in the low-risk and high-risk
groups. Te individuals in the high-risk group revealed

considerably higher infltration levels of Tregs, M0 macro-
phages, and follicular helper T cells and substantially lower
infltration levels of CD8+ T cells, natural B cells (naı̈ve
B cells), resting memory CD4+ T cells, and monocytes as
compared to the individuals in the low-risk group
(Figure 10(b)).

3.8. Assessing the Ability of the Risk Model in Predicting Im-
munotherapy Response. Te efciency of the risk score to
predict the immunotherapy response was assessed in ac-
cordance with the IPS of TCGA-LIHC samples available in
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Figure 8: Correlation between the clinical characteristics and risk score: (a) multivariate cox analysis of risk score and clinical features; (b)
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the IMvigor210 dataset (https://researchpub.gene.com/
IMvigor210CoreBiologies) and TCIA database. IPS can
determine tumour immunogenicity and help in the pre-
diction of the response of diferent tumour types to im-
munotherapy (Figures 11(a)–11(d)).Te scores of four types
(ipsctla4negpd1neg, ipsctla4pospd1neg, ipsctla4negpd1pos,
and ipsctla4pospd1pos) of IPS were considerably higher in
the patients in the low-risk group in comparison to in-
dividuals in the high-risk group, indicating that the im-
munotherapy will be more benefcial to individuals in the
low-risk group. Furthermore, patients in the IMvigor210
cohort received anti-PD-L1 immunotherapy, and a low or
high-risk score was assigned to them. We observed that
individuals in the low-risk group lived a long life as com-
pared to the patients in the high-risk group (Figure 11(f )).
Moreover, individuals in the low-risk group revealed
a higher objective response rate to anti-PD-L1 therapy (CR/
PR) than the high-risk group (Figures 11(e) and 11(g)).
Overall, there is an indication in our data that risk scores
have a substantial correlation with immunotherapy
response.

4. Discussion

Cell ageing is a complex biological process that performs
a vital function in remodelling the cellular microenviron-
ment [10, 23]. Physiological ageing plays a vital role in
inhibiting tumour progression by eliminating senescent cells
through the immune response initiated by SASPs [24].

However, as cell ageing progresses, the accumulation of
SASP increases, promoting tumour development through
immunosuppression [11, 12, 25, 26]. Although it is an es-
sential cellular process, the underlying mechanism of how
cell ageing regulates tumour progression remains unclear.
Terefore, our research analysed the diferential expression
of ARGs in HCC and healthy tissues and determined their
potential role in evaluating disease prognosis. We found that
these genes do not exist independently but instead have
a close relationship with each other. Furthermore, we
assessed the possible causes of the aberrant expression of
these genes. We frst focussed on gene mutations and found
that themutation frequency in the overall genome of tumour
samples and ARGs was abnormally increased to 95.06% and
77.03%, respectively. Consistent with previous studies, we
observed that TP53 and CTNNB1 genes had high mutation
rates in the two groups.

TP53 is a transcriptional gene of the tumour suppressor
protein p53 and has the highest mutation rate in human
tumours. Approximately 50% of patients with tumours
harbour TP53 gene mutations, and about 80% of patients
have TP53 dysfunction [27]. It performs a critical function in
maintaining genomic stability and cell homoeostasis
[28, 29]. When cells experience extreme stimuli, activated
p53 protein can eliminate damaged and potential pre-
cancerous cells by inducing cell cycle arrest, apoptosis, and
ageing [30]. Additionally, p53 as a transcription factor can
inhibit or activate the transcription of target genes, such as
genes regulating cell cycle and apoptosis, by directly binding
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to specifc DNA sequences [31–34]. In this study, we found
that TP53 mutation can lead to an aberrant expression of
ARGs. Tese genes include DNA damage repair genes, i.e.,
FEN1 and RAD51, and cell cycle-related genes, i.e., CDK1
and E2F1.

CTNNB1 is a transcriptional gene of the classical on-
cogenic protein β-catenin, and mutation in this gene ab-
normally activates the Wnt pathway in osteosarcoma, thus
promoting tumour progression [35]. In this study, CTNNB1
mutation led to abnormally low expression of some genes,
suggesting that ARGs are likely to be regulated by mutations
in major tumour suppressors or tumour-promoting genes,
and hence, may promote tumour progression. However, our
study could not elucidate the association between our
prognostic risk model and the mutational burden on these
specifc genes.

Furthermore, we genotyped HCC samples in accordance
with ARG expression and classifed 3 independent ageing
subtypes with considerable survival variations. Among the 3
subtypes, the ARG-ST2 subtype prognosis was notably
better as compared to the ARG-ST3 subtype, and signifcant
diferences were observed in gene expression among them.

Genes upregulated in the ARG-ST3 subtype were enriched
in pathways linked to biological processes, i.e., organelle
fssion, nuclear division, and chromosome recombination.
Overall, the cell cycle was the most important pathway
associated with these DEGs [36, 37]. Based on the gene
enrichment in these cellular processes, our fndings further
support the ongoing idea that abnormal activation of cell
division leads to tumour progression and an overall poor
prognosis.

ARGs can not only afect individual cells but can also
reshape the tumourmicroenvironment [10, 11] and promote
the progression of tumours as well. In line with this, we
determined the diference in ICI among diferent ageing
subtypes. In the ARG-ST1 and ARG-ST2 subtypes with good
prognosis, tumour suppressor immune cell infltration, for
instance, B cells [38] and CD4+ T cells [39], was observed to
be considerably increased. Moreover, the infltration of
cancer-promoting immune cells, for example, M2 macro-
phages, was also increased simultaneously [40, 41]. Tis
fnding is not entirely consistent with previous studies.
Whether this phenomenon is related to the early or late
accumulation of ageing cells remains unclear. Moreover, we
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did not construct a model that can simulate the dynamic
development process of ageing cells at diferent time points.

Furthermore, we established prognostic gene signatures
based on ageing-related diferentially expressed lncRNA genes
to simplify the clinical application of ageing-related genes.
lncRNAs are RNA transcripts that cannot encode polypeptides,
generally consisting of more than 200 nucleotides [42]. Re-
search has found that they perform a signifcant function in the
onset and progression of many diseases, including tumours.
After conducting lasso regression analysis, 13 lncRNAs
(MIR99AHG, LINC01224, LINC01138, SLC25A30AS1,
AC006369.2, SOCS2AS1, LINC01063, AC006037.2, USP2AS1,
FGF14AS2, LINC01116, KIF25AS1, and AC002511.2) with the
maximum frequency were obtained. Some studies on these
lncRNAs have revealed their role in tumours. For example,
MIR99AHG, as a tumour progression-inhibiting factor, can
delay lung cancer progression by synergistically promoting
autophagy in lung cancer [43]. However, in gastric cancer, it
can promote EMT and the progression of gastric cancer [44].
LINC01224 performs a consistent role in tumours, and current
studies have revealed that it promotes progression in diferent
types of tumours, i.e., gastric cancer [45], colorectal cancer [46],
and lung cancer [47]. Studies on LINC01138 in tumours are
limited, but the current results show the progress of LINC01138
in liver cancer [48] and kidney cancer [49]. SLC25A30AS1 and
LINC01063 are only shown to be constituent factors in the
tumour prognosis model, but their specifc role in tumours has
not been studied [50, 51]. SOCS2AS1 promotes tumour pro-
gression in prostate cancer [52] but inhibits tumour pro-
gression in epithelial, ovarian, and colorectal cancer [53–55].
USP2AS1 is a cancer-promoting factor that promotes tumour
progression by diferent mechanisms in various types of tu-
mours, including ovarian and colorectal cancer [56–58].
FGF14AS2 inhibits tumour progression in many ways, such as
inhibiting metastasis by regulating the miR-370-3p/FGF14 axis
[59]. Its overexpression inhibits cell proliferation through
RERG/Ras/ERK signalling [60] but promotes glioma pro-
gression via glioma microRNA-1288-3p [61]. LINC01116 is
a poor prognostic factor for diferent types of tumours and
plays a role in tumour progression [62]. For AC006369.2,
AC006037.2, KIF25AS1, and AC002511.2, there is no research
to explore their role in tumours.Te diversity of these lncRNAs
also refects the complex mechanism of cell ageing in tumours,
but we lack efective in vivo verifcation in this part.

Moreover, patients sufering from HCC with high-risk
scores showed a considerably worse prognosis than those
with low-risk scores. Additionally, it was revealed that HCC
patients with high prognostic risk scores were at an ad-
vanced tumour stage, i.e., M stage and T stage, a potential
reason for the poor prognosis. However, the risk score was
identifed as an independent and stable prognostic factor, as
confrmed by our ROC curve analysis. Furthermore, we also
compared the characteristics of TMB and the immune
microenvironment in patients with low- and high-risk
scores. We found that risk scores have a positive associa-
tion with TMB, which is defned as the total number of
somatic coding mutations, which often leads to the emer-
gence of new antigens that trigger antitumour immunity
[63]. Studies have revealed that higher mutation rates in

certain tumours can result in the emergence of novel an-
tigens, which play a vital role in the activation of immune
cells [64]. Currently, TMB has been identifed as an
emerging biomarker for evaluating tumour sensitivity to
immune checkpoint inhibitors [65]. In this research, the risk
score was observed to have a positive correlation with TMB,
which can mean that an increase in risk score leads to in-
creased efectiveness of immunotherapy. However, the ac-
tual results do not seem to be consistent with it, and whether
the diference in efective new antigens caused by the dif-
ference in mutant gene subgroups leads to the fact that the
overall level of TMB cannot represent the level of efective
immune activation because we found that the type of mu-
tation changed in parallel with the risk score and if this
change is caused by cell ageing remains to be determined.

From another perspective, the characteristics of the
infltrating immune cell population are also important.
Signifcant variations in the distribution of immune cells
between the scoring groups were also observed; for example,
the infltration levels of the tumour suppressor CD8+ T cells
were substantially higher in the individuals of the low-risk
group, suggesting that it may be one of the contributors to
a good prognosis. Similarly, the low-risk group displayed
a higher objective response rate to anti-PD-L1 therapy as
compared to the high-risk group. Studies have shown that
potential markers, including PDL1 expression, TMB, and
MSI levels, can be used as immunosuppressants in tumours.
In accordance with this, patients with high TMB generally
have high response rates to PDL1 [66]. However, we found
several contradictions in our study. Our research fndings
indicate that a single index in the complex regulatory net-
work of the tumour microenvironment may not be efcient
for predicting the efectiveness of immune checkpoint in-
hibitors.Terefore, we suggest that the risk score can be used
as a more intuitive index for evaluating the efcacy of
immune checkpoint inhibitors.

Additionally, our study has a few limitations that should
be considered. First, the TCGA dataset’s population com-
position is limited mainly to Caucasians and Afri-
can–Americans. Hence, extrapolation of the results to other
racial groups would need to be confrmed. Second, a robust
multigene signature should be externally validated using
diferent cohorts; therefore, our model needs further vali-
dation in multicentre clinical trials and prospective studies.
Finally, the genes included in the signature need to be
validated at the biological level to lay the foundation for
clinical studies.

In conclusion, we systematically analysed ARGs in HCC,
identifed 36 genes related to prognosis, and classifed HCC
based on these genes. Tree independent ageing subtypes
with substantial survival variations were obtained, and the
three subtypes had signifcantly diferent gene expression
profles, cell pathway enrichment, and ICI. Additionally,
CTNNB1 and TP53 mutations were identifed as the main
mutations of ARGs in HCC, which can signifcantly alter the
expression of ARGs. Furthermore, in accordance with the
expression profles of ageing-related lncRNAs among dif-
ferent subtypes, a risk-score model incorporating 13
lncRNAs was constructed and validated as an independent
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prognostic factor for individuals sufering from HCC.
Moreover, patients exhibiting diferent risk scores demon-
strated diferent clinical characteristics, TMB, ICI, and re-
sponse to immunotherapy. Patients with low-risk scores
exhibited good prognoses and responded well to immu-
notherapy. Altogether, we found that the risk score was an
independent prognostic factor for patients with HCC and
can serve as a predictive biomarker of immune checkpoint
inhibitor response when combined with TMB assessment.
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