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Background. Clear cell renal cell carcinoma’s (ccRCC) occurrence and development are strongly linked to the metabolic
reprogramming of tumors, and thus far, neither its prognosis nor treatment has achieved satisfying clinical outcomes. Methods.
Te Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively, provided us with information
on the RNA expression of ccRCC patients and their clinical data. Cuproptosis-related genes (CRGS) were discovered in recent
massive research. With the help of log-rank testing and univariate Cox analysis, the prognostic signifcance of CRGS was
examined. Diferent cuproptosis subtypes were identifed using consensus clustering analysis, and GSVA was used to further
investigate the likely signaling pathways between various subtypes. Univariate Cox, least absolute shrinkage and selection operator
(Lasso), random forest (RF), and multivariate stepwise Cox regression analysis were used to build prognostic models. After that,
the models were verifed by means of the C index, Kaplan–Meier (K-M) survival curves, and time-dependent receiver operating
characteristic (ROC) curves. Te association between prognostic models and the tumor immune microenvironment as well as the
relationship between prognostic models and immunotherapy were next examined using ssGSEA and TIDE analysis. Four online
prediction websites-Mircode, MiRDB, MiRTarBase, and TargetScan-were used to build a lncRNA-miRNA-mRNA ceRNA
network. Results. By consensus clustering, two subgroups of cuproptosis were identifed that represented distinct prognostic and
immunological microenvironments. Conclusion. A prognostic risk model with 13 CR-lncRNAs was developed. Te immune
microenvironment and responsiveness to immunotherapy are substantially connected with the model, which may reliably predict
the prognosis of patients with ccRCC.

1. Introduction

CCRCC is the most prevalent subtype of renal malignancy,
accounting for nearly 70% of all cases [1]. In addition, it
exhibits higher rates of recurrence, metastasis, and mortality
when compared to chromophobe cell renal carcinoma
(cRCC) and papillary renal cell carcinoma (pRCC) [2, 3].
Due to the insidious nature of ccRCC, 30% of patients have
metastases when they are frst diagnosed [4]. Currently,
partial or radical nephrectomy is the best treatment option

for nonmetastatic ccRCC patients, but this procedure has
a postoperative recurrence rate that can range from 20 to
40%, which has a substantial impact on patient prognosis
[5]. In addition, radiation and chemotherapy frequently
have poor results for patients with metastatic ccRCC, and
drug resistance brought on by prolonged medication fre-
quently results in a terrible prognosis. Despite the fact that
immunotherapies such as programmed death-1 (PD-1) and
programmed death ligand 1 (PD-L1) have been employed in
the treatment of ccRCC recently and have demonstrated
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some therapeutic results, some patients still do not respond
well to this course of action [6, 7].

According to previous research, copper can induce tumor
angiogenesis, which aids in the progression of cancer, as well
as be directly linked to the occurrence and growth of a variety
of malignancies [8–10]. Besides that, certain outcomes have
been attained previously based on the use of copper ion
chelators in the therapy of cancer [11, 12]. Te key to
pathological and physiological processes is cell death, and
cuproptosis is the most recent type of death that difers from
previous cell deaths such as apoptosis [13], necrosis [14], and
ferroptosis [15]. According to the research, iron-sulfur cluster
protein loss and fatty acylated protein aggregation are in-
duced by copper binding to tricarboxylic acid (TCA) cycle
fatty acyl proteins, which results in death from toxic protein
stress [16]. In this regard, it is worth noting that studies have
shown that the occurrence and development of ccRCC fre-
quently involve reprogramming of the TCA cycle. Tis is
primarily accomplished by afecting the upregulation of the
VHL/HIF pathway, which results in the inhibition of the TCA
cycle, thereby promoting the occurrence and development of
ccRCC [17–19]. In view of this, the cuproptosis theory may
provide a novel approach to the therapy of ccRCC.

Long noncoding RNA (LncRNA) is a subclass of non-
coding RNAs that can take part in and control a number of
pathophysiological processes. lncRNA is a noncoding RNA
whose biological function is more than 209 bases long.
Similar to coding genes, lncRNAs can be chromatin
reprogrammed. Dysregulation and posttranscriptional reg-
ulation of enhancers are widely involved in biological,
physiological, and pathological processes. As a newly dis-
covered class of RNA molecules, several lncRNAs have been
identifed as biomarkers of cancer, which control tumor
proliferation, immune evasion, cell death resistance, and
regional or distant metastasis. Terefore, lncRNA represents
an important improvement in our understanding of copper
worm disease and evidence that lncRNA is a therapeutic
target that can induce GC copper Fibrobacteres. However,
the specifc role of lncRNA in the adjustment of aeruginosa
is largely unknown. By controlling metabolic reprogram-
ming, lncRNA can regulate carcinogenesis [20]. Addition-
ally, studies have shown that lncRNAs play a variety of roles
in the development of ccRCC, including upregulating
lncRNA PVT1 and activating the HIF2α pathway to promote
the growth and progression of ccRCC cells, as well as
lncRNA HCG18, which promotes ccRCC migration and
transfer by modulating the miR-152-3/RAB14 axis [21, 22].
LncRNA can also be used to predict the progression of
ccRCC [23, 24]. In a recent study, it was found that CRGS is
linked to immune infltration and the immune checkpoint
PD-1, which can help predict how well ccRCC patients
would fare and ofer new information about how to treat the
disease [25]. Nevertheless, there is still a lack of knowledge
about the mechanism of action of CR-lncRNA in ccRCC,
particularly its infuence on prognosis. Tis study in-
vestigated the function of CR-lncRNA in ccRCC and de-
veloped a new prognostic model based on CR-lncRNA,
which may ofer fresh perspectives for future studies on
ccRCC and patient-specifc management.

Te proposed CR-lncRNA-based prognostic model in-
cludes the following advantages. (1) Due to the discrete
Fourier transform data, its main information components
are concentrated in the low-frequency part of the frequency
domain, and the high-frequency part is mainly secondary
information or noise. Terefore, the lengthening lncRNA
sequence can be truncated into a fxed-length vector by
intercepting the fxed-length part of the low frequency. (2)
Two traditional convolutional models were used vgg16_bn
build task models with Resnet18. Firstly, to adapt the data
dimension, the commonly used two-dimensional convolu-
tion and pooling are adjusted to one-dimensional convo-
lution and pooling. At the same time, since the label data are
a twenty-four-dimensional data, the task model is extended
to a multioutput model. LncRNA tissue-specifc analysis was
performed on multiple output regression, multiple output
classifcation, and multilabel classifcation, respectively.

2. Methods and Materials

2.1. Data Collection. A recent signifcant study investigated
the cuproptosis subtypes and built a predictive model to
improve the prognosis of patients with CRC. Gene ex-
pression data were downloaded from the TCGA database to
identify distinct molecular subtypes using a nonnegative
matrix factorization algorithm [16]. Samples with a survival
time of less than 30 days were disregarded as we downloaded
the gene expression profle data, clinical information data,
mutation data, and copy number variation (CNV) data of
ccRCC from the TCGA ofcial website. Finally, 71 normal
samples and 511 tumor samples were comprised. Te GEO
database provided the CRGS gene expression profle in
ccRCC. Gene count values were employed for diferential
analysis, and for downstream analysis, count values were
converted to log2 (TPM +1) values.

2.2. Analysis of Genetic Mutation Data of CRGS. Te TCGA
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) cohort
was used to investigate the diferences in CRGS expression
between normal andmalignant samples.Tese discrepancies
in gene expression were then re-examined in the GSE53757
and GSE40435 cohorts. We further confrmed them using
the immunohistochemistry results of proteins in the Human
Protein Atlas (HPA) database to assess their alterations in
protein expression. Te location of these genes on diferent
chromosomes was visualized using the “RCircos” package,
the “maftools” package was used to plot the mutational
landscape of these genes, and fnally, univariate COX re-
gression analysis and log-rank test were performed to in-
vestigate the impact of these genes on the prognosis of
ccRCC patients.

2.3. ConsensusClusteringAnalysis Based onCRGS. Using the
“ConsensusClusterPlus” R package, we performed un-
supervised clustering of the ccRCC samples based on the
expression patterns of the 19 CRGS. To ensure the stability of
the clusters, 1000 random repeated samplings were carried
out on 80% of the samples and all genes. Te Euclidean

2 Journal of Oncology



distance clustering algorithm was selected. Te appropriate
number of clusters was established through using cumula-
tive distribution function (CDF) and intra-group correla-
tion. To confrm the discriminating of various subtypes,
principal component analysis (PCA) was utilized. Te
variations in survival among various subtypes were then
shown using K-M survival curves, and the log-rank test was
used to determine whether the diferences were statistically
signifcant.

2.4. Identifcation of Molecular Characteristics, Immune In-
fltration Characteristics, and Immunotherapeutic Response
Based on Diferent Subtypes. Te “GSVA” package was used
to study the pathways implicated in various subtypes
through gene set variation analysis (GSVA). To further
investigate the diferences in immune infltration features
across distinct subtypes, the infltration abundance of di-
verse immune cells in diferent subtypes was estimated using
the single sample genes enrichment analysis (ssGSEA) al-
gorithm of the aforementioned R package. Te tumor im-
mune dysfunction and exclusion (TIDE) approach, which
was developed in recent years, can be used to anticipate
whether immunotherapy will beneft tumor patients. Tis
research thorough investigation of hundreds of distinct
tumor expression profles looked for indicators to predict
whether patients would respond to immune checkpoint
blockade (ICB) therapy, i.e., a higher TIDE score indicates
a lower likelihood of responding to immunotherapy [26].
Te website it created (https://tide.dfci.harvard.edu/) was
subsequently used to forecast the immunotherapy response
in patients from diferent subtypes. Te results of the
analysis were visualized using the R packages “tinyarray,”
“pheatmap,” and “ggplot2.” Statistical signifcance was set at
a P-value <0.05.

2.5. Diferential Analysis of mRNA, lncRNA, and MicroRNA.
Te three approaches of “Edger,” “DESeq2,” and “limma”
were utilized to produce the overlapping mRNAs, lncRNAs,
and microRNAs (miRNAs), which were then employed as
the diferential genes. |Log2fold change|>1 and false dis-
covery rate (FDR)<0.05 were the screening criteria
thresholds for the approaches described above.

2.6. WGCNA Identifes Cuproptosis-Related Modules. Te
“WGCNA” R package was used to conduct the WGCNA
analysis of the lncRNAs from the ccRCC samples. According
to the scale-free network criteria, the best soft threshold was
chosen. Te modules with distances of less than 0.25 were
then combined, and the minimum number of genes for the
modules was set at 30. Te modules having the strongest
association with cuproptosis were chosen for further analysis
after a correlation analysis between the modules and
cuproptosis phenotypic data was completed.

2.7. Construction and Evaluation of Prognostic Risk Scoring
Models. Te R package “Caret” was used to frst randomly
divide the ccRCC samples in the TCGA queue into training

and test sets in a ratio of 7 : 3. Te training set and test set are
used to train and test the model, respectively, to create
a stable model. After intersecting the diferential lncRNA of
the ccRCC with the lncRNA in the module most associated
with cuproptosis discovered by the aforementioned
WGCNA, a univariate Cox regression analysis and log-rank
test were carried out. Subsequently, lncRNAs with a P value
<0.05 obtained by both of the above two test methods were
considered as candidate lncRNAs. We selected characteristic
genes using two machine learning approaches, namely,
Lasso regression and RF, to avoid the overftting of the
model. A well-known machine learning technique called
lasso regression decreases the dimensionality of high-
dimensional data by assigning each feature a penalty co-
efcient that makes the coefcient of unimportant features
0 and therefore eliminates collinearity across features. Is
frequently employed to tune the COX proportional hazards
model (CPH) [27]. Studies have proven that RF can also be
used to model survival analyses, and a minimal depth (MD)
strategy has also been developed to identify key prognostic
characteristics, and recent studies have pointed out that tree-
based machine learning methods outperform deep learning
in dealing with tabular data [28–30]. Te overlapping
lncRNAs chosen by the two machine learning methods
above were subjected to multivariate stepwise Cox re-
gression analysis, and the best CPH model was found
according to the Akaike information criterion (AIC) criteria,
which states that the smaller the AIC value, the better the
model’s performance [31].Te performance and precision of
the model in the training set were assessed by using the time-
dependent ROC curve and the C-index, and the perfor-
mance of the risk score as an independent prognostic in-
dicator was confrmed utilizing univariate and multivariate
Cox regression analysis. In order to more thoroughly assess
the performance of our prognostic model, we gathered
a number of lncRNA-based prognostic risk scoring models
developed based on the TCGA-KIRC cohort in recent years,
computed the time-dependent ROC curve and C index of
the lncRNA model based on the entire TCGA-KIRC cohort,
and compared them with our developed prognostic model
[32–37].

2.8. Construction of Competing Endogenous RNA (ceRNA)
Network. We predicted the target miRNAs of these
lncRNAs by applying the mircode website (https://mircode.
org/download.php) based on the overlapping lncRNAs
identifed by the aforementioned univariate Cox analysis
and log-rank test. Te resulting target miRNAs were
crossed with the diferential miRNAs and then submitted to
miRDB (https://mirdb.org/), miRTarBase (https://
mirtarbase.cuhk.edu.cn/), and targets can (https://www.
targetscan.org/). Te target mRNAs of the aforemen-
tioned miRNAs were predicted by the three websites in
turn. Te fnal target mRNAs were chosen based on pre-
dictions made simultaneously by the three websites’ pre-
dicted targets. We created a lncRNA-miRNA-mRNA
ceRNA network in the Cytoscape based on the above
predicted results.
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2.9. Functional Enrichment Analysis. Using the LNCSEA
online platform (https://bio.liclab.net/LncSEA/), the func-
tional enrichment analysis of the aforementioned prognostic
CR-lncRNAs was carried out [38]. Functional enrichment
annotation of CR-lncRNA target miRNAs was performed
using the miEAA online tool (https://ccb-compute2.cs.uni-
saarland.de/mieaa2/) [39]. In order to investigate the
probable biological pathways of patients in diferent risk
groups, we simultaneously performed gene set enrichment
analysis (GSEA) on patients in high- and low-risk groups
using the R package “clusterProfler.” Te adjusted Pvalue
<0.05 and q value <0.05 were used to identify statistically
signifcant enriched pathways.

2.10. Immunotherapy Response Prediction and Drug Sensi-
tivity Analysis. ICB therapy has now been proven to be
benefcial for some tumor patients, although the majority of
patients do not gain from it, which may be partially at-
tributed to tumor heterogeneity and varied immune
checkpoint expression. In order to determine whether pa-
tients might beneft from immunotherapy, we compared the
immune checkpoint expression between high- and low-risk
patients. We then used the TIDE website to estimate the
immunotherapy response for ccRCC patients in diferent
risk groups. Sensitive anticancer drugs were examined using
the “pRRophetic” R package for two risk groups. Te
Wilcoxon rank test was used to analyze diferences between
various risk groups, and a P value lower than 0.05 was
regarded as statistically signifcant.

2.11. Statistical Analysis. R software was used to perform all
analyses (version 4.1.2). Te association analysis of two
categorical variables and the sample rate (composition ratio)
of two or more groups were both compared using the chi-
square test. To determine whether there were any diferences
in the distribution of measurement data or grade data be-
tween the two groups, a Wilcoxon rank-sum test was uti-
lized. Te Kruskal–Wallis test was used for nonparametric
comparisons when there were three or more groups. For
correlation testing in the correlation analysis, Spearman, and
distance correlation tests were employed. Te statistical
signifcance was defned as a P value of 0.05, where ∗ denotes
P value <0.05, ∗∗ denotes P value <0.01 and ∗∗∗ denotes P

value <0.001, and ns denotes no statistical signifcance.

3. Results

3.1. Landscape of Genetic Mutations in CRGS. Te 19 CRGS
were acquired through recent signifcant scientifc dis-
coveries [16]. Following that, diferential analysis of the
previously mentioned genes in the TCGA cohort
revealed that, with the exception of LIPT1, LIPT2, and
ATP7A, which revealed no statistically signifcant dif-
ferences, the expression of the majority of CRGS difered
signifcantly between normal and tumor samples and
most of them were downregulated (Figure 1(a)). Next,
the expression levels of these CRGS were checked again
in the two GEO cohorts, GSE40435 and GSE53757, and

although the results were slightly diferent from the
TCGA cohort, the general results were similar
(Figures 1(b) and 1(c)). It is common knowledge that
proteins carry out the majority of biological processes in
humans. To this end, we further assessed the variance in
these genes protein expression in the HPA database
between tumor and normal tissues. Te outcomes
demonstrated that most genes expressed diferently at
the protein level as well (Figure 1(f )). Te fndings from
the K-M survival curve were similar to those from the
univariate Cox analysis, with the exception that
CDKN2A and GCSH were risk factors, whereas the
remaining genes were protective (Figure 1(d)). Te so-
matic mutation rate of each CRGS was incredibly low,
and just 23 (6.44%) of 357 ccRCC samples showed ge-
netic alterations, according to our analysis of somatic
mutations in these genes (Figure 1(e)). Figure 1(f )
demonstrates that the majority of CRGS have low
CNV frequencies. Te frequency of copy number de-
letions is almost 9% for only PDHB. On the chromosome,
CRGS is located, as shown in Figure 1(c). We hypoth-
esized that the genetic variation in ccRCC is largely stable
because both somatic mutations and CNV frequencies
had very small sample sizes. Of course, additional ele-
ments such as methylation and histone modifcations
might also be at work. According to the aforementioned
fndings, CRGS has a signifcant impact on the prognosis
of ccRCC patients as well as the occurrence and pro-
gression of cancer.

3.2. Identifcation of Molecular Subtypes Based on CRGS.
We used the “ConsensusClusterPlus” R package, a consen-
sus clustering method based on a machine learning algo-
rithm, to perform unsupervised clustering of ccRCC
patients-based on the expression levels of the 19 CRGS.
Finally, as shown in Figures 2(a) and 2(b), we were able to
distinguish the cuproptosis molecules into two optimum
clusters, A and B, each of which had 335 and 176 samples,
respectively. Based on the abovementioned results, we can
infer that patients in clusters A and B refect two distinct
cuproptosis phenotypes, with cluster A presenting the ac-
tivating subtype of cuproptosis and cluster B representing
the suppressing subtype. Te PCA results demonstrated
good discrimination between the two distinct subtypes
(Figure 2(c)). A subsequent study of survival analysis
revealed that patients in cluster A had signifcantly higher
overall survival (OS) than those in cluster B (Figure 2(d)).
For the two subtypes, GSVA analysis identifed separate
underlying biological processes and pathways (Figure 2(e)).
Te pathways DNA repair, Myc targets, Reactive Oxygen
Species pathway, and Kras Signaling pathway, which are
typically linked to tumor development and tumor immune
infammation, were signifcantly enriched in patients in
cluster B compared with patients in cluster A. Terefore, the
reason that cluster B patients have a poor prognosis may be
due to the activation of the aforementioned pathways.
However, the spermatogenesis, pancreas beta cells, heme
metabolism, and androgen response of patients in cluster A
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were signifcantly enriched. In light of the variations in the
biological pathways mentioned above, we investigated the
immune infltration traits of the two subtypes. As can be seen
in Figure 2(f ), cluster A had a larger concentration of in-
fltrating neutrophil, mast, and eosinophil cells, whereas
cluster B had a higher concentration of infltrating activated
CD8 T cells, CD4 T cells, activated B cells, and myeloid-
derived suppressor cells (MDSC) cells. Ten, using the TIDE
website, we predicted whether certain patient subgroups

would respond to immunotherapy. According to
Figure 2(g), patients in cluster A had lower TIDE scores,
making them more likely to beneft from immunotherapy.
Figure 2(h) compares the immunotherapy responses of
diferent patient subgroups (cluster A, 89% vs. cluster B,
72%). Our fndings imply that therapeutic regimens de-
veloped for cuproptosis may be a potential anticancer target
in ccRCC patients and may improve ccRCC patients’ re-
sponsiveness to immunotherapy.
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Figure 1: Identifcation of 19 CRGS and their genetic mutational landscape. (a) Diferential expression of CRGS in the TCGA cohort;
(b) diferential expression of CRGS in the GSE40435 cohort; (c) diferential expression of CRGS in the GSE53757 cohort; (d) co-expression
network between CRGS; (e) mutation frequency of CRGS; (f ) copy number variation frequency of CRGS. ∗P value <0.05, ∗∗P value <0.01,
∗∗∗P value <0.001, ∗∗∗∗P value <0.0001.
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Figure 2: Continued.
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3.3. Identifcation of CR-lncRNAs. As master regulators of
gene expression, lncRNAs have been implicated in a number
of malignancies in recent years. A notable illustration is
PCAT-1 dysregulation, which is strongly linked to the de-
velopment of prostate cancer [40]. Additionally, lncRNAs
can be employed independently to forecast tumor prognosis,
tumor progression, and disease diagnosis [41, 42].Terefore,
we retrieved the lncRNA expression profles of ccRCC pa-
tients from the TCGA database and, after deleting the
lncRNAs that were barely expressed, acquired 9024 lncRNAs
forWGCNA analysis.TeWGCNA network was built using
the one-step method, and Figure 3(a) shows that there were
no outlier samples discovered and that the samples were well
clustered. Te ideal soft threshold of 3 was identifed using
the scale-free topology ftting index of 0.85 and network
connectivity as the standard (Figure 3(b)). A hierarchical
clustering dendrogram that obtained 10modules is shown in
Figure 3(c). As can be seen from Figure 3(d), the blue, green,
and magenta modules are all signifcantly associated with
tumor and cuproptosis, but the blue module has the
strongest correlation with tumor (r� −0.5, P< 0.001). As
a result, we chose the lncRNAs identifed in the bluemodules
to further develop the prognostic molecular characteristics
of ccRCC patients.

3.4. Construction and Validation of Prognostic Risk Scoring
Model. We eventually discovered 4229 overlapping
mRNAs, 2287 overlapping lncRNAs, and 181 overlapping
miRNAs using the three methods of “EdgeR,” “DESeq2,”
and “limma” for gene diferential analysis. Te diferential
lncRNAs were intersected with the 1033 lncRNAs in the blue
module above to provide 630 overlapping lncRNAs as
candidate lncRNAs. Subsequently, univariate Cox regression
analysis and the log-rank test yielded 116 lncRNAs with
prognostic signifcance (P value <0.05). Figure 4(a) displays
the optimum parameter (λ) interval for Lasso regression
using 10-fold cross-validation. When we selected the λ value

with the smallest mean error, we got 33 lncRNAs
(Figure 4(b)). Te relationship between the number of trees
and the error rate in the RF algorithm is illustrated in
Figure 4(c), along with the characteristic genes the algorithm
identifed. It is clear that as the tree expands, the error rate
curve gradually fattens out, showing that the number of
trees chosen was sound. Te MD approach yielded
a threshold of 7.9681, and using this threshold, we were able
to derive 44 signifcant eigengenes (Figure 4(d)). By inter-
secting the lncRNAs produced by the previous two ap-
proaches, we identifed 23 potential lncRNAs (Figure 4(e)).
Based on the aforementioned potential lncRNAs, a multi-
variate stepwise CPH model was created, and with an
AIC� 1234.71, we were able to generate the ideal CPH
model for 13 lncRNA combinations in the training set
(Figure 4(f )).

Te expression of lncRNA in the aforementioned model
and the regression coefcient obtained by multivariate
stepwise Cox regression analysis were used to generate the
risk score for each patient. Te following is the calculating
formula: risk score� (−0.3586∗AC007637.1 exp) + (−0.2050
∗ LINC00113 exp) + (−0.5718∗AL162377.1 exp) + (−1.1979
∗AL353803.2 exp) + (−0.5197∗ PSMG3-AS1 exp) + (1.3177
∗TFAP2A-AS2 exp) + (0.5387∗AC007881.3 exp) + (1.5752
∗ LINC01460 exp) + (0.9538∗ LCMT1-AS1 exp) + (0.9434∗
HMGA2-AS1 exp) + (2.0661∗AC007993.3 exp) + (2.1685∗
AC117382.2 exp) + (−0.3046∗AC008556.1 exp). Based on
the median risk score, patients were separated into high- and
low-scoring groups. Te risk score’s area under the curve
(AUC) at one year, three years, and fve years is 0.800, 0.793,
and 0.819, respectively, according to the ROC curve of the
training set (Figure 5(a)). Te ROC curve of the test set also
displays greater accuracy, with AUCs exceeding 0.75 at one
year, three years, and fve years (Figure 5(d)). Te C index,
which was 0.77 in the training set (Figure 5(b)) and 0.71 in the
validation set (Figure 5(e)), both of which were considerably
higher than the remaining clinicopathological variables, also
showed that the model had great consistency. In the training
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Figure 2: Consensus cluster analysis, immune infltration analysis, and immunotherapy response analysis based on 19 CRGS. (a) Consensus
clustering-based on CRGS; (b) cumulative distribution function plot; (c) PCA analysis between two cuproptosis clusters; (d) survival
analysis between two cuproptosis clusters; (e) GSVA analysis; (f ) diferences between 23 immune cells in diferent cuproptosis clusters;
(g) diferences in TIDE scores among diferent cuproptosis clusters; and (h) diferences in immunotherapy response among diferent
cuproptosis clusters. ∗P value <0.05, ∗∗P value <0.01, ∗∗∗P value <0.001, ∗∗∗∗P value <0.0001.
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and test sets, the OS of patients in the high-score grouping
was considerably lower than that in the low-risk category
(Figures 5(c) and 5(f), P value <0.001). Additionally, the
prognostic risk model we created performs better than some
current models when comparing the two indicators of AUC
and the C index (Figure 5(g)).Te results above show that the
prognostic risk score model based on 13 CR-lncRNAs can
precisely predict the prognosis of ccRCC patients.

3.5.CorrelationofPrognosticRiskScoringModelswithClinical
Pathological Features. Te association between risk scores
and clinicopathological characteristics was also demon-
strated by our investigation. As observed in Figure 6(a),
grade and stage vary among various risk groups even if risk
scores are really not related to age and gender. Furthermore,
a greater risk score was signifcantly correlated with both
a higher grade and stage (Figure 6(b)). Likewise, the out-
comes of patients in the high-risk group were considerably
worse than those in the low-risk group in all clinical sub-
groups, according to the fndings of the subsequent survival
analysis (Figure 6(c)). Te risk score was also revealed to be

an independent prognostic factor in ccRCC patients by
univariate and multivariate Cox regression analysis
(Figures 6(d) and 6(e)). In light of the aforementioned
fndings, the prognostic risk score model, which is made up
of 13 CR-lncRNAs, is a very promising biomarker that can
not only accurately predict the prognosis of ccRCC patients
but also assess their clinical progression.

3.6. Correlation of Prognostic Models with Tumor Immune
Microenvironment and Immunotherapy Responses. Te
ssGSEA analysis suggests that the immune infltration fea-
tures of the patients in the two risk groups varied. While
patients in the low-risk group had higher rates of neutrophil,
immature dendritic cell, andmast cell infltration, patients in
the high-risk group had higher rates of activated CD4 Tcell,
activated CD8 Tcell, and MDSC infltration (Figure 7(a)). It
was further revealed by PCA analysis that the two patient
groups represented various immune cell infltration mi-
croenvironments (Figure 7(b)). Te majority of immuno-
logical checkpoints were more strongly expressed in the
high-risk group, whereas PD-L1 and PD-L2 expression were
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Figure 3:Weighted correlation network analysis. (a) Cluster analysis of all samples in the TCGA cohort; (b) analysis of network topology for
various soft thresholding powers. Te left panel shows the scale-free ft index (y-axis) as a function of the soft thresholding power (x-axis).
Te right panel displays the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis); (c) clustering
dendrogram of diferent similarity genes-based on topological overlap; and (d) the module-traits associations diagram. Each grid cor-
responds to a module, the color of the grid represents the size of the correlation between diferent modules, the thickness of the lines
represents the size of the correlation between modules and phenotypes, and the color of the lines represents the size of the P value of the
correlation test between modules and phenotypes.
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Figure 4: Continued.
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more prominent in the low-risk group (Figure 7(c)).
According to the current understanding, immunotherapy
has a greater chance of helping tumor patients the more
PD-L1 is expressed. Additionally, because the majority of
immune checkpoints are signifcantly expressed in the high-
risk group, it is more likely to produce immunosuppression,
which will cause the cancer to advance in those people. We
next used the TIDE online tool to predict immunotherapy
responses for patients in the two groups once more. Te
fndings demonstrated that the low-risk group had lower
TIDE scores than the high-risk group (Figure 7(d)).
Moreover, Figures 7(e) and 7(f) show that better immu-
notherapy outcomes are signifcantly correlated with lower
risk scores. Terefore, we can conclude that immunotherapy
is more likely to be benefcial for patients in the low-risk
group. Together, the prognostic risk score model may be

helpful in identifying patients’ TIME and forecasting their
response to immunotherapy.

3.7. Construction of ceRNA Networks. It is generally known
that miRNA can infuence mRNA expression via binding to
mRNA. As a ceRNA, lncRNA can also control the expression
of mRNA by competitively binding to miRNA, infuencing
the occurrence and progression of cancer. To learn more
about the regulatory role of CR-lncRNA at the gene level, we
frstly predicted the target miRNAs of the aforementioned
prognostic CR-lncRNAs using the website miRcode,
yielding 23 diferential miRNAs (Figure 8(a)). Te target
miRNAs identifed above were then used to predict the
target mRNAs via the miRDB, miRTarBase, and TargetScan
websites, and a total of 174 diferentially overlapping
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Figure 4: Construction of a prognostic risk scoring model. (a) Tuning parameter map for lasso regression based on 10-fold cross-validation;
(b) the selected lncRNAs and their regression coefcients based on lambda with the smallest mean error of lasso regression; (c) prognostic
feature lncRNAs selected based on the random forest algorithm; (d) prognostic signature lncRNAs selected based on the MD method;
(e) venn diagram showing overlapping lncRNAs obtained by the lasso algorithm and random forest algorithm; (f ) forest plot showing
13 CR-lncRNAs obtained by multivariate stepwise COX regression analysis.
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mRNAs were discovered (Figure 8(b)). We created
a lncRNA-miRNA-mRNA ceRNA network based on the
results above (Figure 8(c)).

3.8. Functional Enrichment Annotation. We discovered that
the aforementioned prognostic CR-lncRNAs were consid-
erably enriched in cell proliferation, metastasis, stemness,
and EMT as well as being signifcantly related with a variety
of immune cells by enrichment analysis (Figures 9(a) and
9(b)). Te miRNA enrichment analysis revealed that the

aforementioned miRNAs were signifcantly enriched in
pathways involved in the development of cancer and im-
mune infammation, including the p53 signaling pathway,
the JAK-STAT signaling pathway, the expression of PD-L1,
the PD-1 checkpoint pathway in cancer, the chemokine
signaling pathway, and other pathways (Figure 9(c)). Te
underlying biological pathways in patients in the high-risk
and low-risk groups were then further investigated using
GSEA analysis. According to the fndings, the IL-6/JAK/
STAT3 signaling, E2f targets, and epithelial-mesenchymal
transition (EMT) pathways were considerably enriched in
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Figure 5: Evaluation and validation of prognostic risk scoring models. (a–c) Time-dependent ROC curves, C index, and K-M survival
analysis in the training set; (d–f) time-dependent ROC curves, C index, and K-M survival analysis in the test set; (g) comparison of AUC
values and C-index of diferent prognostic risk score models.
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Figure 6: Association of prognostic risk score models with clinicopathological variables. (a) Heatmap of clinical correlations for prognostic
models; (b) diferences in risk scores between diferent clinical subgroups; (c) diferences in overall survival among patients in diferent risk
groups in diferent clinical subgroups; (d) univariate COX regression analysis of risk scores and clinicopathological variables; (e) mul-
tivariate COX regression analysis of risk scores and clinicopathological variables. ∗P value <0.05, ∗∗P value <0.01, ∗∗∗P value <0.001, ∗∗∗∗P
value <0.0001.

12 Journal of Oncology



the high-risk group. Patients in the low-risk group, on the
contrary side, had signifcantly higher levels of pathways
such oxidative ylation, protein metabolism, fat acid meta-
bolism, and androgen response (Figure 9(d)).

3.9. Sensitivity Analysis of Antitumor Drugs. With the use of
the “pRRophetic” R package, we acquired 6 potentially sen-
sitive medications to help further direct the individualized
treatment of ccRCC patients. Results showed that in the high-

risk group, acadesine (AICAR), all-trans retinoic acid (ATRA),
palbociclib (PD-0332991), and cisplatin were more sensitive,
whereas in the low-risk group, GSK1904529A and KIN001102
were more sensitive (Figure 10).

4. Discussion

Using the TCGA and GEO datasets, this study investigated
the expression diferences of CRGS at the gene level between
normal tissue and tumor samples, and further confrmed the

ns**** **** * ns****** ns ns ns**** ns ns**** ns**** **** * ns nsns**** ** ns nsns nsns

0.25

0.50

0.75

1.00

1.25

N
eu

tro
ph

il

Im
m

at
ur

e d
en

dr
iti

c c
el

l

Ac
tiv

at
ed

 C
D

4 
T 

ce
ll

M
as

t c
el

l

Ac
tiv

at
ed

 C
D

8 
T 

ce
ll

C
en

tr
al

 m
em

or
y 

CD
4 

T 
ce

ll

Eo
sin

op
hi

l

M
D

SC

CD
56

di
m

 n
at

ur
al

 k
ill

er
 ce

ll

Pl
as

m
ac

yt
oi

d 
de

nd
rit

ic
 ce

ll

M
em

or
y 

B 
ce

ll

Ac
tiv

at
ed

 d
en

dr
iti

c c
el

l

Ac
tiv

at
ed

 B
 ce

ll

Ty
pe

 2
 T

 h
elp

er
 ce

ll

M
ac

ro
ph

ag
e

N
at

ur
al

 k
ill

er
 T

 ce
ll

Ty
pe

 1
 T

 h
elp

er
 ce

ll

C
en

tr
al

 m
em

or
y 

CD
8 

T 
ce

ll

Ef
ec

to
r m

em
or

y 
CD

4 
T 

ce
ll

G
am

m
a d

elt
a T

 ce
ll

M
on

oc
yt

e

N
at

ur
al

 k
ill

er
 ce

ll

Ty
pe

 1
7 

T 
he

lp
er

 ce
ll

Im
m

at
ur

e B
 ce

ll

Ef
ec

to
r m

em
or

y 
CD

8 
T 

ce
ll

Re
gu

lat
or

y 
T 

ce
ll

CD
56

br
ig

ht
 n

at
ur

al
 k

ill
er

 ce
ll

T 
fo

lli
cu

la
r h

elp
er

 ce
ll

Pr
op

or
tio

n

Group
low
high

(a)

−5.0

−2.5

0.0

2.5

−10 0 10
Dim1 (55.5%)

D
im

2 
(9

.3
%

)

Groups
low

high

Individuals − PCA

(b)

Group
low
high

******** **** ***** ******

0.0

2.5

5.0

7.5

10.0

CT
LA

4

PD
−L

1

LA
G
3

PD
−1

TI
G
IT

BT
LA

PD
−L

2

Ex
pr
es
sio

n

(c)

**

−0.75

−0.50

−0.25

0.00

0.25

Low High

TI
D
E

Risk
Low

High

(d)

***

0

1

2

3

4

5

NR RP
Response

Ri
sk

Sc
or

e

Response

NR
RP

(e)

Response

NR
RP

14%

86%

22%

78%

0

25

50

75

100

Low High
Risk

Pe
rc

en
t w

ei
gh

t

(f )

Figure 7: Correlation of prognostic risk score models with immune infltration and response to immunotherapy. (a) Diferences in immune
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expression variations of CRGS at the protein level in the
HPA datasets. In ccRCC, the majority of CRGS were lowly
expressed, and a survival study afterward indicated that most
CRGS were protective genes in ccRCC patients. In addition,
the genetic mutation data analysis confrmed that the genetic
mutation of the above genes in ccRCC is relatively rare. Te
two subtypes of cuproptosis clusters were then established
by consensus clustering-based on the expression of 19
CRGS, and further analysis proved that the subtype with
high CRGS expression was substantially associated with
higher survival. Tese fndings imply that cuproptosis might

be a therapeutic target for people with ccRCC. It is in-
teresting to note that there were signifcant diferences be-
tween the TIME of the two subtypes, with the subtype
considerably downregulated in CRGS having a larger
abundance of cytotoxic T lymphocytes (CTLs) infltration
but also more MDSC infltration. It is well recognized that
MDSC infuence immunosuppressive tolerance through
a variety of methods as signifcant elements of the milieu that
suppresses the immune response to cancer. Numerous
studies have proven that MDSC, in particular, suppress the
T-cell immunological response by creating a lot of reactive

(a) (b)

DownlncRNA
UpmiRNA
DownmiRNAUplncRNA

DownmRNA
UpmRNA

(c)

Figure 8: Construction of the ceRNA network. (a) Interaction network diagram between lncRNA and miRNA; (b) interaction network
diagram between mRNA and miRNA; (c) ceRNA network diagram of lncRNA-miRNA-mRNA. Yellow means upregulation, blue means
downregulation.
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oxygen species (ROS) [43–45]. Also, MDSCs have been
linked to a number of tumor-related events, including an-
giogenesis, treatment resistance, and metastasis [46]. Tis
may also explain why cluster B subtypes have lower survival
rates and higher CTLs infltration. Notably, subsequent
GSVA analysis also supported the fnding that patients with
the cluster B subtype had substantial ROS PATHWAY
enrichment. Te outcomes of the TIDE online tool also
revealed that patients with the cluster B subtype responded
to immunotherapy less favorably. Te statistics shown above
clearly demonstrate that cuproptosis is highly related to the
prognosis and immunotherapy of patients with ccRCC,
opening up new research directions.

LncRNA, which acts as master regulator of gene ex-
pression, has been linked to a number of cancers and can be
used independently to predict a patient’s prognosis and
make a diagnosis of the disease [40–42]. By using WGCNA,
we were able to recognize CR-lncRNA. Subsequently,
prognostic characteristic genes were further screened using
univariate Cox regression analysis, log-rank test, LASSO
regression, and RF. Finally, using multiple stepwise Cox
regression, an optimal prognostic risk score model made up
of 13 CR-lncRNAs was constructed. Te model has strong
predictive performance and consistency, as indicated by the
ROC curve and the C index. Furthermore, it was discovered
that the CR-lncRNA-based prognosis models developed
using WGCNA and various machine learning algorithms
were typically superior to some current models when

compared to some lncRNA-based prognostic models de-
veloped in the TCGA-KIRC cohort in recent years.

Besides that, we investigated the relationship between
predictive risk scores and clinicopathological characteristics
and discovered that there was a substantial relationship
between risk scores and clinicopathological variables in
ccRCC. Furthermore, studies showed a signifcant positive
correlation between the risk score and the tumor’s aggres-
siveness, with the greater the risk score, the higher the tumor
grade and stage. Subsequent analysis of immune checkpoint
expression and immune infltration analysis confrmed that,
except for PD-L1 and PD-L2, the remaining immune
checkpoints were more highly expressed in the high-risk
group, and the infltration abundance of MDSC was also
higher. Tis demonstrates that patients with higher risk
scores are more likely to produce an immunosuppressive
microenvironment, enabling tumor cells to elude the im-
mune system’s surveillance and promoting the growth and
development of malignancies. Furthermore, evidence that
patients with greater risk scores had a worse response to
immunotherapy came from the TIDE study. We conducted
the GSEA analysis to investigate the mechanism underlying
this diference. Pathways including EMT and IL6 Jak Stat3
Signaling were discovered to be considerably enriched in the
high-risk group. Studies have already shown that activating
the EMTpathway can promote tumor cell infltration, tumor
migration, and metastasis. It can also cause the formation of
an immunosuppressive microenvironment, which helps
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Figure 9: Functional enrichment analysis. (a-b) lncRNA enrichment analysis entry; (c) miRNA enrichment analysis entries; (d) GSEA
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tumor cells to escape the immune system [47, 48]. Mean-
while, the IL-6/JAK/ STAT3 Signaling pathway is over-
activated in many forms of cancer, and it is implicated in
driving cancer cell proliferation, invasion, and metastasis, as
well as interacting with TIME to inhibit antitumor immune

responses [49]. Moreover, it has been shown that the Stat3
transcription factor in the Stat3 signaling pathway can in-
crease the expression of S100A8 and S100A9, preventing
dendritic cell (DC) diferentiation and stimulating the ac-
cumulation of MDSC, which in turn mediates the
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Figure 10: 6 potential antitumor drugs-based on prognostic risk score model. ∗P value <0.05, ∗∗P value <0.01, ∗∗∗P value <0.001.
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immunosuppressive efects [50]. According to the results
above, there may be a connection between the activation of
the aforementioned pathways and the diferences in TIME
and immunotherapy responses amongst diferent risk
subgroups.

We developed a lncRNA-miRNA-mRNA ceRNA network
to more thoroughly elucidate the regulatory role of CR-lncRNA
at the gene level. Following enrichment analysis, it was dis-
covered that the aforementioned lncRNAs and miRNAs were
strongly linked to tumor development,metastasis, prognosis, cell
proliferation, and TIME. AICAR, ATRA, PD-0332991, Cis-
platin, GSK1904529A, and KIN001-102 were among the six
possible anticancer medications that were tested using drug
sensitivity analysis. And research has shown that ATRA can
enhance the survival of tumor-specifc CD8 T cells and upre-
gulated MHC I expression in tumor cells to function as anti-
tumor immunity [51–53]. Additionally, it can also promote
MDSC diferentiation and maturation, which in turn lowers
their population, triggering the immune system to inhibit tumor
growth [54]. A highly selective CDK4/6 inhibitor known as PD-
0332991 has been shown to have antiproliferative efects in
a variety of malignancies, including renal cell carcinoma and
liver cancer [55, 56].

Tis study has some relative merits overall. First of, the
CR-lncRNA-based prognostic model created by the
WGCNA and several machine learning algorithms can
successfully predict the prognosis of ccRCC patients. It
ofers greater prediction performance and consistency
when compared to several other lncRNA-based models
already in use. Signifcant relationships between the model,
TIME, and immunotherapy were also discovered in the
fnal research. Tere are, however, some restrictions-based
on bioinformatics analysis, and multicenter prospective
studies are still required for validation in the latter phase,
which is also the main objective of our future
research work.

5. Conclusion

We explore the potential function of CRGS in ccRCC after
a thorough investigation. Based on CR-lncRNA, a model for
prognostic risk scoring was developed. Tis model can
distinguish TIME, predict the efectiveness of immuno-
therapy, and provide great and independent prognostic
performance in ccRCC patients, allowing for more per-
sonalized treatment. For upcoming ccRCC research, it ofers
fresh perspectives and ideas.
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