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Objective. Te study aims to establish and validate an efective CT-based radiation pneumonitis (RP) prediction model using the
multiomics method of radiomics and EQD2-based dosiomics.Materials and Methods. Te study performed a retrospective analysis on
91 nonsmall cell lung cancer patients who received radiotherapy from 2019 to 2021 in our hospital. Te patients with RP grade ≥1 were
labeled as 1, and those with RP grade< 1 were labeled as 0.Te whole lung excluding clinical target volume (lung-CTV) was used as the
region of interest (ROI). Te radiomic and dosiomic features were extracted from the lung-CTV area’s image and dose distribution.
Besides, the equivalent dose of the 2Gy fractionated radiation (EQD2) model was used to convert the physical dose to the isoefect dose,
and then, the EQD2-based dosiomic (eqd-dosiomic) features were extracted from the isoefect dose distribution. Fourmachine learning
(ML) models, including DVH, radiomics combined with DVH (radio+DVH), radiomics combined with dosiomics (radio+dose), and
radiomics combined with eqd-dosiomics (radio+ eqdose), were established to construct the prediction model via eleven diferent
classifers. Te fvefold cross-validation was used to complete the classifcation experiment. Te area under the curve (AUC) of the
receiver operating characteristics (ROC), accuracy, precision, recall, and F1-score were calculated to assess the performance level of the
prediction models. Results. Compared with the DVH, radio+DVH, and radio+dose model, the value of the training AUC, accuracy,
and F1-score of radio+ eqdose was higher, and the diference was statistically signifcant (p< 0.05). Besides, the average value of the
precision and recall of radio+ eqdose was higher, but the diference was not statistically signifcant (p> 0.05). Conclusion. Te
performance of using the ML-based multiomics method of radiomics and eqd-dosiomics to predict RP is more efcient and efective.

1. Introduction

Radiotherapy is one of the most important treatment methods
for lung cancer. However, radiation-induced pulmonary injury
is the main limiting factor and the most common complication
of thoracic tumor radiotherapy. An accurate predictionmodel is
desired to clarify the risk factors of RP, guide the design of
radiotherapy treatment plans, and prevent high-risk patients in
advance.

In the clinical, the incidence of RP is correlated with the
dose to the lung tissue. Te lung volume within which the
dose is greater than xGy (Vx) from DVH, such as V30, V20,
and V5, is widely used for RP prediction. Afterward, some
studies have shown a strong correlation between these image

features (such as CT image density or 18F-
fuorodeoxyglucose uptake in positron emission tomogra-
phy) and tissue heterogeneity at the cellular level [1–3]. With
the development of radiomics, the digital image processing
and ML techniques can be applied in medical image analysis
[4–10]. Cunlife demonstrated the ability of radiomics to
provide a quantitative, individualized measurement of pa-
tient lung tissue reaction to RT and assess RP development
[11]. Based on these studies, the dosiomics method has been
proposed, which attempts to extract the spatial features from
dose distribution to construct a prediction model [12–16].
Liang et al. applied the framework of radiomics on dose
distribution and demonstrated that the dosiomic features
improve the prediction ability efciently [17–19].
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Most of the previous studies used the radiomic features
of the whole lung, combined with the dose-volume factors
and some clinical treatment characteristics, to train and
obtain the predictionmodel of RP. Some studies showed that
RP occurs outside the tumor, and lungs that receive low
doses (5 or 20Gy) are associated with RP [20, 21]. Tus, the
region of interest was the lung-CTV in this study. Te single
dose characteristics only utilize partial information on the
dose distribution without information regarding the spatial
relationship of voxels. Te same Vx value may be obtained
from voxels that are spread throughout the OAR or con-
nected voxels, so the Vx’s biological impact may difer
[22–29]. Te same absorbed dose with varying fractions of
treatment, diferent time intervals, and diferent numbers of
irradiation per day will represent diferent biological doses
and result in other biological efects. Te higher dose of each
fraction, the greater the biological efect on tissue, especially
for the late reaction tissues such as the lung [30, 31]. In the
clinical, the technology of hyper-fractionated or large-
fractionated may be adopted for some patients or
changed to hyper-fractionated after a certain dose of con-
ventional radiotherapy [30]. Besides, the radiation dose per
fraction (Fx) has been shown to be a signifcant factor in RP
[29]. Previous studies only used the dosiomic features from
the physical dose distribution. In this study, the equivalent
dose of 2Gy fractionated radiation (EQD2) was used to solve
the problem of equivalent dose calculation for diferent
fractionated radiotherapy. Te physical dose distribution of
lung tissue was converted to the EQD2 distribution, and the
eqd-dosiomic features were extracted from the EQD2 dis-
tribution using the framework of radiomics. Finally, the
predictive performance of four ML models, including DVH,
radio +DVH, radio + dose, and radio + eqdose, was
compared.

2. Methods and Materials

2.1. Patient Database. In this study, 350 patients diagnosed
with nonsmall cell lung cancer who received radiotherapy in
our hospital from 2019 to 2021 were collected retrospec-
tively, in which 91 patients met the selection criteria. At frst,
all patients were pathologically diagnosed with nonsmall cell
lung cancer and had defnite TNM stages of lung cancer
(Stage I, II, III, IV). Second, each patient underwent two
high-resolution diagnostic CT scans without surgical in-
tervention.Te frst was before radiotherapy, and the second
was within six months after radiotherapy. All patients were
treated entirely with intensity-modulated radiation therapy
(IMRT), and the plans were designed using the pinnacle
treatment planning system (V9.10). Te slice spacing of the
planning CT image was 5mm, and the grid spacing of dose
calculation was 3× 3× 3mm. Te classifcation of RP was
carried out according to the RTOG classifcation standard
for acute radioactive lung injury. Te endpoint of this study
was grade≥ 1 RP. Te clinical and treatment characteristics
of patients are shown in Table 1, and the details of 91 patients
are available in the supplementary fle 1.

2.2. Data Acquisition and Dose Conversion. In the study, the
self-developed automatic radiotherapy plan analysis soft-
ware was used to obtain the 3D volume (in Figures 1(a) and
1(b)) and the original 3D dose distribution (in Figure 1(c)) of
the lung-CTV area from the Pinnacle treatment planning
system (V9.10).

In the clinical, it is necessary to maintain the total dose
required for equivalent biological efects when changing the
conventional treatment plan. Te EQD2 is the dose that
causes an equivalent biological efect to conventional 2Gy
fractionation.Te problem of equivalent dose calculation for
diferent fractionated radiotherapy was solved using the
EQD2 model [30–34]. Te linear quadratic (L-Q) model is
derived directly from the cell survival curve. Te concept of
the isoefect dose and the mathematical derivation formula
based on the L-Q model can be used to standardize and
compare biological doses of radiotherapy with diferent
fractions [35]. Te formulation of EQD2 was as follows:

EQD2 � D
d +(α/β)

2 +(α/β)
, (1)

where D represents the total dose, and d is the fractional dose
for spatial points in the lung-CTV area.Te (α/β) refects the
radio-biological characteristics of tissue. Te value of (α/β)

is larger for early-response tissue and smaller for late-
response tissue. As the lung is late response tissue, the
value of (α/β) is set to 4.5 [31]. Ten, formulation (1) was
used to convert the physical dose into the EQD2. Te EQD2
distribution was shown in Figure 1(d).

2.3.DVHParameters. In the clinical, the lung volume within
which the dose is greater than xGy (Vx) is widely used for RP
prediction. In this study, the V30, V20, and V5 were
extracted as DVH features for all patients.

Table 1: Patient clinical and treatment characteristics.

Clinical and treatment
characteristics Median (range)/n (%)

Age 62.5 (31–85)
Sex
Male 83 (91%)
Female 8 (9%)
Smoking history
No 37 (40%)
Smoking< 30 years 8 (9%)
Smoking≥ 30 years 46 (51%)
Stage
1 0
2 3 (3%)
3 63 (69%)
4 25 (28%)
Prescription dose 60 (40–66) Gy
Prescription dose per fraction 2 (1.5–2.75) Gy
RP grade
0 52 (57%)
1 24 (26%)
2 9 (10%)
3 6 (7%)
4 0
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2.4. Feature Preprocessing. At frst, the radiomic, dosio-
mic, and eqd-dosiomic features were extracted from the
CT image, the physical dose, and the EQD2 distribution
of the lung-CTV area. All of the features were extracted
by Pyradiomics 3.0.1 [36]. Te wavelet flter was used for
radiomics calculations. Eight feature groups (a total of
863 radiomics features), including frst-order statistics
(18 features), shape-based (14 features), gray level co-
occurrence matrix (GLCM, 24 features), gray level run
length matrix (GLRLM, 16 features), gray level size zone
matrix (GLSZM, 16 features), gray level dependence
matrix (GLDM, 14 features), neighboring gray-tone
diference matrix (NGTDM, fve features), and wavelet
features (744 features) were extracted, respectively.

Secondly, the data were randomly divided into two
sets, with 70% for the training set and 30% for the testing
set. Te synthetic minority oversampling technique
(SMOTE) was used to prevent overftting by the un-
balanced ratio in the training set.

Tirdly, the random forest algorithm was used to select the
features. Te random forest model performs well because of the
sample randomness, feature randomness, and integration
strategy. After data preprocessing, the random forest model was
performed to calculate the importance of independent variables
and flter out the redundant information [37].

At last, the fvefold cross-validation was used to re-
duce the overftting in nonlinear regression in the study.
Te training data were randomly divided into fve folder
sets, iteratively performed in each model, and the metric

of interest was calculated on each validation set. Ten,
the fve values of the metric were averaged to get the
training AUC. Te testing set was used to independently
evaluate the validity of the prediction model by the
testing AUC, accuracy, precision, recall, and F1-score.

2.5. Prediction Model. Tis study established four ML
models, including DVH, radio +DVH, radio + dose, and
radio + eqdose. In addition, eleven classifers, including lo-
gistic regression, ridge, SVM, perceptron, decision tree,
random forest, KNeighbors, passive aggressive, Gaus-
sianNB, multinomialNB, and Adaboost, were used to es-
tablish the multiomics prediction model of RP. Te hyper-
parameters for the eleven classifers are available in sup-
plementary fle 2. Python 3.7.6 and scikit-learn 0.24.2 were
performed for feature extraction, data preprocessing, and
ML modeling.

3. Result

3.1. Feature Importance. Six features were selected from the
radiomic, dosiomic, and eqd-dosiomic features, respectively.
As shown in Figure 2, most of the selected features were lung
texture features, which represent periodic changes and
structural rules in the spatial domain of images and can fully
refect the heterogeneity of tissues [38, 39].Te gray level size
zone matrix (GLSZM) features quantize the region of
continuous pixels in the image, including the features de-
scribing the distribution of small or large areas and low or

(a) (b)

(c) (d)

Figure 1:Te results of data acquisition and dose conversion: (a) the delineated CTV and lung in CTimage, the red is CTV, and the yellow is
lung; (b) the 3D volume of lung-CTV; (c) the overlapping of physical dose distribution and CT image; (d) the overlapping of EQD2
distribution and CT image.
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high gray regions. It signifcantly afects the representation
of texture consistency, nonperiodic, or speckled texture and
has better performance in image texture analysis [40]. Te
gray level co-occurrence matrix (GLCM) describes the joint
distribution of the grayscale of two pixels with a specifc
spatial position relationship, which refects the compre-
hensive information of the direction, adjacent interval, and
variation amplitude of image gray [36].

Figure 3 shows the GLSZM derived from the 3D physical
dose distribution and EQD2 distribution for an example
patient. Te information on GLSZM for EQD2 is more
abundant than the physical dose.

3.2. Model Performance. Te statistical analysis of the per-
formance of four ML models under 11 classifers is shown in
Figure 4 and Table 2. Te evaluation indicators of each
classifer can be found in supplementary fle 3. Te statistical
analysis was done to prove that the proposed method’s
performance in this study was not afected by diferent
classifers. Te training AUC is the mean value of fve folds
for the training set. Te testing AUC, accuracy, precision,
recall, and F1-score are values for the testing set. Te Stu-
dent’s t-test was used to calculate p values.

Compared with the DVH, radio +DVH, and radio-
+ dose models, the training AUC value of radio + eqdose
was higher, and the diference was statistically signifcant
(p< 0.05). Besides, for four models, the testing AUC average
values were almost 0.8, and the diference was less than 1%.
Te results showed that the four ML models could predict
RP well, among which the radio + eqdose performed better.
Compared with the other three models, the accuracy of
radio + eqdose was higher, and the diference was statistically
signifcant (p< 0.05), representing that the radio + eqdose
model could more accurately predict whether patients will
sufer from RP.Te precision rate refects the model’s ability
to distinguish negative samples, the recall rate demonstrates
the model’s ability to identify positive examples, and the F1-
score considers both the classifcation model’s precision and

recall. Compared with the other three models, the F1-score
of radio + eqdose was higher, and the diference was sta-
tistically signifcant (p< 0.05). Terefore, the multiomics
method of radiomics and eqd-dosiomics can improve the
predictive performance of RP.

4. Discussion

In the clinical, the doctors will determine the dose and
time segmentation mode of radiotherapy according to
the size and lethal dose of the tumor, the tolerated dose of
normal tissue, and the normal tissue distribution around
the target area. Te technology of hyper-fractionated or
large-fractionated may be adopted for some patients or
changed to hyper-fractionated after a specifc dose of
conventional radiotherapy [30]. Te radiation dose per
fraction (Fx) has been shown to be a signifcant factor in
RP. However, previous studies did not consider the efect
of fraction dose. In this study, we investigated the efect
of diferent fractional doses on dosiomics. Te EQD2
model was used to convert the physical dose to the
isoefect dose. Te radiomic, dosiomic, and eqd-
dosiomic features were extracted, respectively, from
the image, the dose distribution, and the isoefect dose
distribution of the lung-CTV area.

In this study, most of the selected features are texture
features extracted from the original image characteristics
through some calculation and stored in an intermediate
matrix. Ten, a series of statistics are defned on this in-
termediate matrix as the texture features. In the GLCM,
matrix elements ij represent the times a voxel with gray level
i is a neighbor of voxels with gray level j [36]. Te
GLCM_Sum Squares is a measure of the distribution of
neighboring dose pairs about the mean dose, which refects
the information regarding the spatial relationship of voxels.
Te GLSZM features describe the regional consistency of the
dose distribution textures, in which pixel ij is the number of
times a 3D zone with dose i has a size j [40, 41]. Te feature
GLSZM_Size Zone nonuniformity normalized measures the
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Figure 2: Te three most important features: (a) the radiomic features, (b) the dosiomic features, and (c) the eqd-dosiomic features.
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variability of size zone volumes throughout the EQD2 dis-
tribution, with a lower value indicating more homogeneity
among zone size volumes. Te frst-order entropy specifes
the uncertainty in the dose distribution. Te GLSZM_Zone
entropy measures the uncertainty and randomness in the
zone sizes and dose levels distribution. Lower zone entropy
might indicate a more uniform dose in the region of interest.
Te GLSZM_Gray level variance calculates the variance in
dose values for the zones [36]. Terefore, we speculated that
the occurrence of RP is related to the local dose variation in
lung tissue. Besides, the GLSZM_Small area low gray level
emphasis measures the proportion of the joint distribution
of smaller regions with lower dose values in the physical dose
distribution. Tis feature indicates that the low-dose region
of lung tissue is associated with the development of RP.

Bin Liang also showed that the higher the local dose
variation within the ipsilateral lung and the greater the low-
dose region of total lungs, the greater probability of RP
incidence [17–19]. Te DVH parameters, such as V5, V20,
and V30, are just accumulated doses of a specifc volume of
lung tissue that cannot refect the local dose variation.
However, the texture features show information regarding
the spatial relationship of dose distribution for radiotherapy
response prediction. As shown in Figure 3, the information
of GLSZM for EQD2 distribution is more abundant, which is
a beneft for revealing the hidden correlation with RP in-
cidence. Besides, the radio + eqdose model uses the frst
order, GLCM, and GLSZM features. Te accumulated doses,
the local dose variation, and the comprehensive information
of direction, adjacent interval, and variation amplitude of
dose distribution are used to construct the prediction model,
so the evaluation metrics of radio + eqdose are better than
the other three models in the study.

Previous studies demonstrated that the radio + dose
model performed better than the DVH parameters for RP

prediction [11–13]. In our study, the radio + dose model still
performed well, and the radio + eqdose model was further
investigated.

Fraction dose has been shown to be an essential factor in
RP [29]. Te impact of fraction dose can be illustrated using
the well-known L-Qmodel. In this study, the fraction dose of
the patients was from 1.5 to 2.75Gy. It is defned as large-
fractionated radiotherapy when the fractional dose exceeds
2.5Gy. Compared with conventional fractionation radiation
therapy, large-fractionated radiotherapy can increase the
biological dose to improve tumor control and survival
[42, 43]. Te fraction dose of hyper-fractionated radio-
therapy is generally lower than 2Gy, more than once a day,
and the interval time of irradiation is greater than 4 to
6 hours. Te hyper-fractionated radiotherapy improves the
local control rate of the tumor by increasing the total ir-
radiation dose without signifcantly increasing the late re-
action of normal tissue [44, 45]. When the total dose was
50Gy, the EQD2 and BED were 54Gy and 78Gy for the
2.5Gy fraction dose, 50Gy and 72Gy for the 2Gy fraction
dose, and 46Gy and 66Gy for the 1.5Gy fraction dose. Te
diferences in radio biology were signifcant.

Te EQD2 model was used to solve the problem of
equivalent dose calculation for diferent fractionated ra-
diotherapy. Compared with the DVH, radio +DVH, and
radio + dose model, the value of the training AUC, accuracy,
and F1-score of radio + eqdose was higher, and the difer-
ence was statistically signifcant (p< 0.05). Besides, the av-
erage value of the recall and precision of radio + eqdose
under 11 classifers was higher than the other three models.
Te F1-score is the harmonic mean of precision and recall,
refecting the model’s robustness. Te results demonstrated
that the radio + eqdose model could efectively improve the
prediction ability of RP. Te diference in testing AUC value
was less than 1%, and the radio + eqdose model showed no
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Figure 3: Te gray level size zone matrix (GLSZM) of the 3D physical dose distribution (a) and the EQD2 distribution (b).

Table 2: Te evaluation indicators of four ML models under 11 classifers (mean± standard deviation).

Models Training AUC Testing AUC Accuracy Precision Recall F1
DVH 0.804± 0.053 0.801± 0.06 0.751± 0.068 0.738± 0.067 0.783± 0.16 0.751± 0.095
Radio +DVH 0.856± 0.044 0.805± 0.046 0.809± 0.062 0.772± 0.066 0.886± 0.118 0.821± 0.067
Radio + dose 0.833± 0.041 0.801± 0.057 0.806± 0.048 0.756± 0.045 0.911± 0.128 0.821± 0.061
Radio + eqdose 0.900± 0.033 0.799± 0.050 0.856± 0.034 0.809± 0.070 0.950± 0.059 0.870± 0.024
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obvious advantage. Te possible reason is that the testing
data are relatively small, so future studies will include more
data to make the performance evaluation more objective.
Te single dose characteristics only utilize partial in-
formation on the dose distribution. Still, the multiomics
method uses the info of CT image and dose distribution
regarding the spatial relationship of voxels to train the
prediction model. Te advantages of the multi-omics
method are apparent. Figure 3 showed that the in-
formation of GLSZM for EQD2 was more abundant than the
physical dose, and we could extract more information from
the EQD2 distribution for predicting RP.

Te dose (absolute and relative dose) of the organ at risk
can be obtained from DVH. However, the expression here is
only the physical dose. Since the absorbed dose of the organ
at risk is generally not 100%, the single dose is diferent from
the conventional 2Gy dose so that the EQD2 formula can
calculate the isoefect dose of the organ at risk. Because the
tolerance of each organ at risk is obtained under conven-
tional irradiation, it should be converted to EQD2 [32, 33].
Terefore, integrating the eqd-dosiomic features into
training the model is reasonable. Te experimental results
also confrm the efectiveness of this method.

Tere are two main limitations of this study that are
worth discussing. One is that the number of patients meeting
the research requirements is relatively less. In order to avoid
some errors due to equipment model, scanning conditions,
and treatment planning, this study has only used the patients
in our hospital. Besides, there are relatively few cases of
RP≥ 2 after radiotherapy in our hospital (15 patients).
Terefore, the endpoint in this study was RP grade≥ 1,
which might limit its usefulness in actual clinical practice. In
the next step, enrolling more patients in our hospital and
multiple centers is necessary to validate our proposed ap-
proach. Te other is that only radiomic and dosiomic

features were considered in this study. However, RP is highly
correlated with some clinical features, such as smoking
history, disease stage, and tumor location. In future work,
the clinical features will be added for further discussion.
Finally, to prevent RP incidence, how to use the radiomic,
dosiomic, and clinical characteristics to guide the design of
radiotherapy treatment planning is the goal of our study.

5. Conclusion

In this study, we demonstrated that the multiomics model
could improve the predictive performance of RP grade≥ 1
compared to the DVH model. We also confrmed that the
eqd-dosiomic features from the isoefect dose distribution
could improve the predictive model’s performance with
diferent fractionated radiotherapies. Te multiomics
method of radiomics and eqd-dosiomics could improve the
predictive performance of RP. It is expected that further
studies can be used to guide the design of radiotherapy
treatment planning to realize individualized early in-
tervention and treatment.

Data Availability

Te original contributions presented in the study are in-
cluded in the article/Supplementary Material. Further in-
quiries can be directed to the corresponding authors.
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