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Traditional studies mostly focus on the role of single gene in regulating clear cell renal cell carcinoma (ccRCC), while it ignores the
impact of tumour heterogeneity on disease progression. Te purpose of this study is to construct a prognostic risk model for
ccRCC by analysing the diferential marker genes related to immune cells in the single-cell database to provide help in clinical
diagnosis and targeted therapy. Single-cell data and ligand-receptor relationship pair data were downloaded from related
publications, and ccRCC phenotype and expression profle data were downloaded fromTCGA and CPTAC. Based on the DEGs of
each cluster acquired from single-cell data, immune cell marker genes, and ligand-receptor gene data, we constructed a multilayer
network.Ten, the genes in the network and the genes in TCGAwere used to construct theWGCNA network, which screened out
prognosis-associated genes for subsequent analysis. Finally, a prognostic risk scoring model was obtained, and CPTAC data
showed that the efectiveness of this model was good. A nomogram based on the predictive model for predicting the overall
survival was established, and internal validation was performed well. Our fndings suggest that the predictive model built and
based on the immune cell scRNA-seq will enable us to judge the prognosis of patients with ccRCC and provide more accurate
directions for basic relevant research and clinical practice.

1. Introduction

RCC is a typical type ofmalignant tumour of the urinary system.
According to the most recent report on cancer statistics, the
number of newly diagnosed cases has climbed to 65,000 annually
in the United States, resulting in around 15,000 fatalities an-
nually, making it the sixth most prevalent tumour [1]. Clear cell
renal cell carcinoma (ccRCC) accounts for around 80% of renal
cancer pathological types, and its survival results were poorer
than other subtypes of kidney tumours (such as papillary renal
cell carcinoma and chromophobe renal cell carcinoma) [2].
Nearly 20% of ccRCC cases progress to an advanced stage at the
beginning of diagnosis, and the fve-year overall survival (OS)
rate of metastatic cases dropped to about 10% [3]. With the

development of immunotherapy, radiotherapy, and surgical
intervention, combined strategies have greatly promoted car-
cinoma control. However, the actual clinical efcacy still needs
to be improved, and 30% of patients with local ccRCC inevitably
experience cancer-related progression and recurrence [4]. Re-
cently, although targeted therapy has been shown to prolong the
survival time of patients with metastases, the median survival
time is still less than 3 years [5]. In addition, drug resistance and
economic burden are unavoidable major problems in clinical
practice [6]. Terefore, exploring the molecular mechanism of
ccRCC pathogenesis and new therapeutic targets is still
a challenging issue.

A crucial aspect of carcinoma is its comprehensive
heterogeneity, which can cause individuals to react
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diferently to the same treatment. Despite many eforts to
clarify tumour heterogeneity, so far, the understanding of it
is still mainly limited to the level of tumour cells [7]. Pre-
viously, it has also been proved that stromal cells and
tumour-infltrating immune cells exhibit heterogeneity [8].
Similarly, the tumour microenvironment (TME) is gradually
regarded as a potential solution for drug treatment targets
[9]. In addition to anti-PD-1/PD-L1 or anti-CTLA-4
treatment strategies, tumour-associated macrophages
(TAMs) [10] and cancer-associated fbroblasts (CAFs) [11]
have also been previously reported as potential strategies for
cancer treatment research. ROS is also an important factor in
cancer treatment, it causes structural proteins to oxidise,
which disables the proteolytic process. Tese reactions
change how an enzyme works or how proteins are created.
Te latter could have a wide range of functional impacts
downstream, including inhibition of binding and enzymatic
activity, an increase or decrease in cellular uptake, in-
activation of DNA repair enzymes, and a reduction in the
fdelity of damaged DNA polymerases during DNA repli-
cation [12]. Te successful implementation of these treat-
ment plans requires a deeper insight of intratumoural
heterogeneity.

It is obviously impossible to analyse intratumoural het-
erogeneity at the cellular level since traditional bulk RNA se-
quencing is predicated on the idea that every gene is expressed
equally in each cell. However, through the application of single-
cell RNA sequencing (scRNA-seq), it is possible to conduct
single-cell transcriptome analysis. Te latest progress in scRNA-
seq has facilitated the transcriptional classifcation of many
malignant tumour cell types, including breast cancer, lung
cancer, and pancreatic ductal adenocarcinoma [13, 14]. More-
over, scRNA-seq is expected to have clinical utility in refractory
cancer cases and is a noninvasive method for monitoring cir-
culating cancer cells, analysing intratumoural heterogeneity, and
sensitively estimating recurrent tumours [15].

We conducted a series of bioinformatics analyses using
data from other publications about scRNA-seq in order to
investigate the intratumour heterogeneity in ccRCC. We
combined these analyses with ligand-receptor network
analysis, immune cell multilayer network analysis, and
weighted gene co-expression network analysis (WGCNA) to
identify hub genes for creating an immune cell-related
prognostic model. It would have several potential targets
for ccRCC therapy. Moreover, we also investigated the
prognostic value of immune cell clusters by correlating the
scRNA-seq data with the data from Te Cancer Genome
Atlas (TCGA) and Clinical Proteomic Tumor Analysis
Consortium (CPTAC) datasets. Our work will help elucidate
the biology of ccRCC and promote the improvement of
clinical diagnosis and treatment strategies for patients with
ccRCC.

2. Methods

2.1. Raw Data Acquisition. ccRCC single-cell transcriptome
data was downloaded from a database published by Young
et al. [16]. Te datasets of RNA sequencing profles and the
related patient clinical traits of ccRCC were downloaded

from TCGA (https://portal.gdc.cancer.gov/) and CPTAC
(https://cptac-data-portal.georgetown.edu/study-summary/
S050), separately. Ligand and receptor data for building the
multilayer network were acquired from [17].

2.2. Data Processing. For single-cell data, “limma,” “Seurat,”
“dplyr,” and “magrittr” R packages were used for analysis. Data
fltering criteria included the following: (1) the number of genes
in the data sample was controlled between 200 and 5,000; (2) the
number of gene sequenceswasmainly distributed between 0 and
20,000; and (3) the percentage of mitochondria was controlled
below 5%. Ten, the log was taken for standardisation, and the
frst 2,000 genes with the larger coefcient of variation between
cells were selected for analysis. Next, principal component
analysis (PCA) dimensionality reduction was performed, the
data were standardised before dimensionality reduction, and
fnally, signifcant dimensions were selected for subsequent
analysis. Since the formof data downloaded fromTCGA is log2-
(data+1), log processing is not necessary and the stand-
ardisation was done directly. Before standardisation, the data
must be processed using log2-(data+1) after being retrieved
from the CPTAC database.Te “limma” R package was used to
carry out the standardisation.

2.3. Cell Type Recognition and Clustering Analysis. Te rec-
ognition of diferent cell types was based on the “limma,”
“Seurat,” “dplyr,” and “magrittr” R packages. We used the 20
principal components (PCs) selected in the previous step to
perform TSNE clustering. Subsequently, the cell type was an-
notated through the “singleR” R package. In order to facilitate
the display of subsequent results, we have annotated both
subpopulations and single cells.

2.4. Identifcation of Diferentially Expressed Genes in Each
Cluster. We used several R packages, including “limma,”
“Seurat,” “dplyr,” and “magrittr” to analyse the genes
contained in each cluster. Te FindAllMarkers algorithm
was used to screen and calculate the diferentially expressed
genes (DEGs) in each cluster. Te screening standard is
|logFC|> 0.5, and the P value after correction is <0.05.

2.5. ImmuneCell FunctionStatusAnalysis. We used “GSVA”
and “GSEABase” R packages to conduct functional status
analysis on samples annotated by single cell, and we referred
to the marker genes of immune cell functional status pro-
vided by the CancerSEA (https://biocc.hrbmu.edu.cn/
CancerSEA/home.jsp) database to clarify the functional
status of DEGs in immune cells.

2.6. Immune Cell Marker Gene Expression Analysis. Te
marker genes of immune cells in kidney cancer tissues were
obtained from the CellMarker (https://bio-bigdata.hrbmu.
edu.cn/CellMarker/) database. In addition, marker genes
associated with macrophages and monocytes were acquired
from [18]. Te expression levels of these marker genes were
analysed and displayed through a heat map.
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2.7. Construction of Ligand-Receptor and Immune Cell
Multilayer Networks. Te construction of the ligand-receptor
network was carried out using the “igraph” R package. Tomake
sure that the ligand genes and associated receptor genes were all
included in the gene set taken in union, we frst took the
intersection of the genes in the ligand-receptor table provided
in the literature [17] and the diferential genes in all immune
cell clusters and the marker genes of all included immune cells.
Ten, we obtained the data for transcription factors and their
target genes from the TRRUST (https://www.grnpedia.org/
trrust/) database and combined it with the data for ligand-
receptor network genes, which is the intersection of the
transcription factors’ target genes and network genes.

2.8. Weighted Gene Co-Expression Network Analysis.
Trough theWGCNAalgorithm [19], the genes in the immune
cell multifactor network were used to construct a co-expression
network to fnd the keymodules related toOS andOS time. An
appropriate soft threshold value was determined by an R
software package (https://www.r-project.org/) to implement
according to theWGCNAalgorithm.Te gradientmethodwas
used to test diferent power values (ranging from 1 to 20) in
both the scale independence degree and the module’s average
connectivity. Te most suitable power value could be fxed
when the independence degree was above 0.9, as well as when
the average connectivity degree was relatively higher [20, 21].
Te WGCNA algorithm was also implemented in the con-
struction of scale-free gene co-expression networks. Mean-
while, the corresponding gene sequencing information in each
module was extracted. To assess modular feature associations,
correlations between module eigengenes (MEs) and clinical
features were applied.MEs are themost important components
in the PCA of each genemodule.Te determination of relevant
modules needs to be based on the calculation of the correlation
strength betweenMEs and clinical features.Te correlationwas
assessed by gene signifcance (GS� lgP), where the P value was
derived from the linear regression analysis of gene expression
and clinical information. Te key module takes the highest
correlation coefcient among all modules, which was selected
out for the next step [22].

2.9. Key Module Functional Enrichment Analysis. Te se-
quencing information of genes in the key modules from
WGCNA was utilized by using the “clusterProfler” R
package to perform gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analyses.
Among them, GO is to annotate biological processes (BPs),
molecular functions (MFs), and cellular components (CCs).
Te criterion for screening in GO term is P value <0.05. Te
screening criteria for the KEGG pathway are minGSSize� 5,
maxGSSize� 500, and qvalueCutof� 0.05.

2.10. Selection of Candidate Prognostic Related Genes.
Univariate Cox regression analysis was performed through
the “survival” R package to screen prognostic characteristic
genes from the previous OS-related WGCNA key modules.
When the P value is less than 0.05, that is, when the

diferential expression of these genes has a signifcant impact
on the patient’s OS, these genes can be regarded as potential
prognostic related genes. Data in this step were from ccRCC
cancer samples in TCGA.

2.11. Construction, Evaluation, and Validation of Disease
Prognosis Risk Model. For the candidate prognostic related
genes, combined with their expression in TCGA, univariate
Cox regression analysis was used to obtain genes with more
signifcant risk. Ten, LASSO dimensionality reduction with
1,000 iterations was performed to screen out redundant genes
to obtain more precise prognostic related genes with high
hazard ratio (HR) to construct a risk prognosis model. Te
following formula was used to calculate the risk score for each
patient by using a linear combination of specifc features that
were weighted by their respective coefcients from LASSO:

risk score � 
n

i�1
expi ∗ ßi, (1)

where n is the number of prognostic genes, expi is the ex-
pression value of the i-th gene, and ßi is the regression
coefcient of the i-th gene in the LASSO algorithm.
According to the risk score of each patient given by the
model, the median was taken as the cutof value, and the
samples were divided into high and low risk groups. Te
time-dependent receiver operating characteristic (ROC)
curve was used to evaluate the predictive ability of the
model’s 1-, 3-, and 5-year survival periods. Te survival
curves of the high and low risk groups were also analysed.
Te CPTAC dataset was taken as the external validation
database to verify the prognostic risk model.

2.12. Construction and Assessment of a Predictive Nomogram.
Nomograms are widely used to predict the prognosis of cancer
patients, mainly because they can simplify statistical prediction
models into a single numerical estimate of OS probability
tailored to individual patient conditions. In this study, the
prognostic model was used to construct a nomogram to assess
the probability of OS in patients with ccRCC at one, three, and
fve years. Subsequently, discrimination and calibration were
carried out. Te discrimination of the nomogram was calcu-
lated by the bootstrap method using the consistency index (C-
index), with 1,000 resamples. Te value of the C-index is
between 0.5 and 1.0, where 1.0 means that the results of the
model can be correctly distinguished and 0.5 means random
chance. Te calibration curve of the nomogram is evaluated
graphically by plotting the relationship between the predicted
probability of the nomogram and the observed rate. Over-
lapping with the reference line indicates that the model is
exactly the same. In addition, we also compared the predictive
accuracy between nomogram built only with risk score and
nomogram combined with all factors using ROC analysis.

3. Results

3.1. Pretreated Data. Te single-cell data of the downloaded
ccRCC were preprocessed as described in the Methods
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section, and we obtained 30,092 cells in total. In addition, we
found that the correlation between the sequencing depth and
the detected genes was 0.95, indicating that the deeper the
sequencing depth was, the more the genes were detected.
Subsequently, we selected 2,000 genes with large variances
for PCA analysis. Te diferences of all 20 PCs were ex-
tremely signifcant, indicating that the theoretical value and
the actual value are quite diferent which can be used for
subsequent analysis.

Tere were 607 samples in the KIRC expression profle
data of TGCA, of which 72 were paracancerous samples, 535
were cancer samples, and one sample had incomplete
clinical information which was then removed. Finally, the
data of 534 ccRCC tumour tissue samples were used for
subsequent relative analysis. Among the data downloaded
from the CPTAC database, there were 110 cancer samples
and 75 paracancerous samples. Only 103 cancer samples
contained clinical information. As a result, the data of these
103 samples were eventually used for analysis.

3.2. ccRCC Heterogeneity. For cluster analysis of single-cell
data, we obtained a total of 23 subgroup clusters. After
annotating by cell type, we found that immune cells were
mainly concentrated in subgroups 0, 1, 2, 3, 4, 5, 6, 7, 9, 12,
13, 15, 16, 18, and 22 (Figure 1, Supplementary Table 1).
Specifcally, CD8+ Tcells were distributed in clusters 0, 2, 3,
7, 12, and 18. NK cells were only annotated in cluster 1.
Monocytes assembled in clusters 4, 5, 13, and 22. Clusters 6,
9, and 15 were annotated to macrophages. B cells annotated
only cluster 16.

3.3.DiferentiallyExpressedGenesandFunctionalEnrichment
in Diferent Immune Cell Subgroups. We performed difer-
ential expression analysis on the genes in 23 clusters ob-
tained in the above step and displayed the frst fve genes in
each cluster (Figure 2(a), Supplementary Table 2). According
to the results of gene diferential expression, we analysed the
functional status of the annotated immune cell clusters. In
each immune cell type, the enrichment degree of hypoxia
and quiescence was relatively high. Besides the enrichment
levels of EMT, invasion and stemness in B cells were also
relatively high (Figures 2(b)–2(f)).

3.4. Identifcation of Immune Cell Marker Gene Expression.
A total of 42 immune cell marker genes related to ccRCC
were downloaded from the CellMarker database [18] and
subjected to diferential expression analysis. Te results are
shown in the heat map (Figure 2(g)).

3.5. Ligand-Receptor Network. In order to construct the
ligand-receptor network, we frst took the union of the
diferential genes of all immune cell clusters and the marker
genes of all these immune cells. Afterwards, we intersected
them with the ligand-receptor relationship pairs down-
loaded from [17]. Finally, a total of 981 pairs of ligand-
receptor relationships were obtained (Figure 3(a), Supple-
mentary Table 3).

3.6. Immune Cell Multifactor Network Based on Ligand-
Receptor Network Combined with Transcription Factors.
Intersecting genes in 981 ligand-receptor relationship pairs
with transcription factor target genes, we obtained 7,987
immune cell multifactor network relationship pairs (Sup-
plementary Table 4). Ten, 966 genes were obtained by
intersecting the 973 genes contained in the network and the
genes in TCGA dataset about ccRCC (Supplementary Ta-
ble 5). Because there are many relationship pairs, Figure 3(b)
only shows a network diagram of partial genes.

3.7. Co-Expression Network. Te construction of co-
expression modules included 966 genes from the immune
cell multifactor network. Te appropriate scale-free power
value was screened out as 4 (Figure 4(a)). All constructed
modules are painted with diferent colours, and the cluster
trees of genes are also shown in Figure 4(b). Te black and
magenta modules were chosen as the key modules, since
they had the highest correlations with OS and OS time of
ccRCC (Figures 4(c) and 4(d)). Te correlations between
MEs and clinic traits are shown in Figure 4(e). Tere were 53
genes in these two modules (Supplementary Table 6). For
a deeper understanding about the biofunctions of these
modules, genes in these modules were carried out to conduct
GO and KEGG pathway analyses by using the “cluster-
Profler” R package. According to the P value of each term,
the top terms in the GO and KEGG pathways were extracted
out and visualized (Figures 4(f )–4(i)).

3.8. Prognostic Risk Scoring Model. Using the “survival” R
package to perform univariate Cox regression analysis on the
53 genes contained in the key modules ofWGCNA, 28 genes
with P value <0.05 were obtained. Figures 5(a)–5(d) show
the survival analysis results of four genes among them.Ten,
the 28 genes with signifcant prognostic diferences were
subjected to LASSO regression analysis. We adopted the Cox
proportional hazard model (family = “Cox”) to calculate the
HR and P values of these genes (Figure 5(e)) and then
randomly simulated 1,000 times (maxit = 1000) to fnd the
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most suitable λ value in LASSO regression (Figure 5(f)).
Finally, “lambda.min” was used to screen out 16 genes for

constructing a risk scoring model from these 28 genes
(Figure 5(g)).

Risk score � PAX2∗ (−0.00104) + NFKBIZ∗ 0.11197 + TEAD4∗ 0.212538 + HIPK2∗ (−0.09059) + CD14∗ 0.051547

+ COL1A1∗ 0.084915 + NRG1∗ (−0.10501) + GPR182 ∗ (−0.30944) + ITGA6∗ (−0.08147) + HDAC1

∗ 0.225345 + HOXA9∗ 0.078825 + E2F5∗ 0.436804 + APP∗ (−0.14625) + FGF1∗ (−0.27736) + L1CAM

∗ 0.149607 + DDR1∗ (−0.11874).

(2)

3.9. Prognostic Model Prediction Efectiveness Evaluation and
External Dataset Verifcation. In the evaluation of the
predictive efcacy of the prognosis model, Kaplan–Meier
(KM) survival analysis was performed on the high and low
risk groups, and the diference was signifcant (Figure 5(h)).
Moreover, in its ROC curve, the one-year AUC value was
0.794, the three-year AUC value was 0.746, and the fve-year
AUC value was 0.763 (Figure 5(j)). In the external CPTAC
dataset, KM survival analysis was performed on the high and
low risk groups, and the diference was also signifcant
(Figure 5(i)). In addition, the one-year AUC value in its ROC
curve was 0.783, and the three-year AUC value was 0.762
(Figure 5(k)). Because the external data do not have fve-year
survival data, only one-year and three-year ROC analysis
was performed.

3.10. Predictive Nomogram. For the purpose of building
a clinically applicable method to estimate the survival
possibility of patients with ccRCC, we developed a nomo-
gram to predict the probability of 1-, 3-, and 5-year OS based
on the data in TCGA. Te predictors of the nomogram
included age, gender, T, N, M, grade, risk score, and stage
(Figure 6(a)).TeC-index for themodel for evaluation of OS
was 0.799. Te visual calibration chart was used to evaluate
the performance of the nomogram. When the angle of the
line is 45°, it represents the best prediction result. Tus, our
calibration chart indicated that the nomogram has a good
predictive ability (Figures 6(b)–6(d)). Te AUC values of the
nomograms combined with all factors were greater than the
nomograms built only with risk score in spite of the fact that
their values were all more than 0.7. Tis indicated that the
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Figure 2: Continued.
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predictive precision of the nomogram combined with all
factors was better (Figures 6(e)–6(g)).

4. Discussion

Te emergence of next-generation sequencing (NGS) has
provided a feasible and cost-efective way to determine
the transcriptional landscape of human cancers, in-
cluding both bulk and single-cell resolution with un-
precedented base-pair precision [23–25]. It has been

established that cancer is attributed to dysregulated
evolution [26, 27] in acquiring inheritable genetic/epi-
genetic traits [28–30]. However, the presence of tumour
heterogeneity poses substantial challenges in the di-
agnosis and treatment of tumours [31–34]. Tumour
heterogeneity exerts a vital role in various aspects (e.g.,
intertumour, intratumour, and intermetastasis hetero-
geneity, interdisease and interpatient heterogeneity,
epigenetic and metabolic heterogeneity, TME hetero-
geneity, and tumour-intrinsic genetic heterogeneity)
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Figure 2: (a) Heat map of the top fve diferential genes in each cluster. (b) B cell functional status analysis. (c) T cell functional status
analysis. (d) Monocyte functional status analysis. (e) Macrophage functional status analysis. (f ) NK cell functional status analysis. (g) Heat
map of immune cell marker genes.
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[35, 36, 36–38]. A landmark paper has demonstrated that
ccRCC is a heterogeneous disease with marked genetic
intermetastases and intratumour heterogeneity (G-IMH
and G-ITH) [39]. Further studies have elucidated
whether somatic mutation landscape and genetic het-
erogeneity infuence the clinical outcomes of ccRCC
tumour management [40]. Because of this, we adopted
a series of bioinformatics methods to use the ccRCC
single-cell data in published articles and the ccRCC-
related data in public databases to study whether im-
mune cell-related genes can construct a predictive
prognostic model for patients with ccRCC, which may be
helpful for further understanding of the intratumour
heterogeneity of ccRCC, and provide corresponding
support for related basic research and clinical applica-
tions in the future.

Since there are many genes used to annotate a certain
cell, it is usually difcult to determine which of these

genes are critical. As a result, we built some networks,
hoping to better fnd key genes related to our target
clinical traits to construct a risk prediction model. Re-
searchers have traditionally been concerned with a few or
linear pathways between diferent cells. Identifying the
signalling network of communication within diferent
cell types is invaluable in the diagnosis and treatment of
ccRCC tumours. Furthermore, a complete network of
cell-cell signalling includes not only intercellular sig-
nalling pathways but also intracellular signalling trans-
duction and gene expression [41]. Tus, a complete
network of molecular signalling mechanisms is required
to show the interaction between the TME and related cell
types. A study has proved a potential scRNA-
seqtranscriptome-based multilayer network approach,
which can be considered as a useful technique to identify
the interplay between the TME and tumour cells, further
predicting the prognostic and predictive signatures of
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Figure 5: Construction and assessment of disease prognosis risk model. (a–d) Survival analysis of four genes among the candidate genes
used to construct the risk prediction model. (e) Forest plot for univariate regression analysis of 28 genes. (f ) Selection of appropriate λ value
through LASSO regression analysis. (g) Scoring chart of risk model constructed by 16 genes. (h, j) Evaluation of predictive efectiveness of
risk prognostic model. (i, k) Use of the data in the CPTAC database as an external dataset for verifcation.
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Figure 6: (a) Nomogram predicting 1-, 3-, and 5- year OS for patients with ccRCC. (b–d)Te calibration curve for predicting 1-, 3-, and 5-
year OS for patients with ccRCC. (e–g) Time-dependent ROC curve analysis evaluates the accuracy of the nomograms.
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cancer patients [17]. In addition to the multilayer net-
work, we also applied the WGCNA algorithm to explore
the hub genes in key modules associated with the OS and
OS time. Te WGCNA algorithm explores the re-
lationship between co-expression modules and clinical
traits, which provides an opportunity to identify the hub
genes in a module but not a downstream gene; thus, it
possesses the distinct advantage of making the results
more reliable and higher in biological signifcance [42].
In our study, we found all the genes related to the im-
mune cells in the ccRCC samples through multilayer
networks, then divided these genes into multiple mod-
ules using the WGCNA method, and used the genes in
the modules with the strongest correlation with OS and
OS time as the candidate genes for risk scoring model
construction. Trough the survival diference analysis of
the genes in the key modules of the WGCNA algorithm,
the genes with signifcant prognostic signifcance were
found and the genes used to construct the risk prediction
model were confrmed after LASSO dimensionality re-
duction processing. Subsequently, we verifed the fea-
sibility and efectiveness of the model for assessing the
prognosis of patients with ccRCC through nomogram,
which also showed that the immune cells in ccRCC do
have an impact on the prognosis of patients.

Some genes in the prognostic risk scoring model have
been proven to exert various efects on the regulation of
certain tumours or diseases. Previous study has found
that an imbalance of APP may be involved with the
negative correlation between cancer and Alzheimer’s
disease [43]. As a vital target in the TLR signalling
pathway, CD14 exerts a dual efect on oncogenesis, which
can initiate several tumour-related signalling pathways
or alter the immune microenvironment in the tumour
[44]. COL1A1 was considered to be associated with the
pathogenesis of COL1A1-PDGFB fusion uterine sarcoma
[45]. It was reported that DDR1 is involved in the de-
velopment of cancer and fbrotic diseases [46]. Regu-
lating E2F5 is of great signifcance in maintaining
genome stability and the cell cycle [47]. Study has shown
that if certain signal mutations cause the destruction of
FGF1, it is likely to give rise to cancer [48]. Te dysre-
gulation of HDAC1, a chromatin modifer, may cause
harmful efects on cell fate and function, which could
lead to cancer [49]. HIPK2, a multitalented protein,
utilizes its kinase activity to regulate several pathways to
limit the proliferation and diferentiation of tumour cells
and induce positive responses to therapies [50]. Since
they are susceptible to ROS, proteins are typically the
target of increased free radical production. ROS lead to
the oxidation of structural proteins, which shuts down
the proteolytic mechanism. Tese reactions alter the way
proteins are built or how an enzyme functions. Te latter
could have many diferent downstream functional ef-
fects, such as inhibition of enzymatic and binding ac-
tivities, an increase or decrease in cellular absorption,
inactivation of DNA repair enzymes, and a decrease in
the fdelity of damaged DNA polymerases in DNA
replication [12]. HOXA9, a homeodomain-containing

transcription factor, exerts a vital role in the pro-
liferation of hematopoietic stem cells and is commonly
negatively afected in acute leukaemias [51]. Recent study
has shown that ITGA6 can be a useful biomarker for early
detection of colorectal cancer cells in a noninvasive assay
and as a prognostic factor [52]. L1CAM has been found
in various types of human cancers, which indicates a bad
prognosis [53]. NFKBIZ is a psoriasis susceptibility gene
that encodes the functions of TRAF6 signalling players,
especially in terms of positive and regulatory immune
controls by interactions between immune cells and ep-
ithelial cells [54]. Oncogenic gene fusion involving
NRG1 contributes to the activation of ErbB-mediated
pathways, representing a potential target for tumour
management [55]. PAX2 has been found in epithelial
tumours of the kidney and the female genital tract [56].
TEAD4 binds with YAP, TAZ, VGLL, and other tran-
scription factors to modulate various tumour-related
processes, including tumour cell proliferation, cell sur-
vival, tissue regeneration, and stem cell maintenance, in
cancer via its transcriptional output [57]. Te above-
reported functions and mechanisms of these genes could
help elucidate their correlations with ccRCC and provide
reliable evidence for further determination of diagnostic
and therapeutic methods.

Although our study only used published data and
information in public databases and did not directly use
clinical samples for experimental testing and analysis, it
is still sufcient to show that the data obtained through
single-cell sequencing is able to provide an efective
support to predict the prognosis of patients with ccRCC.
Additionally, our research can also provide ideas for
clinical diagnosis and treatment. For example, the genes
in the risk prediction model we have established are more
likely to become marker genes for clinical screening of
ccRCC or therapeutic targets for metastatic ccRCC.
Furthermore, our methods and results would enhance
theoretical assistance for other researchers to explore
other cancers related to tumour heterogeneity in the
future.

5. Conclusion

Cancer has been proven to be caused by dysregulated
evolution [27] that results in the acquisition of heritable
genetic or epigenetic characteristics. However, the oc-
currence of tumour heterogeneity creates signifcant
difculties for both tumour identifcation and treatment.
ccRCC is a heterogeneous disease with marked genetic
intermetastases and intratumour heterogeneity (G-IMH
and G-ITH). Te purpose of this study is to determine
whether immune cell-related genes can be used to build
a predictive prognostic model for patients with ccRCC.

In our study, we used multilayer networks to identify all
the immune cell-related genes in the ccRCC samples. We
then used the WGCNA method to separate these genes into
various modules, and we used the genes in the modules with
the strongest correlation with OS and OS time as the can-
didate genes for risk scoring model construction. Following
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all steps as detailed in result and discussion section, we then
used a nomogram to validate the viability and efcacy of the
model for determining a patient’s prognosis for ccRCC,
which also demonstrated that the immune cells in ccRCC do
afect the prognosis of patients.

In a nutshell, our results indicate that the immune cell
scRNA-seq predictive model will help us to assess the prognosis
of patients with ccRCC and provide more precise guidelines for
basic related research and clinical management. As a result, it
may help to further our understanding of the intratumour
heterogeneity of ccRCC and support future basic research and
clinical applications.
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