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Hepatocellular carcinoma (HCC) is a highly lethal and heterogeneous malignancy with multiple genetic alternations and complex
signaling pathways. Te complexity and multifactorial nature of HCC pose a tremendous challenge regarding its diagnosis and
treatment. Emerging evidence has indicated an important regulatory role of epigenetic modifcations in HCC initiation and
progression. Epigenetic modifcations are stably heritable gene expression traits caused by changing the accessibility of chromatin
structure and genetic activity without alteration in the DNA sequence and have been gradually recognized as a hallmark of cancer.
In addition, accumulating data suggest a potential value of altered hydroxymethylation in epigenetic modifcations and ther-
apeutics targeting the epigenetically mediated regulation. As such, probing the epigenetic feld in the era of precision oncology is
a valid avenue for promoting the accuracy of early diagnosis and improving the oncological prognosis of HCC patients. Tis
review focuses on the diagnostic performance and clinical utility of 5-hydroxymethylated cytosine, the primary intermediate
product of the demethylation process, for early HCC diagnosis and discusses the promising applications of epigenetic-based
therapeutic regimens for HCC.

1. Introduction

Hepatocellular carcinoma (HCC) represents the most fre-
quent type of primary liver cancer and accounts for more
than 90% of all liver cancer cases worldwide, with an an-
nually increasing incidence and a dismal long-term prog-
nosis [1, 2]. Epigenetic modifcations contribute to the
complexity and multifactorial nature of HCC as a signifcant
mechanism, and molecular genetic alterations that afect
epigenetic modifcation were reported to be critical factors in
HCC carcinogenesis during the preneoplastic stage [3, 4].
Te epigenetic regulation of chromatin consists of DNA

methylation, nucleosome histone variants, post-
translational histone modifcations (PTMs), and non-
coding RNAs [5]. Of these, DNA methylation is one of the
most predominant research hotspots in epigenetics to date.
Meanwhile, aberrant methylation processes and in-
termediates are also suggested to be essential hallmarks of
HCC, with a great potential promise for early HCC diagnosis
and therapeutic guidance [6].

Despite improvements in the early diagnosis and
treatment of HCC, novel biomarkers for earlier diagnosis
and better therapeutic interventions are urgently needed to
improve long-term outcomes. 5-Hydroxymethylcytosine
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(5hmC), an intermediate product of the demethylation of 5-
methylcytosine (5mC) by ten-eleven translocation proteins,
serves as an eminent epigenetic modifcation of DNA in the
mammalian cells [7, 8]. It is also known as the “sixth base” of
DNA [9, 10] and plays an essential role in gene regulation,
cell development, and tumorigenesis [11–16]. Facing and
considering the unsatisfactory diagnostic accuracy of the
traditional serum biomarkers in the early diagnosis of HCC
and the suboptimal efectiveness of current systemic ther-
apies for patients with advanced disease, it is of utmost
importance to identify novel potential biomarkers and ef-
fective therapeutic strategies for diferent stage HCC [17, 18].
Recent advances in the high-throughput sequencing tech-
nologies (e.g., nano-hmC-Seal [19] and hMe-Seal [20]) have
made it possible to uncover the genome-wide 5hmC pro-
fling of hematological or solid tumors. Te specifc genomic
distribution pattern of 5hmC revealed that this mark was
highly enriched at promoters and enhancers of transcrip-
tionally active genes [21]. An increasing amount of studies
have indicated that the level of 5hmC in various solid tumors
decreased signifcantly compared to adjacent tissues
[20, 22–31], suggesting an essential role of 5hmC in tu-
morigenesis and progression as well as its potential utility in
tumor diagnosis. At the same time, there is an immense
promise for exploring novel epigenetic biomarkers for
cancer due to the limitations of the current traditional
histopathology-based approaches for HCC detection in
clinical practice. Moreover, given that epigenetic modif-
cations, for example, reversible enzymatic reactions and
specifc protein-protein interactions (e.g., DNA methylation
and PTM processes) are highly fexible and more susceptible
to pharmacological interference, such novel strategies may
pave new promising avenues toward therapeutic HCC [32].

Herein, we summarize the most recent progress in the
diagnostic applications of 5hmC in HCC and evaluate its
latent value of being a promising diagnostic biomarker for
HCC, highlighting the emerging strategies of epigenetics-
based targeted drugs in the era of HCC treatment.

2. 5hmC Serves as a Promising Early Diagnostic
Biomarker in HCC

Paralleling the remaining solid tumors, previous studies
have demonstrated that the 5hmC level was signifcantly
decreased in an advanced cirrhosis and early HCC stage and
was closely associated with poor prognosis and tumor
progression [33, 34]. As such, 5hmC appears to be an im-
pressive biomarker for early diagnosis and prognostic
prediction of HCC (Te fow diagram of 5hmC for HCC
detection is shown in Figure 1). Several studies have proved
the good diagnostic accuracy of 5hmC for detecting HCC,
suggesting a potential prospect of clinical application. A
previous study by Chen et al. [35] utilized a constructedmass
spectrometer technique to examine 5hmC levels in HCC and
revealed the possibility of 5hmC as a biomarker for early
detection and prognosis of HCC. Cai et al. [29] established
a 32-genes-based 5hmC diagnostic model using circulating
cell-free DNA and exhibited a great performance for dis-
tinguishing early-stage HCC from non-HCC (training set:

area under curve (AUC)� 0.92, 95% confdence interval
(CI): 0.91–0.94; validation set: AUC� 0.88, 95%CI:
0.86–0.91), which appeared to outperform α-fetoprotein
(AFP) when detecting an early HCC and may compensate
for the plight of those patients with early HCCmisdiagnosed
due to AFP. Additionally, this model could be used to
distinguish the patients with early small tumors (≤2 cm)
accurately from high-risk patients with chronic liver disease
(validation set: AUC� 0.85, 95%CI: 0.81–0.89), confrming
the clinical application potential of 5hmC for the early
detection of HCC. Another noninvasive diagnostic approach
based on 5hmC signatures of plasma cell-free DNA efec-
tively distinguished patients with HCC from cirrhotic pa-
tients and healthy controls with a relatively high AUC of 0.93
[36]. Song et al. [20] constructed a diagnostic model using
the cell-free 5hmC signature with success in distinguishing
HCC patients from hepatitis B virus infection and healthy
controls, as well as monitoring treatment outcome and
disease recurrence. Meanwhile, the distinct features of cell-
free 5hmC yielded accurate predictions for specifc cancer
types and tumor stages. Given the limited number of studies
regarding the mechanisms by which 5hmC regulates the
pathogenesis of HCC [32], further basic research is still
needed on HCC-related studies caused by 5hmC. Never-
theless, the current robust results about clinical applications
of 5hmC as a molecular biomarker to guide the diagnosis of
HCC and even for monitoring prognosis and recurrence are
promising and advantageous compared to traditional bio-
markers. Te Cell-free 5hmC provides a novel dimension of
informativeness for liquid biopsy-based diagnosis and
surveillance.

3. Epidrugs: Targeting Epigenetic Marks in
HCC Therapies

Intricate biological processes derived from aberrant gene reg-
ulation and epigenetic mutations have participated in de-
veloping HCC. It is well established that telomerase reverse
transcriptase (TERT), Catenin β1 (CTNNB1), and TP53 are the
most commonly mutated genes in association with the HCC
development, yet the exploration of targeted therapies against
these oncogenic driver genes genetic drivers remains un-
successful [37, 38], highlighting the importance of developing
new targeted therapeutics for patients with HCC. Following the
evolution of high-throughput sequencing technologies and the
accumulation of knowledge in the feld of epigenetics, mutations
in epigenetically modifed genes have been indicated to be
closely correlated with the development and progression of
HCC, with up to 50% of tumors harboring relevant mutations
[39]. Given this, research on epigenetic drugs (epidrugs) has
received much interest and extensive attention in clinical
practice [40].

Epidrugs are well-characterized small molecule inhibitors
that mainly target epigenetic genes or enzymes and are divided
into three categories: writers, readers, and erasers [32, 41].
Writers are enzymes that add covalent modifcations to DNA
and histones.Tey include DNAmethyltransferases (DNMTs),
which transfer methyl groups from S-adenosyl methionine
(SAM) to cytosine bases of CpG dinucleotides at gene
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promoters and regulatory regions [42]. Histones are methyl-
ated on lysine and arginine residues to develop complex PTM.
Catalytic enzymes in histone methylation involve histone
methyltransferases (HMTs) and histone acetyltransferases
(HATs), which exert a crucial impact on chromatin remodeling
and gene expression [32]. Shanmugam et al. [43] further il-
lustrated the link between aberrant epigenetic histone modi-
fcations and carcinogenesis and assessed their possible impacts
on clinical outcomes of patients with HCC. Erasers (e.g.,
histone demethylases (HDMs) or histone deacetylases
(HDACs), however, regulate DNA demethylation to reverse
writers’ functions. Moreover, epigenetic modifcations are
recognized by the third group of proteins named readers, the
unique structural domains endowed with specifc covalent
modifcations that function as efector proteins (e.g., methyl-
binding domain proteins or Bromo- and extra-terminal (BETs)
domain proteins) (Figure 2). Te modifcation process de-
scribed above emphasizes the complexity and reciprocal in-
teraction of epigenetic regulatory mechanisms that underline
the promising epidrugs.

3.1. DNA Methylation Inhibitors. With epidrugs being rec-
ognized as a promising targeted therapeutic approach for
treating and reversing cancer drug resistance, particularly

notable for therapies with DNA methylation inhibitors and
histone acetylation inhibitors, the following section em-
phasizes the previous methods. Te current epidrugs have
mainly been applied in hematological malignancies and
exerted an anti-tumor efect via the inhibition of DNMTs
[44] and HDACs [45], while seldom used to treat solid
tumors due to the high rates of acquired drug resistance and
lack of specifc therapeutic targets. Either the frst-generation
DNMT inhibitors (DNMTi) (e.g., azacitidine [46] and
Decitabine) or the second-generation DNMTi (e.g., gua-
decitabine (SGI-110)) developed to improve stability and
overcome short-halfives, and HDAC inhibitors (HDACi)
(e.g., vorinostat and panobinostat) appear to be widely
applied in hematological tumors with the U.S. Food and
Drug Administration approved. Additionally, the combi-
nation of other drugs in solid tumors has yielded greater
anticancer efects than that induced by either drug alone
[47], although there remain several mild adverse efects [48].
Emerging evidence suggests that DNMTi can be successfully
applied in managing HCCs. Liu et al. [49] demonstrated that
DNMTi signifcantly inhibited the colony formation of
sorafenib-resistant HCC cells, indicating a therapeutic efect
on resistant HCCs to sorafenib. Mei et al. [50] and Fan et al.
[51] revealed that low-dose decitabine was efective in
resensitizing resistant HCC cells to sorafenib alone or in
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Figure 1: Circulating 5hmC as a novel biomarker of epigenetic modifcation for the early diagnosis of HCC. Small fragments of tumor DNA
exist from the peripheral blood with an early-stage HCC, containing marks such as 5mC and 5hmC that are associated with epigenetic
alterations in tumors. 5hmC as stable epigenetic marks associated with gene regulation and tumorigenesis, which is a staple of the
demethylation process. Sequencing analysis of 5hmC revealed that 5hmC is markedly enriched in tissue-specifc and tumor-specifc
diferentially methylated regions, and discriminates between HCC and non-HCC patients with higher sensitivity and specifcity versus
traditional tumor biomarkers, suggesting a new strategy for the early diagnosis of tumors including HCC as a novel liquid biopsy modality.
HCC, hepatocellular carcinoma; 5hmC, 5-hydroxymethylated cytosine; 5mC, 5-methylcytosine; C, cytosine; DNMT, DNA methyl-
transferases; TET, ten-eleven translocation.
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combination with chemotherapy or immunotherapy in
treating advanced HCC. Similarly, second-generation
DNMTi is equally efective as low-dose guadecitabine
alone or combined with oxaliplatin [52] or sorafenib [53],
Gailhouste et al. [46] Also, DNMTi has therapeutic im-
plications for HCC by promoting the reactivation of ab-
errantly silenced tumor suppressor genes, thereby
enhancing sensitivity to sorafenib in HCC cells. As for
combined therapies, DNMTi improved the efcacy of
treatments such as chemotherapy, and equally, the com-
bined immunotherapy modality holds advantages in
treating HCC, benefting from immunotherapy and im-
proving outcomes [54]. Recently, a phase Ib clinical trial
(NCT03257761) was conducted to evaluate the efcacy of
guadecitabine in combination with durvalumab for treat-
ing gastrointestinal tumors, including HCC, and suggested
the potential beneft of the combined therapy in selected
patients. Furthermore, CM-272, a novel targeted dual-
acting small molecule inhibitor of HMTs and DNMTs,
exhibited potent anti-tumor activity against HCC cell lines
by synergistically downregulating the expressions of
DNMT1 and G9a [55], yet further clinical trials are needed
to demonstrate its efectiveness and safety.

Te above study found that low doses of DNMTi were
efective in reducing the incidence of drug-related toxic
efects, but common adverse events observed in the study
were neutropenia, thrombocytopenia, anemia, nausea, and
fatigue. Besides, neurological toxicity has been reported in
a nonsmall cell lung cancer study with decitabine in com-
bination with valproic acid [56].

3.2. HDAC Inhibitors. As aberrant histone deacetylation
causes silencing of tumor suppressors in many of the known
cancers, and research has shown aberrant expression of
HDAC in HCC [57, 58], thus HDACi ofers a promising
approach to treat HCC. Te pan-HDACi panobinostat [59]
and pan-HDACi belinostat [60] have been proved to be
efective treatment strategies for HCC by inhibiting the
proliferative efect of HCC [61]. Other epigenetic therapies,
such as Trichostatin (TSA) [62, 63] and Reminostat, are
currently approved for clinical use and exhibit excellent anti-
tumor efects in the HCC treatment [64]. Recent evidence
demonstrated that targeting epigenetic modifcation strat-
egies is capable of enhancing immune recognition of tumor
cells hence the combinations of immunotherapy yield
synergistic efects and induce robust anti-tumor responses
[54, 65]. Immuno-combination therapies are a rapidly
expanding feld in targeting anti-tumor therapies, including
HCC.Te combinations of pan-HDACi belinostat with anti-
CTLA-4 and anti-PD-1 antibodies have been studied to
improve the anti-tumor efcacy of immune checkpoint
inhibitors in a murine HCC model [66]. Correspondingly
a multitude of clinical trials of epidrugs in conjunction with
immune checkpoint inhibitors by HDACi are ongoing and
are expected to yield implications for the clinical practice of
immune conjugation strategies against HCC. Besides,
therapeutic strategies including HDACi combined with
other analogs also have been suggested to have anti-HCC
potential and warrant further validation (A summary of the
clinical stages of the diferent epidrugs in the treatment of
HCC is presented in Table 1).
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Figure 2: Schematic diagram: the regulation mechanism of DNA epigenetic modifers on gene expression and epigenetic drugs. Epigenetic
modifers include epigenetic writers, readers, and erasers. HCC, hepatocellular carcinoma; 5hmC, 5-hydroxymethylated cytosine; 5mC, 5-
methylcytosine; Epidrugs, epigenetic drugs; DNMTs, DNA methyltransferases; HATs, histone acetyltransferases; HMTs, histone meth-
yltransferases; HDMs, histone demethylases; HDACs, histone deacetylases; BETs, Bromo- and extra-terminal; DNMTi, DNMT inhibitors;
HDACi, HDAC inhibitors.
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Regardless of the positive anti-tumor efcacy of HDACi
against HCC, adverse side efects associated with HDACi
deserve to be taken into account, notably when HDACi is
used in combination with a variety of therapeutic drugs.
Hepatic impairment mainly due to cumulative dose toxicity
of the drug has been observed in clinical trials, including
hyperbilirubinemia, elevated liver enzymes, and other
dominant toxicities comprising fatigue, abdominal pain,
anemia, and vomiting.

4. Conclusion

Aberrant epigenetic alterations are implicated in the path-
ogenesis of HCC. Epigenetic modifcations include DNA
methylation, hydroxymethylation, histone modifcations,
which can exert the diferential expression of the genome
and chromatin at the cellular transcriptome level. Te de-
velopment of high-throughput sequencing technologies has
revealed a genome-wide map of 5hmC and low levels of
5hmC in the context of an early-stage HCC and associated
with HCC progression, exploring it as a biomarker to serve
in the feld of diagnosis. Identifcation of 5hmC levels by
liquid biopsy improves the diagnostic accuracy of HCC,
making it possible to detect HCC earlier in large high-risk
populations. Furthermore, with the growing establishment
of epigenetic markers for the diagnosis and prognosis of
solid tumors, epigenomic-targeted therapies may provide
more combination strategies for treating HCC in the near
future. Particularly, DNMTi and HDACi have been well-
tested alone or in combination with other categories of drugs
for treating HCC. Subsequent exploration of epigenetic
modifcations, including abnormal DNA methylations and
histone modifcations, is warranted to ascertain potential
biomarkers for HCC diagnosis and formulate efective
combined treatment strategies on the basis of epigenetic
modifcation inhibitors in an attempt to overcome adverse
efects and improve anti-tumor efcacy with better phar-
macodynamics. However, it is notable that the lack of ap-
proved epidrugs available in the domain of HCC to date,
hopefully the solutions ofered to address the limitations

referred therein will yield the optimal results in future. In
conclusion, it is worthwhile to work towards a better
comprehension of the mechanisms of epigenetic modif-
cations and the interactions of epigenetic modifers as
a means to develop other more efective biomarkers and
epigenomic therapies in the clinical setting.
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[41] F. P. Cosśıo, M. Esteller, and M. Berdasco, “Towards a more
precise therapy in cancer: exploring epigenetic complexity,”
Current Opinion in Chemical Biology, vol. 57, pp. 41–49, 2020.

[42] M. R. Stallcup, “Role of protein methylation in chromatin
remodeling and transcriptional regulation,”Oncogene, vol. 20,
no. 24, pp. 3014–3020, 2001.

[43] M. K. Shanmugam, F. Arfuso, S. Arumugam et al., “Role of
novel histone modifcations in cancer,” Oncotarget, vol. 9,
no. 13, pp. 11414–11426, 2018.

[44] G. P. Nagaraju, B. Dariya, P. Kasa, S. Peela, and B. F. El-Rayes,
“Epigenetics in hepatocellular carcinoma,” Seminars in
Cancer Biology, vol. 86, pp. 622–632, 2022.
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