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Background. Cuproptosis, a recently discovered form of cell death, is caused by copper levels exceeding homeostasis thresholds.
Although Cu has a potential role in colon adenocarcinoma (COAD), its role in the development of COAD remains unclear.
Methods. In this study, 426 patients with COAD were extracted from the Cancer Genome Atlas (TCGA) database. Te Pearson
correlation algorithm was used to identify cuproptosis-related lncRNAs. Using the univariate Cox regression analysis, the least
absolute shrinkage and selection operator (LASSO) was used to select cuproptosis-related lncRNAs associated with COAD overall
survival (OS). A risk model was established based on the multivariate Cox regression analysis. A nomogram model was used to
evaluate the prognostic signature based on the risk model. Finally, mutational burden and sensitivity analyses of chemotherapy
drugs were performed for COAD patients in the low- and high-risk groups. Result. Ten cuproptosis-related lncRNAs were
identifed and a novel risk model was constructed. A signature based on ten cuproptosis-related lncRNAs was an independent
prognostic predictor for COAD. Mutational burden analysis suggested that patients with high-risk scores had higher mutation
frequency and shorter survival. Conclusion. Constructing a risk model based on the ten cuproptosis-related lncRNAs could
accurately predict the prognosis of COAD patients, providing a fresh perspective for future research on COAD.

1. Introduction

Colonic adenocarcinoma (COAD) is the most common
histological subtype of colorectal cancer and is one of the
leading causes of cancer mortality [1]. With the devel-
opment of substantive treatment strategies, including
surgery, neoadjuvant therapy, and targeted therapy, the
overall prognosis for patients with COAD has signif-
cantly improved [2]. At the same time, the importance of
early diagnosis of COAD for prognosis is being in-
creasingly recognized. Te 5-year survival rate of patients
with early diagnosis is approximately 90%, but only 10%
for patients diagnosed with advanced metastatic disease
[1]. Identifying novel biomarkers for tumor diagnosis and
prognosis has been shown to beneft the treatment of
diverse tumor types [3–6]. Terefore, there is still an
urgent need to identify novel prognostic biomarkers as-
sociated with metastasis to facilitate the timely diagnosis

and earlier application of appropriate, individualized
therapy.

Long noncoding RNAs (lncRNAs) are transcripts over
200 nucleotides in length with no signifcant protein-coding
function [7]. By modulating gene expression, lncRNAs have
been reported to play important roles in many physiological
processes and disease progression [8]. In COAD, a variety of
lncRNAs have been reported to be highly expressed and have
been associated with multiple tumor-related biological
processes, including proliferation, chemical resistance, and
epithelial-mesenchymal transformation [9–12]. Tese
lncRNAs have been associated with the activation of mul-
tiple signaling pathways, including WNT, PI3K/Akt, and
PPAR [13]. Considering the roles of these pathways in the
occurrence and development of COAD [14, 15], lncRNAs
are likely to be signifcant factors in tailoring individualized
therapies. Several studies have identifed lncRNAs as po-
tential therapeutic targets [16–18]. Overexpression of
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LINC00152 has been shown to promote the expression of
fascin actin-binding protein 1 (FSCN1) by binding mir-632
and mir-185-3p, leading to proliferation and metastasis [19].
As reviewed in 2022, lncRNAs including DCST1-AS1,
LINC01569, KCNQ1OT1, and LINC00997 were considered
to take an active part in carcinogenesis by infuencing cell
metastasis, drug resistance, radio-resistance, and tumor
microenvironment interaction [20]. However, the role of
lncRNAs in COAD has not been completely elucidated.

Cu levels are elevated in the serum and tissues of
multiple solid tumors, including colorectal tumors [21].
However, its role is not fully understood. On one hand, in
addition to acting as a cofactor for key metabolic enzymes,
Cu also directly promotes tumor growth by acting as a co-
factor for signaling molecules such as MEK1, which
transduces carcinogenic BRAF signals to ERK1/2 [22],
suggesting that it may have a key role in cancer progression.
On the other hand, the ion carrier elesclomol mediates
copper overload in colorectal cancer cells and induces
copper-dependent cell death by degrading ATP7A [23].

Tis cell death pathway, caused by copper levels ex-
ceeding homeostasis thresholds, is called copper death or
cuproptosis [24]. It relies on mitochondrial respiration [25].
Copper binds directly to the lipid components of the tri-
carboxylic acid (TCA) cycle, resulting in the accumulation of
lipoacylated proteins, followed by the loss of iron-sulfur
cluster proteins, resulting in proteotoxic stress and cell death
[26]. Cuproptosis caused by copper overload has been
shown to predict tumor prognosis and judge immune and
drug responses in a variety of tumors, including head and
neck squamous cell carcinoma, breast cancer, and cervical
cancer [27–30]. However, there is no relevant report found
in COAD. Terefore, the double-edged role of copper in
colorectal cancer and its infuence on prognosis need to be
further analyzed and understood.

In this study, we examined cuproptosis-associated
lncRNAs in the clinical context of COAD using the Can-
cer Genome Atlas (TCGA) database. We constructed a risk
model to evaluate the prognostic ability of cuproptosis-
associated lncRNAs in patients with COAD. Te tumor
mutational burden and sensitivity analysis of chemotherapy
drugs were also assessed. Taken together, our fndings
provide new insights into potential therapeutic strategies for
patients with COAD.

2. Materials and Methods

2.1. Data Collection. Gene expression matrices and clinical
information for patients with COADwere obtained from the
Cancer Genome Atlas database (https://portal.gdc.cancer.
gov/). We identifed 426 such samples for inclusion. Te
gene expression matrices were merged using a Perl script for
further analysis. Genes encoding lncRNAs andmRNAs were
annotated and classifed using the Human Genome Browser,
GRCh38.p13 (https://asia.ensembl.org/index.html). Survival
time, survival status, age, sex, stage, and TNM stage were
extracted from the TCGA database using Perl scripts. All
data and clinical information used in this study were ob-
tained from a public database; therefore, neither approval

from the ethics committee nor written informed consent
from patients was required.

2.2. Identifcation of Cuproptosis-Related lncRNAs.
Expression data for cuproptosis-related genes were obtained
from a previous study [26]. Expression data were extracted
using Perl scripts, and Pearson’s correlation algorithm was
used to identify cuproptosis-related lncRNAs. With the
threshold setting at |correlation coefcient|> 0.4, Pvalue
<0.001 (r> 0.4, P< 0.001), 870 lncRNAs were identifed as
cuproptosis-related lncRNAs for further analysis (Supple-
mentary Table 1).

2.3. Prognostic Signature Construction. Based on univariate
Cox regression analysis, the least absolute shrinkage and
selection operator (LASSO) algorithm was performed using
the R package “glmnet.” Te multivariate Cox regression
analysis was used to evaluate the lncRNA signature as an
independent prognostic factor for patient survival. Risk
scores for each patient were calculated using the following
formula: risk scores� 􏽐

n
i�1Coef(i) × x(i), where Coef(i)

represents the correlation regression coefcient and x(i) is
the expression level of cuproptosis-related lncRNAs. Pa-
tients with COAD were divided into low- and high-risk
groups based on median risk scores. Kaplan–Meier survival
analysis was employed to assess the diference in OS rates in
the low- and high-risk groups using the log-rank algorithm.
A 3D principal component analysis (3D-PCA) was con-
ducted to assess the diference in signatures between low-
and high-risk patients using the R package “ggplot2.”

2.4. Consensus Clustering Analysis. According to the prog-
nostic cuproptosis-related genes, consensus clustering was
performed using the R package “ConsensusClusterPlus.”
Te clustering was established on the grounds of partitioning
around medoids with “Euclidean” distances, and 1,000
verifcations were performed. Finally, with the optimal
classifcation of K� 2–9, the patients with COAD were
clustered into two subtypes for further analysis.

2.5. Risk Model Independence. Te univariate and multi-
variate Cox regression analyses were used to assess risk scores
as independent prognostic factors for COAD. A subtype
analysis was conducted to confrm the independence of the
risk model. To further determine whether the risk score was
independent of other clinical variables, including age, Gleason
score, PSA value, and T stage, patients were regrouped into
new subtypes based on diferent clinical characteristics.
According to median risk scores, patients in each subtype
were stratifed into low- and high-risk groups.

2.6. Somatic Mutation Analysis. Data from the COAD
samples were obtained from TCGA in “maf” format using
Perl scripts. A waterfall diagram was constructed using the
“Maftools” package in the R software.
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2.7. Drug Sensitivity Analysis. Based on the Genomics of
Drug Sensitivity Genomics in Cancer (GDSC), the drug
treatment response of each patient with COAD was pre-
dicted using the R package “pRRophetic.” Diferences in IC50
values between low- and high-risk groups were analyzed
using the “ggplot2” R package.

2.8. Gene Set Enrichment Analysis (GSEA). For the low- and
high-risk groups, 1,000 permutations were used and
screened using the largest and smallest gene set flters of 500
and 15 genes, respectively. P values less than 0.05 were
considered to be signifcantly diferent.

2.9. Statistical Analysis. All analyses were performed using
the R software (version 3.6.0) and Perl scripts.TeWilcoxon
rank sum test was applied to separately conduct group
comparisons with P values less than 0.05, which was con-
sidered to be statistically signifcant.

3. Results and Discussion

3.1. Identifcation of Cuproptosis-Related lncRNAs. A total of
14,142 lncRNAs were collected from the TGCA COAD
RNA-Seq matrix. To identify lncRNAs related to cuprop-
tosis, correlations between the expression of cuproptosis
genes and lncRNAs were calculated, yielding a total of 870
candidate lncRNAs. Using the univariate Cox regression
analysis, 15 cuproptosis-related lncRNAs associated with OS
were selected using the least absolute shrinkage and selection
operator (LASSO) algorithm (Figure 1, Supplementary
Table 2).

3.2. Risk Model Construction. From the multivariate Cox
regression analysis, 10 cuproptosis-related lncRNAs were
selected to construct a risk model. Risk scores for each
patient were calculated using the following formula: risk
scores� (0.24× expression level of AL161729.4) +
(0.35× expression level of AC068580.3) + (0.19× expression
level of AL138756.1) + (0.1× expression level of MIR210HG)
+ (0.38× expression level of EIF3J-DT) + (0.17× expression
level of LINC02381) + (0.42× expression level of AC010
973.2) + (−0.15× expression level of TNFRSF10A-AS1) +
(0.42× expression level of ZEB1-AS1) + (0.31× expression
level of AC073957.3). Using the median risk score, the
COAD patients were divided into the following two groups:
213 patients in the low-risk group and 213 patients in the
high-risk group. Patients were ranked according to the
cuproptosis-related prognostic signature; the resulting
scatter dot plot indicated that survival time was inversely
correlated with risk score (Figures 2(a) and 2(b)). Te
Kaplan–Meier survival analysis showed that the OS of pa-
tients with high-risk scores was signifcantly shorter than
that of those with low-risk scores (P � 1.553E − 08,
Figure 2(c)). A 3D principal component analysis (3D-PCA)
produced a clear separation between low- and high-risk
groups based on the selected lncRNAs (Figure 2(d)). Of
the ten prognostic cuproptosis-related lncRNAs,

AL161729.4, AC068580.3, AL138756.1, MIR210HG, EIF3J-
DT, LINC02381, AC010973.2, ZEB1-AS1, and AC073957.3
were expressed at higher levels in the high-risk group,
whereas TNFRSF10A-AS1 was expressed at higher levels in
the low-risk group (Figure 2(e)). Tese results suggested that
constructing a risk model based on the ten cuproptosis-
related lncRNAs is prognostic for patients with COAD.

3.3. Training and Validation Cohorts. Te COAD patients
were randomly classifed into training and validation co-
horts. In both cohorts, patients were ranked by median risk
score. A scatter dot plot showed that survival times of COAD
patients in the training and validation cohorts were con-
versely associated with risk scores (Figures 3(a) and 3(b)).
Te survival of patients with low-risk scores was higher than
that of patients with high-risk scores in both cohorts
(P< 0.001, Figures 3(c) and 3(d)). Tese results demon-
strated that our risk model is accurate and reliable.

3.4. Independent Prognostic Analyses. Univariate analysis
indicated that age (hazard ratio (HR)� 1.028, P � 0.009),
stage (HR� 2.415, P< 0.001), T stage (HR� 3.379, P< 0.001),
M stage (HR� 4.854, P< 0.001), N stage (HR� 2.083,
P< 0.001), and the risk score (HR� 1.167, P< 0.001) were
associated with OS (Figure 4(a)). Multivariate analysis in-
dicated that age (HR� 1.051, P< 0.001), T stage (HR� 1.849,
P � 0.031), and risk score (HR� 1.181, P< 0.001) were sig-
nifcantly associated with OS in patients with COAD
(Figure 4(b)). Te AUC of the signature was 0.704
(Figure 4(c)). Taken together, these results indicate that
prognostic signatures based on cuproptosis-related lncRNAs
are independent prognostic factors in patients with COAD.

3.5. Correlations between lncRNA Risk Scores and Clinico-
pathological Characteristics. Patients were classifed by sex,
M stage (M 0 vs.M 1), N stage (N 0 vs. N 1-2), S stage (S 1-2 vs.
S 3-4), T stage (T 1-2 vs. T 3-4), and age (≥65 vs. <65).
Kaplan–Meier analysis showed that survival of patients
with low-risk scores was higher than that of patients with high-
risk scores, based on the prognostic signature among females
(P � 5.847e − 04), males (P � 1.28e − 03), M 0 (P � 2.879e

−04), M 1(P � 9.833e − 03), N 0 (P � 8.82e − 04), N 1-2
(P � 5.014e − 04), S 1-2 (P � 6.347e − 04), S 3-4
(P � 1.833e − 04), T 3-4 (P � 1.668e − 06), ≥65
(P � 2.7e − 05), and <65 (P � 2.61e − 03). However, the
survival rate was similar between T-stage groups (Figure 5).
Tese results indicate that the prognostic signature based on
cuproptosis-related lncRNAs accurately predicts prognosis
relative to clinicopathological characteristics.

3.6. Consensus Clustering Analysis for Cuproptosis-Related
lncRNAs associated with COAD. Tereafter, consensus
clustering analysis was utilized to cluster the patients with
COAD into diferent subgroups, and the result revealed an
optimal classifcation for consensus clustering with K� 2
(Figures 6(a)–6(c)). Based on the prognostic cuproptosis-
related lncRNAs, the patients with COAD were successfully
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divided into two subgroups, with 323 patients in Cluster A
and 103 patients in Cluster B. Te principal component
analysis result illustrated a clear separation between Cluster
A and Cluster B according to the prognostic cuproptosis-
related lncRNAs (Figure 6(d)). Te Kaplan–Meier survival
curve analysis suggested that the patients in Cluster A had
a higher OS rate than those in Cluster B (Figure 6(e)). Tese
results demonstrate that the cuproptosis-related lncRNAs
are associated with the prognosis of COAD.

3.7.NomogramConstruction. A nomogram was constructed
to confrm the accuracy of the prognostic signature and
clinicopathological characteristics (Figure 7(a)). It yielded
a consistency index (C-index) of 0.727. Calibration curves
indicated that the nomogram-predicted 1, 3, and 5-year
survival rates were consistent with actual survival times

(Figure 7(b)). Time-dependent ROC curves revealed that the
AUCs of 1-, 3-, and 5-year were 0.704, 0.731, and 0.775,
respectively, indicating satisfactory accuracy of the model
(Figure 7(c)).

3.8. TumorMutational Burden (TMB)Analysis. TMB indices
for high-risk and low-risk genes were calculated. As shown in
Figure 8(a), patients with high TMB had lower survival rates
than those with low TMB (P � 0.025). Te mutation fre-
quencies of high-risk genes were higher than those of low-risk
genes. Survival of the high-TMB+high-risk panel was the
lowest, followed by the low-TMB+high-risk, high-
TMB+ low-risk, and low-TMB+ low-risk panels (Figure 8(b),
P< 0.001). A waterfall diagram (Figure 8(c)) shows the top 30
mutation frequencies. In the low-risk group, mutations were
detected in 194 out of 195 samples; APC (72%), TP53 (48%),
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Figure 1: Identifcation and analysis of cuproptosis-related lncRNAs: (a) univariate Cox regression for 15 cuproptosis-related lncRNAs
associations with COAD OS. (b-c) LASSO regression model showing coefcients and minimal lambda values.
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Figure 2: Risk model based on expression levels of ten cuproptosis-related lncRNAs: (a) distribution of risk scores; (b) scatter dot plot
showing correlation of survival time and risk score; (c) Kaplan–Meier survival analysis; (d) principal component analysis (PCA) showing
signifcant separation between low- and high-risk groups; (e) boxplot of expression levels of the ten selected lncRNAs.
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Figure 3: Testing of training and validation cohorts: (a-b) distribution of risk scores and scatter dot plots; (c-d) survival curves for training
and validation cohorts.
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Figure 5: Kaplan–Meier analyses stratifed by (a-b) sex, (c-d) M stage, (e-f) N stage, (g-h) S stage, (i-j) T stage, and (k-l) age.
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TTN (46%), and KRAS (47%) had the highest mutation fre-
quencies. In the high-risk group, mutations were detected in
185 out of 196 samples. Te mutated genes with the highest
frequency in the mutation map showed no signifcant difer-
ence compared with the previous group (Figure 8(d)).

3.9. Sensitivity to Chemotherapeutic Agents. As chemother-
apy is the primary treatment for newly diagnosed COAD, we
compared IC50 values for several commonly used drugs
between the low- and high-risk groups. IC50 values for high-
risk COAD patients for nilotinib, rapamycin, geftinib,
salubrinal, GSK.650394, shikonin, lenalidomide, tipifarnib,
and vinblastine were all lower (P< 0.05), while the IC50 for

bicalutamide was higher in the high-risk group (Figure 9).
Tese results provide preliminary evidence for clinical drug-
use guidance.

3.10. Gene Set Enrichment Analysis (GSEA). We found
multiple KEGG signaling pathways that were dynamically
enriched in the low-risk group compared to the high-risk
group, including those involved in the citrate cycle of the
TCA cycle; propanoate metabolism, arginine, and proline
metabolism; alanine, aspartate, and glutamate metabolism;
proteasome; and valine, leucine, and isoleucine degradation.
Notably, the expression of components of the mTOR sig-
naling pathway was signifcantly increased in the high-risk
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Figure 8: Tumor mutational burden analysis: (a) genes with the highest mutation rates in high-risk patients; (b) genes with the highest
mutation rates in high-risk patients; (c) overall survival of patients with H-TMB and L-TMB; (d) overall survival of patients with L-TMB and
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Figure 9: Drug sensitivities as a function of the risk group for (a) bicalutamide, (b) geftinib, (c) GSK.650394, (d) lenalidomide, (e) nilotinib,
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group (Figure 10). Tese results indicate that metabolic
processes and cancer-related pathways may mediate the role
of cuproptosis-related lncRNAs in patients with COAD.

4. Conclusions

Despite signifcant improvements in surgery, radiotherapy,
chemotherapy, and immunotherapy, the 5-year COAD
survival rate remains very low [1]. Terefore, it is important
to identify potential biomarkers for diagnosis and treatment.
In this study, we identifed and validated a ten-gene feature
that predicted survival in patients with COAD. Tis risk
model may be clinically valuable for identifying patients for
individualized, cuproptosis-inducing therapy.

Gene expression is regulated by the interaction of
lncRNAs with RNA, DNA, and proteins through a variety of
mechanisms, including regulation of transcription, mRNA
stability, and translation [31]. In colon cancer, lncRNAs have
been implicated in regulating cell proliferation, apoptosis,
the cell cycle, cell migration and invasiveness, epithelial-
mesenchymal transformation (EMT), cancer stem cells, and
drug resistance [32]. Multiple types of lncRNAs have been
correlated with COAD prognosis [33]. Copper-based
therapies are considered to have great potential in cancer
treatment; some are already in clinical trials. However, their
anticancer potential has not been fully elucidated [34].
Cuproptosis is a newly discovered form of cell death that
involves mitochondrial metabolic activity and has not been
thoroughly studied in tumors [26]. In the current study, ten
lncRNAs associated with cuproptosis were identifed and
included in a risk model. Te Kaplan–Meier curve, time-
dependent ROC curve, and Cox regression analysis all
demonstrated the predictive ability of the risk model, in-
dicating an independent predictor of COAD prognosis.

Progressive preclinical and clinical evidence suggests that
targeting mitochondrial metabolism has anticancer efects
[35, 36]. Cuproptosis is associated with highly reactive
mitochondrial oxidative phosphorylation (OXPHOS) [26].
Despite an increasing reliance on glycolysis, cells from many
cancer types still exhibit functional OXPHOS [37]. In colon
adenocarcinomas, stem cells have been reported to use
mitochondrial OXPHOS to produce ATP and maintain
mitochondrial function via the FOXM1/PRDX3 pathway,
thereby maintaining their survival and stem-cell
characteristics [38].

Among the lncRNAs screened,MIR210HG, EIF3J-DT, and
ZEB1-AS1 have been extensively studied in tumors.
MIR210HG promotes breast cancer progression through m6A
modifcation mediated by IGF2BP1 [39]. IGF2BP1 also plays
an important role in COAD pathogenesis. Its deletion
downregulates k-RAS expression downstream of β-catenin and
simultaneously inhibits colon cancer cell proliferation, whereas
IGF2BP1 overexpression increases c-MYC and K-RAS ex-
pression and promotes colon cancer cell proliferation [40].
Whether MIR210HG is involved in this pathway in COAD
requires further investigation. In gastric cancer, EIF3J-DT is
involved in the regulation of autophagy and chemical re-
sistance of gastric cancer cells by targeting ATG14 [41], while
autophagy-dependent apoptosis has been shown to be
a promising therapeutic target in COAD [42]. ZEB1-AS1 is
involved in the regulation of the ZEB1 pathway; its activation
has been reported to promote the stem characteristics and
invasiveness of COAD cells [32, 43]. Te aforementioned
evidence suggests functional mechanisms by which the
lncRNAs we identifedmay be involved in COAD and suggests
ways for improving chemotherapy sensitivity and prognosis.
Considering our insufcient understanding of these lncRNAs,
further studies on them are of clear clinical value.
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Figure 10: Gene set enrichment analyses: (a) mTOR signaling pathway; (b) citrate cycle TCCA cycle; (c) arginine and proline metabolism;
(d) alanine, aspartate, and glutamate metabolism; (e) propanoate metabolism; (f ) proteasome; (g) valine, leucine, and isoleucine
degradation.
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We found decreased sensitivity to multiple chemother-
apeutic agents in the high-risk group stratifed by CPR-related
prognosis. Te development of chemoresistance is an im-
portant factor that limits the therapeutic efcacy of anticancer
drugs and ultimately leads to the failure of COAD chemo-
therapy [44]. Transport-based mechanisms of cellular drug
resistance play important roles [45, 46]. Trough the control
of entry and exit of substrates through the cell membrane by
membrane transporters, such as P-gp, multiple drugs can
escape from cancer cells, decreasing their intracellular ac-
cumulation, resulting in multidrug resistance (MDR) that is
not limited to a specifc type and confers resistance tomultiple
drugs [47]. Studies on MDR mechanisms and strategies for
their reversal play an important role in the success of che-
motherapy [48–50]. Tere have been studies showing that
a new class of thiosemicarbazone compounds, the copper-
binding di-2-pyridyl ketone thiosemicarbazones, has great
promise. Trough a unique mechanism, they form redox-
active complexes with copper in the lysosomes of cancer cells
to reduce the amount of copper in the body, thereby over-
coming P-gp-mediated MDR [51]. Terefore, chelators that
bind copper have been developed as anticancer agents [51].
Our data on decreased sensitivity to multiple chemothera-
peutic agents in patients with COAD in the lncRNA-
stratifedhigh-risk group may also be due to higher Cu
concentrations. Te targeted application of chelators that
bind copper to fght cancer progression and chemoresistance
has signifcant clinical potential.

In conclusion, we identifed ten cuproptosis-related
lncRNAs using the multivariate Cox regression analysis
and constructed a risk model that can accurately predict
COAD prognosis. Tis evidence provides a foundation for
future research on COAD. Our study had some limitations.
All analyses were performed using a TCGA-COAD cohort
and have not been validated against other databases. Ad-
ditionally, in vivo and in vitro experiments should be per-
formed for further validation. Further exploration of the
impact of cuproptosis on prognosis and chemotherapy re-
sistance in COAD may provide new ideas for further study
and clinical applications.
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