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Background. Acute myeloid leukemia (AML) is a malignant clonal disease of the myeloid hematopoietic system. Clinically,
standard treatment options include conventional chemotherapy as well as hematopoietic stem cell transplantation. Among them,
chemotherapy has a remission rate of 60% to 80% and nearly 50% relapse in consolidation therapy. Some patients have a poor
prognosis due to the presence of unfavorable factors such as advanced age, hematologic history, poor prognosis karyotype, severe
infection, and organ insufciency, which cannot tolerate or are not suitable for standard chemotherapy regimens, and scholars
have tried to fnd new treatment strategies to improve this situation. In the pathogenesis and treatment of leukemia, epigenetics
has received attention from experts and scholars.Objective. To investigate the relationship betweenOLFML2A overexpression and
AML patients. Methods. From Te Cancer Genome Atlas, researchers used the data of OLFML2A gene to analyze and study the
pan-cancer using R language and then divided the high and low levels of this protein into two groups to study its relationship with
the clinical characteristics of the disease.Te relationship between the high levels of OLFML2A and various clinical features of the
disease was studied with emphasis on the relationship between the high levels of OLFML2A and various clinical features of the
disease. A multidimensional Cox regression analysis was also performed to study the factors afecting patient survival. Te
correlation between OLFML2A expression and immune infltration through the immune microenvironment was analyzed. Te
researchers then conducted a series of studies to analyze the data collected in the study.Te focus was on the relationship between
the high levels of OLFML2A and immune infltration. Gene ontology analysis was also performed to study the interactions
between the diferent genes associated with this protein. Results. According to the pan-cancer analysis, OLFML2A was dif-
ferentially expressed in diferent tumors. More importantly, the analysis of OLFML2A in the TCGA-AML database revealed that
OLFML2A was highly expressed in AML. Te researchers found that the high levels of OLFML2A were associated with diferent
clinical features of the disease, and that the expression of the protein was diferent in diferent groups.Tose patients with the high
levels of OLFML2Awere found to have substantially longer survival times compared to those with low-protein levels. Conclusions.
Te OLFML2A gene is able to act as a molecular indicator involved in the diagnosis, prognosis, and immune process of AML. It
improves the molecular biology prognostic system of AML, provides help for the selection of AML treatment options, and
provides new ideas for future biologically targeted therapy of AML.

1. Introduction

Acute myeloid leukemia (AML) is a malignant disease of the
hematological system with strong biological and clinical
heterogeneity. Currently, patients are generally stratifed
according to their cytogenetic and molecular biological

fndings to predict their treatment outcome [1]. In practice,
we have found that the prognosis of patients graded
according to the current risk stratifcation system still has
some variability in treatment outcome and survival time for
patients in the same risk stratum, suggesting that we should
have a more detailed stratifcation prognosis system. In
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recent years, studies have found that AML is associated with
multiple mutated genes, suggesting that the development of
leukemia may be the result of accumulation of mutations in
multiple genes [2, 3]. In recent years, with the widespread
use of high-throughput sequencing, i.e., second-generation
sequencing technology, the role of leukemia-related mutated
genes in diagnosis and treatment has been gradually high-
lighted [4]. Applying sequencing technology, we have suc-
cessively discovered a variety of mutated genes related to the
development and treatment of AML, and a large number of
studies of these genes in AML have also emerged.

Te OLFML2A (olfactomedin-like 2A) gene is located
on chromosome 9q33.3 and encodes a protein also known as
“photomedin-1,” which belongs to the OLFM (Olfactome-
din, OLFM) family IV [5]. Olfactomedin, an exocrine gly-
coprotein secreted by the epithelial cells of the olfactory
organ and deposited in large quantities on its surface, was
discovered in 1991 and was the frst member of the OLFM
family [6]. More than half of the OLFM family proteins are
expressed in the neural tissue [7]. A large body of evidence
suggests that OLFM family proteins play an important
regulatory role in neurogenesis, neural crest formation,
intercellular adhesion, tumor development, and cell cycle
regulation [8, 9]. Related studies have shown that the OLFM
family proteins are key regulatory molecules of cellular
signaling pathways such as the Wnt signaling pathway
[10, 11]. Tere is increasing evidence that the OLFM family
proteins play important roles in the normal tissue devel-
opment and disease development, e.g., myocilin and
olfactomedin 2 are key molecules in the development of
glaucoma [12], and OLFM4 is associated with the devel-
opment of common malignancies such as gastric and
pancreatic cancers [13, 14].

OLFML2A is a member of OLFM family IV, which
contains at least eight exons spanning 37.7 kb and encodes
a protein with an olfactomedin structural domain at the C-
terminus and a unique serine/threonine region that dis-
tinguishes it from other proteins in the family, two to three
potential glycosylation sites at the N-terminus, and
homodimers or oligomers with disulfde bonds. Northern-
blot of diferent tissue specimens from mice showed that
OLFML2A transcription products were not found in the
brain tissue [15]. OLFML2A is an exocrine glycoprotein that
binds specifcally to chondroitin sulphate-E (CS-E) and
heparin [16]. CS-E binds to a number of heparin-binding
growth factors, including midkine, Pleiotrophin, several
FGFs, and HB-EGF. Specifc binding of OLFML2A to CS-E
may promote the local action of growth factors bound to CS-
E. To date, the specifc functions of the OLFML2A gene and
its encoded protein remain unknown, and its role in the
development of AML has not been reported in the literature.

Based on this, from Te Cancer Genome Atlas, re-
searchers analyzed the data using OLFML2A gene data,
analyzed and studied pan-cancer using R language, and then
divided the high and low levels of the protein into two
groups in order to study its relationship with the clinical
features of the disease. Finally, it was concluded that the
OLFML2A gene, as a molecular indicator, can be involved in
the diagnosis, prognosis, and immune process of AML and

has the potential to be a reliable prognostic assessment
indicator W and a potential therapeutic boot point for AML
patients.

2. Methods

2.1. Preprocessing of Raw Data. We collected TCGA-AML
expression profles and clinical information from TCGA
Genomic Data Commons Data Portal (https://portal.gdc.
cancer.gov/). We excluded the insufcient cases or missing
data in the later information processing. Te genomic ex-
pression information of OLFML2A was calculated from the
TCGA database by high-throughput sequencing. Because all
information was publicly available, no ethical approval was
required.

2.2. Pan-Cancer Analysis. Pan-cancer analysis was per-
formed through the TIMER2 (Tumor Immunology Esti-
mation Resource, version 2) network (https://timer.
cistrome.org/) 16 to observe diferences in OLFML2A ex-
pression in tumors and nearby normal tumor tissue or
particular tumor subtypes in the TCGA program.

2.3. Gene Expression Analysis. We studied the correlation
between diferent tissue characteristics and OLFML2A ex-
pression through the Wilcoxon rank-sum test.

2.4. Survival andClinical StatisticalAnalysis. Te association
of OLFML2A with clinical features and overall survival was
evaluated using the log-rank tests, Kaplan–Meier survival
curves, and one-way Cox analysis. Te correlation between
high and low OLFML2A expression and clinical features was
researched in this study (age, grade, BM blasts, cytogenetic
risk, FLT3 mutation, IDH R132 mutation, IDH R140 mu-
tation, NPM1 mutation, PB blasts, RAS mutation, and WBC
count) between OLFML2A mutations. In addition,
OLFML2A was split into high and low expression groups.
Te OLFML2A expression was judged in relation to overall
survival by confrming the high and low OLFML2A ex-
pression based on the median. We applied survROC soft-
ware to measure the accuracy of risk scores on prognosis
using time-dependent subject operating characteristic
(ROC) curves. We conducted univariate and multivariate
analyses of risk scores after adjusting for age, sex, race, BM
blasts, PB blasts, Cytogenetic risk, and FAB classifcations. In
addition, we analyzed the expression of OLFML2A with
diferent clinicopathological features, and we investigated
the association of OLFML2A expression with BM cells,
cytogenetic risk, FAB classifcation, IDH1 R132 mutation,
IDH1 R132 mutation, NPM1 mutation, and race.

2.5. Construction of Nomograms. Since the development of
nomograms, they have been used to forecast cancer prog-
nosis. Tis method uses a statistical method to score various
factors, such as age, gender, and the TNM stage. It can then
produce a total score that provides a personalized estimate of
the likelihood of the disease returning. In the study, the
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researchers used nomograms to predict the likelihood of
patients with cancer returning.Te R package rms generated
them.Te nomograms were then validated by implementing
a series of calibration curves. Subsequently, we utilized the c-
index to estimate nomogram accuracy.

2.6. Immunological Analysis. Te researchers then per-
formed a series of studies to analyze the data collected from
the studies. Tey frst used a computer program known as
the CIBERSORT deconvolution to determine the relative
composition of immune cells in each sample. Ten, they
performed an immune diferential analysis to study the two
groups’ immune cell content diferences.

2.7.GeneOntology (GO) andKyotoEncyclopedia ofGenes and
Genomes (KEGG). Te cluster profle package was used for
GO and KEGG enrichment analysis and underlying bi-
ological pathways that were likely to adjust the cancer de-
velopment. Tey were also able to identify promising signals
that could be linked to the disease.

3. Results

3.1. OLFML2A Had a High Expression in Multiple Cancer
Tissues. To detect the diferential expression of OLFML2A,
we frst investigated OLFML2A gene expression in 33 hu-
man cancers in TCGA using the TIMER database. Com-
pared with normal samples, OLFML2A had higher
expression in 27 cancers, including LUSC, BLCA, DLBC,
BRCA, CESC, GBM, COAD, ESCA, KIPR, HNSC, KIRC,
LGG, LAML, LUAD, READ, LIHC, PAAD, OV, PRAD,
STAD, CHOL, PCPG, SKCM, TGCT, THYM, UCEC, and
UCS, shown in Figure 1(a). By comparing the expression of
OLFML2A gene in AML and normal samples, OLFML2A
had a large overexpression in AML (as shown in Figure 1(b);
P< 0.001).

3.2. Te Diference in Clinical Characteristics. We grouped
high and low OLFML2A gene expression, and the corre-
lation between OLFML2A gene expression and clinical
features were explored. We incorporated age, grade, BM
blasts, cytogenetic risk, FLT3mutation, IDH R132mutation,
IDH R140 mutation, NPM1 mutation, PB blasts, RAS
mutation, and WBC count for picture mapping. After an-
alyzing the data collected from the studies, the researchers
concluded that the high levels of the OLFML2A were dif-
ferent from the low levels of the protein.Tey also noted that
the diference was signifcant when it came to age, BM blasts,
and FLT3 mutations (P< 0.05; Figure 2).

3.3. Te Prognosis and Diagnosis of OLFML2A Value.
Compared with high-risk patients, according to
Kaplan–Meier survival curves, the survival of low
OLFML2A expression patients was longer (log-rank test;
P< 0.001) (Figure 3(b)). Figure 3(a) shows 0.977, indicating
the area under the curve (AUC) value.

3.4. Te Diference in Clinicopathological Feature.
Trough the analysis between OLFML2A expression and
diferent clinicopathological characteristics, it could be seen
that there was a relationship between OLFML2A expression
and FAB classifcations, BM blasts, IDH1 R132 mutation,
IDH1 R132mutation, cytogenetic risk, NPM1mutation, and
race (Figure 4 and Tables 1 and 2). In addition, univariate
and multifactorial Cox regression analyses presented that an
independent risk factor for AML was OLFML2A expression
(Table 3).

3.5. Construction of the Nomogram. We constructed
a prognostic nomogram in LUAD to predict the 1-, 3-, and
5 year survival probabilities of individuals by gender, race,
age, WBC, BM blasts, PB blasts, cytogenetic risk, FLT3
mutation, IDH R132 mutation, IDH R140 mutation, IDH
R172 mutation, RAS mutation, NPM1 mutation, PB blasts,
and OLFML2A (Figure 5).

OLFML2A expression was positively correlated with
iDC, macrophages, NK CD56dim cells, Tem, TFH, TGD,
TH1 cells, TH17 cells, iDC, macrophages, NK CD56dim
cells, Tem, TFH, TGD, TH1 cells, and TH17 cells (P< 0.05;
Figure 6).

3.6. GO and KEGG. We performed GO analysis on
OLFML2A. CC terms contain “focal adhesion,” “cell-
substrate adherence junction,” “cell-substrate junction,”
“coated vesicle membrane,” and “transport vesicle”. BP
terms include “positive regulation of dephosphorylation,”
“regulation of autophagy,” “sterol metabolic process,”
“positive regulation of phosphatase activity,” and “platelet
activation,”. MF terms were associated with “O-
acyltransferase activity,” “ubiquitin binding,” “phosphatase
activator activity,” “phosphatidic acid binding,” and “protein
phosphatase activator activity”. KEGG analysis shows that
OLFML2A is associated with numerous pathways, including
“Aldosterone synthesis and secretion,” “cGMP-PKG sig-
naling pathway,” “Melanogenesis,” “Adrenergic signaling in
cardiomyocytes,” and “Parathyroid hormone synthesis se-
cretion and action” (Figure 7).

4. Discussion

Acute myeloid leukemia (AML) is a common aggressive
hematologic malignancy characterized by impaired leuko-
cyte maturation and excessive proliferation of hematopoietic
stem cells, which can spread to other organs such as the
central nervous system, skin, and gums. Due to impaired
normal hematopoietic function, AML patients often present
with anemia, bleeding, and severe infections [3]. In the past
two decades, genomic, transcriptomic, and epigenomic
studies of AML have made great progress. Te latest 2017
European Leukemia Network (ELN) risk stratifcation
guidelines combining cytogenetic abnormalities and genetic
mutations have been widely used to predict the prognosis of
AML patients [4]. Furthermore, based on these advances,
several drugs have been approved for the treatment of AML,
such as sorafenib for FMS-like tyrosine kinase 3 (FLT3)
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Figure 2: Continued.
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Figure 1: Te higher expression of OLFML2A was displayed in AML from the TCGA database.
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mutations and Evonib for isocitrate dehydrogenase 1 and 2
(IDH1 and IDH2) mutations [17]. However, most patients
with AML who receive chemotherapy relapse [18]. Te next
step in the approach to treat AML may be to uncover the
molecular pathways involved in AML progression, che-
motherapeutic efcacy, and relapse, with particular

emphasis on the potential role of proteins in AML. Tere is
growing evidence that proteins play an important role in the
pathogenesis of cancer, including AML [19].

OLFML2A is an abnormal protein that can be found in
various tissues such as the breast, colon, ovary, and liver [1].
Researchers have also found that high levels of this protein
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Figure 2: Association between OLFML2A expression and clinical characteristics in the TCGA database.
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are detrimental to patients with acute lymphoblastic leu-
kemia. Te researchers hypothesized that the presence of
OLFML2A in these patients could help to predict the
likelihood of their cancer recurrence. Tey noted that the
high levels of this protein could be a target for novel cancer
treatments. In a previous study, researchers found that the
presence of OLFML2A in breast cancer cells could hinder

the development and metastasis of cancer cells [20]. Te
knockdown of OLFML2A in glioma cells inhibits the Wnt/
β-catenin signaling pathway, which leads to upregulation of
amyloid precursor protein (APP) expression and a decrease
in the degree of stable β-catenin, resulting in having reduced
MYC, CD44, and CSKN2A2 expression, thereby inhibiting
cell proliferation and promoting apoptosis [21, 22].
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Figure 4: Analysis between OLFML2A expression and diferent clinicopathological features.

6 Journal of Oncology



Table 1: Association analysis between OLFML2A expression levels and clinicopathologic features in the TCGA-AML database.

Characteristic Low expression of OLFML2A High
expression of OLFML2A P value

n 75 76
Gender, n (%) 1.000
Female 34 (22.5%) 34 (22.5%)
Male 41 (27.2%) 42 (27.8%)

Race, n (%) 1.000
Asian 0 (0%) 1 (0.7%)
Black or African American 6 (4%) 7 (4.7%)
White 67 (45%) 68 (45.6%)

Age, n (%) 0.211
≤60 48 (31.8%) 40 (26.5%)
>60 27 (17.9%) 36 (23.8%)

WBC count (×109/L), n (%) 0.191
≤20 43 (28.7%) 34 (22.7%)
>20 32 (21.3%) 41 (27.3%)

BM blasts (%), n (%) 0.444
≤20 27 (17.9%) 33 (21.9%)
>20 48 (31.8%) 43 (28.5%)

PB blasts (%), n (%) 0.372
≤70 39 (25.8%) 33 (21.9%)
>70 36 (23.8%) 43 (28.5%)

Cytogenetic risk, n (%) 0.035
Favorable 21 (14.1%) 10 (6.7%)
Intermediate 40 (26.8%) 42 (28.2%)
Poor 13 (8.7%) 23 (15.4%)

FAB classifcations, n (%) 0.278
M0 6 (4%) 9 (6%)
M1 17 (11.3%) 18 (12%)
M2 23 (15.3%) 15 (10%)
M3 7 (4.7%) 8 (5.3%)
M4 14 (9.3%) 15 (10%)
M5 4 (2.7%) 11 (7.3%)
M6 2 (1.3%) 0 (0%)
M7 1 (0.7%) 0 (0%)

Cytogenetics, n (%) 0.014
Normal 32 (23.7%) 37 (27.4%)
+8 7 (5.2%) 1 (0.7%)
Del (5) 0 (0%) 1 (0.7%)
Del (7) 3 (2.2%) 3 (2.2%)
Inv (16) 8 (5.9%) 0 (0%)
t (15; 17) 5 (3.7%) 6 (4.4%)
t (8; 21) 4 (3%) 3 (2.2%)
t (9; 11) 0 (0%) 1 (0.7%)
Complex 7 (5.2%) 17 (12.6%)

FLT3 mutation, n (%) 0.005
Negative 59 (40.1%) 43 (29.3%)
Positive 14 (9.5%) 31 (21.1%)

IDH1 R132 mutation, n (%) 0.579
Negative 67 (45%) 69 (46.3%)
Positive 8 (5.4%) 5 (3.4%)

IDH1 R172 mutation, n (%) 0.245
Negative 72 (48.3%) 75 (50.3%)
Positive 2 (1.3%) 0 (0%)

IDH1 R140 mutation, n (%) 0.745
Negative 67 (45%) 70 (47%)
Positive 7 (4.7%) 5 (3.4%)

RAS mutation, n (%) 1.000
Negative 71 (47.3%) 71 (47.3%)
Positive 4 (2.7%) 4 (2.7%)

NPM1 mutation, n (%) 1.000
Negative 59 (39.3%) 58 (38.7%)
Positive 16 (10.7%) 17 (11.3%)

Journal of Oncology 7



Furthermore, by exploring the signifcance of OLFML2A
expression in many clinical parameters, we found an associ-
ation between OLFML2A and AML survival and clinical
features. Tis study performed an immune cell infltration
analysis to gain insight into the role of OLFML2A. From Te
Cancer Genome Atlas, researchers used OLFML2A gene data
to analyze the data. Pan-cancer was analyzed and studied using
the R language.Tey then divided the high and low levels of the

protein into two groups to study their relationship with clinical
features of the disease. Te researchers then conducted a series
of studies to analyze the data collected from the study. Tey
focused on the relationship between the high levels of
OLFML2A and various clinical features of the disease. Tey
also performed a multidimensional Cox regression analysis to
examine the factors that afect patient survival. We analyzed
the correlation between OLFML2A expression and immune

Table 2: Logistic analysis of the relationship between OLFML2A expression and the clinicopathological features in the TCGA-AML
database

Characteristics Total (N) Odds ratio (OLFML2A) P value
Gender (male vs. female) 151 1.024 (0.539–1.948) 0.941
Race (White vs. Asian and Black or African American) 149 0.761 (0.239–2.305) 0.630
Age (>60 vs. ≤60) 151 1.600 (0.836–3.090) 0.158
WBC count (×10̂9/L) (>20 vs. ≤20) 150 1.620 (0.853–3.106) 0.142
BM blasts (%) (>20 vs. ≤20) 151 0.733 (0.379–1.408) 0.352
PB blasts (%) (>70 vs. ≤70) 151 1.412 (0.745–2.692) 0.292
Cytogenetic risk (intermediate and poor vs. favorable) 149 2.575 (1.140–6.156) 0.027
FAB classifcations (M1&M2&M3&M4&M5&M6&M7 vs. M0) 150 0.657 (0.210–1.923) 0.448
Cytogenetics (+8&del (5) &del (7) &inv (16) &t (15; 17) &t (8; 21) &t (9; 11)
&complex vs. normal) 135 0.814 (0.413–1.600) 0.551

FLT3 mutation (positive vs. negative) 147 3.038 (1.467–6.541) 0.003
IDH1 R132 mutation (positive vs. Negative) 149 0.607 (0.176–1.912) 0.402
IDH1 R140 mutation (positive vs. negative) 149 0.684 (0.194–2.245) 0.533
RAS mutation (positive vs. negative) 150 1.000 (0.228–4.378) 1.000
NPM1 mutation (positive vs. negative) 150 1.081 (0.498–2.357) 0.844

Table 3: Univariate and multivariate Cox regression analysis of factors associated with OS in TCGA-AML.

Characteristics Total
(N)

HR (95% CI)
univariate
analysis

P value
univariate
analysis

HR (95% CI)
multivariate
analysis

P value
multivariate
analysis

Gender 140
Female 63 Reference
Male 77 1.030 (0.674–1.572) 0.892

Race 138
Asian and Black or African American 11 Reference
White 127 1.200 (0.485–2.966) 0.693

Age 140
≤60 79 Reference
>60 61 3.333 (2.164–5.134) <0.001 2.859 (1.819–4.494) <0.001

WBC count (×109/L) 139
≤20 75 Reference
>20 64 1.161 (0.760–1.772) 0.490

BM blasts (%) 140
≤20 59 Reference
>20 81 1.165 (0.758–1.790) 0.486

PB blasts (%) 140
≤70 66 Reference
>70 74 1.230 (0.806–1.878) 0.338

Cytogenetic risk 138
Favorable 31 Reference
Intermediate 76 2.957 (1.498–5.836) 0.002 2.031 (1.003–4.113) 0.049
Poor 31 4.157 (1.944–8.893) <0.001 2.506 (1.134–5.535) 0.023

FAB classifcations 139
M0 14 Reference
M1&M2&M3&M4&M5&M6&M7 125 1.033 (0.517–2.062) 0.927

OLFML2A 140
Low 71 Reference
High 69 2.362 (1.534–3.639) <0.001 2.198 (1.409–3.429) <0.001
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Figure 6: Relationship analysis between OLFML2A expression and immune infltration in the AML microenvironment.
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Figure 7: GO and KEGG enrichment analysis of OLFML2A associated genes in the TCGA-AML database.
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infltration in the immune microenvironment.Te researchers
then conducted a series of studies to analyze the data collected
from the study. Tey focused on the relationship between the
high levels of OLFML2A and immune infltration. Tey also
performed gene ontology analysis to examine the interaction
between diferent genes associatedwith the protein. OLFML2A
was diferentially expressed in a variety of tumors based on
pan-cancer analysis, including the brain cell counting system,
DLBC, ESCA, BRCA, CHOL, LGG, COAD, lipocytes, Kipres,
GBM, chronic cell count, oligosaccharide nucleic acid, oligos
nucleic acid, adipocyte leukocyte leukemia, adipocyte count
enzyme, hyaluronidase, cycloplasmic carcinoma, growth
hormone, paclitaxel leukocyte leukemia, prostaglandin, cere-
broside leukocyte acid, goitre, and auscocis. In addition, the
analysis of OLFML2A in the TCGA-AML database revealed
that OLFML2A is highly expressed in AML. Te researchers
found that high OLFML2A levels were associated with dif-
ferent clinical features of the disease. Tey also noted that
protein expression was diferent in diferent groups. Patients
with the high levels of OLFML2Awere found to survive longer
compared to those with low-protein levels. Te researchers
found that the high levels of OLFML2A were associated with
various clinical features of the disease. Tey also noted that the
protein was expressed diferently in diferent groups. Some of
these clinical features include BM primitive cells, cytogenetic
risk, and IDH1R132mutations. Using columnar line graphs, it
was possible to predict patient survival based on OLFML2A
levels. A relationship was also found between this protein and
the growth of acute lymphoblastic leukemia. In the immune
microenvironment, the researchers discussed the positive
correlation between OLFML2A and various immune cell ac-
tivities. In parallel, we completed a GO analysis. Te CC
terminology encompasses “encapsulated vesicle membrane,”
“cell-matrix junction,” “focal adhesion,” “focal adhesion,” and
“cell-matrix junction.” BP terms include “autophagy regula-
tion,” “positive regulation of phosphatase activity,” “sterol
metabolic process,” and “phosphorylation.”

5. Conclusion

Te OLFML2A gene is able to act as a molecular indicator
involved in the diagnosis, prognosis, and immune process of
AML. It improves the molecular biology prognostic system
of AML, provides help for the selection of AML treatment
options, and provides new ideas for future biologically
targeted therapy of AML.
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