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Background. �e SMYD family comprises a group of genes encoding lysine methyltransferases, which are closely related to
tumorigenesis. However, a systematic understanding of their role in gastric cancer (GC) is lacking.Methods. Using databases and
tools such as the Cancer Genome Atlas, Human Protein Atlas, Kaplan–Meier Plotter, Gene Expression Pro�ling Interactive
Analysis, and Metascape, we comprehensively analyzed di�erences in SMYD expression and its prognostic value as well as the
association of SMYDs with immune cell in�ltration, tumor mutational burden (TMB), and microsatellite instability (MSI). We
conducted functional enrichment analysis and explored a competing endogenous RNAmechanism regulating SMYDmRNA and
protein levels in patients with GC. Results. In GC, the expression of SMYD2/3/4/5 mRNA was signi�cantly upregulated, as
opposed to that of SMYD1 mRNA, which was signi�cantly downregulated. �e protein levels of SMYDs were consistent with
mRNA levels. SMYD1/2/4/5 was negatively correlated with overall survival; SMYD1/2/3/5 was negatively correlated with
progression-free survival. Our SMYD-based signature and nomogrammodel may be useful for inferring the prognosis of GC. All
SMYDs were closely associated with the in�ltration of six immune cell types: uncharacterized, CD8+T, CD4+T, macrophage,
endothelial, and B cells. TMB was signi�cantly negatively correlated with SMYD1 expression, while a signi�cant positive
correlation was observed with SMYD2/5. Furthermore, MSI was signi�cantly positively correlated with SMYD2/5 expression.
Long non-coding RNAs, such as chr22-38_28785274-29006793.1, XLOC_002309, and CTD-2008N3.1, were suggested to regulate
SMYD expression by sponging multiple microRNAs. Conclusion. SMYDs are di�erentially expressed in GC and are thus potential
prognostic markers. SMYD expression is closely related to immune in�ltration, TMB, and MSI, all of which are closely related to
the response to targeted immune therapy.

1. Introduction

Gastric cancer (GC) is one of the major causes of cancer-
associated death worldwide. According to global cancer
statistics released by the World Health Organization, more
than 1million new cases of GC and about 769,000 deaths were
reported in 2020. Regarding incidence, GC ranks �fth in
occurrence of malignant tumors and fourth based on mor-
tality rate. In East Asian countries, especially China, Japan,
and South Korea, the number of new cases is increasing

annually [1]. While surgery remains the standard treatment
for GC, the disease is often detected in later stages, thereby
limiting the e®cacy of treatment via surgery alone [2, 3].
�erefore, early diagnosis and accurate prognosis are essential
to treatment success. At present, imaging biomarkers are
mostly utilized for GC diagnosis and prognosis [4–6], but the
complex pathogenesis of GC renders these biomarkers un-
reliable.�erefore, the identi�cation of reliable predictors and
the mechanisms underlying their prognostic value are im-
perative to diagnosing and prognosticating GC earlier.
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1e SMYD family comprises genes encoding lysine
methyltransferases, which contain a SET domain and
MYND zinc finger domain, both of which are closely related
to chromatin remodeling, transcription, signal transduction,
and cell cycle regulation [7]. In humans, five SMYDs
(SMYD1/2/3/4/5) have been reported, and these are in-
volved in several biological processes including the pro-
gression of various cancer types [8]. For example, SMYD1
and G6PD can regulate miR-206-mediated rhabdomyo-
sarcoma differentiation through epigenetic and metabolic
reprogramming [9]. SMYD2 is closely related to the oc-
currence and development of multiple cancer types, in-
cluding cervical, colon, and esophageal cancer [10–12].
SMYD3 is also implicated in cancer progression as it can
methylate chromosomal histones, thereby regulating tumor
proliferation, apoptosis, invasion, and metastasis [13–15].
Additionally, high SMYD3 expression is associated with
poor prognosis [16, 17]. SMYD4 has been identified as
a tumor suppressor gene in breast cancer [18], and SMYD5
may be involved in cancer and stem cell maintenance
[19, 20]. Finally, several studies have suggested the associ-
ation of SMYDs with immune infiltration in breast cancer
and digestive system malignancies [21, 22].

1e occurrence and development of GC are excep-
tionally complex processes. Studies have suggested that
SMYD expression is related to GC prognosis in some pa-
tients; however, research on the prognostic value and related
mechanisms of SMYDs in GC is lacking [23, 24]. In this
study, we conducted a comprehensive analysis of SMYDs
based on publicly available databases to determine their
potential prognostic value in GC.

2. Materials and Methods

2.1. SMYD mRNA and Protein Expression Levels in GC and
Normal Gastric Tissues. 1e mRNA expression profile data
of 375 GC and 32 normal gastric tissue samples in the
Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/) were downloaded from the Genomic Data
Commons (GDC) website (https://gdc.cancer.gov/). 1e
baseline data sheet is shown in Table 1. Wilcoxon’s test was
performed in R v4.0.3 to determine the statistical signifi-
cance of differences between the two groups.

1e protein expression levels of five SMYD members in
GC tissues and normal gastric tissues were evaluated using
immunohistochemical expression data from the Human
Protein Atlas (HPA, http://www.proteinatlas.org)—an in-
ternational project designed to systematically explore the
human proteome through antibody-based proteomics [25].

2.2. Prognostic Value of SMYDs in GC. Kaplan–Meier
Plotter (https://www.kmplot.com) is an online database
containing microarray gene expression data and survival
information from public databases such as GEO, TCGA, and
the European Genome-Phenome Archive; we obtained data
of 1440 patients with GC [26]. In the present study, patient
samples were divided into two groups (high and low ex-
pression) based on the median SMYD expression level. 1e

overall survival (OS) and progression-free survival (PFS) in
patients with GC were determined via Kaplan–Meier
analysis. A p value <0.05 indicated statistical significance.

2.3. SMYD Signature-Based Prognostic Model for GC. 1e
RNA-sequencing data of 375 GC tissues obtained from
TCGA were combined with the corresponding clinical in-
formation of patients. Patient survival was compared via log-
rank test and Kaplan–Meier survival analysis. A timeROC
analysis was performed to compare the predictive accuracy
and risk scores of SMYDs. 1e least absolute shrinkage and
selection operator (LASSO) regression algorithm was used
for feature selection, and 10-fold cross-validation was
employed to test the accuracy. 1e above analyses were
performed using the “glmnet” package in R.

For the Kaplan–Meier curves, the p values and hazard
ratios (HRs) with 95% confidence intervals (CIs) were de-
rived via the log-rank test and univariate Cox proportional
hazards regression. A p value <0.05 indicated statistical
significance.

2.4. SMYD-Based Nomogram Model for GC Prognosis.
We performed univariate and multivariate Cox regression
analyses and obtained a forest map using the “forestplot”
package in R to display the p value, HR, and 95% CI of each
variable. Based on the results of the multivariate Cox pro-
portional hazards analysis, we built a nomogram using the
“rms” package in R to predict the total recurrence rate in 1
and 3 years. 1e nomogram provides a graphical repre-
sentation of these factors, and the prognostic risk of an
individual patient can be calculated from the coordinates
associated with each risk factor.

2.5. Relationship between SMYDs and Immune Cell In-
filtration, TMB, and MSI. For a reliable evaluation of im-
mune cell infiltration, we used the R package
“immunedeconv,” which integrates six state-of-the-art al-
gorithms: TIMER, xCell, MCP-counter, CIBERSORT, EPIC,
and quanTIseq. We then used the EPIC algorithm [27] to
analyze the mRNA-sequencing data of 375 GC tissues from
TCGA and determine the correlation between SMYDs and
the infiltration of seven immune cell types. 1ereafter, we
used a Spearman correlation analysis to describe the cor-
relation between risk score and the infiltration of six im-
mune cell types as well as the correlation of SMYDs with
TMB and MSI (quantitative variables with a non-normal
distribution). To this end, we used the R package
“ggstatsplot,” and p < 0.05 was considered to indicate sta-
tistical significance.

2.6. Functional Enrichment and Protein Interaction Network
Analysis of SMYDs and Correlated Genes in GC. GEPIA2
(http://gepia2.cancer-pku.cn/#index) is a valuable resource
for gene expression analysis of tumor and normal tissue
samples from TCGA and GTEx databases. 1e website
provides customizable functions, such as tumor/normal
gene differential expression analysis, analysis based on
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Table 1: Baseline data of patients with gastric cancer (GC).

Characteristics GC patients

Status Alive 228
Dead 147

Age Mean (SD) 65.8 (10.7)
Median [min, max] 67 [35, 90]

Gender Female 134
Male 241

Race

Asian 74
Black 11

Islander 1
White 238

pT stage

T1 5
T1a 2
T1b 12
T2 58
T2a 9
T2b 13
T3 168
T4 30
T4a 46
T4b 24
TX 8

pN stage

N0 111
N1 97
N2 75
N3 26
N3a 42
N3b 6
NX 16

pM stage
M0 330
M1 25
MX 20

pTNM stage

I 2
IA 14
IB 37
II 27
IIA 35
IIB 49
III 3
IIIA 60
IIIB 52
IIIC 35
IV 38

Grade

G1 10
G2 137
G3 219
GX 9

New tumor event type
Metastasis 54
Primary 3

Recurrence 29

Radiation therapy Non-radiation 145
Radiation 44

History of neoadjuvant treatment No neoadjuvant treatment 375

1erapy type

Ancillary: chemotherapy 32
Chemotherapy 128
Chemotherapy 1

Chemotherapy: other 1
Chemotherapy: targeted molecular therapy 1

1e measurement data are displayed as mean± SD. An unpaired t-test was used for statistical analysis. 1e association between GC patients and clinical
characteristic variables was analyzed using the Pearson chi-square test or Fisher’s exact test.
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cancer type or pathological stage, patient survival analysis,
similar gene detection, correlation analysis, and di-
mensionality reduction analysis [28]. We used the Corre-
lation Analysis module in GEPIA2 to identify genes with an
expression patter similar to that of SMYDs. 1is module
searches for genes whose expression patterns are similar to
that of another gene or signature in various cancer types.

Metascape (http://metascape.org) is an open, user-
friendly, and well-maintained gene list analysis tool that
integrates more than 40 types of biological information
databases for gene annotation and analysis, ultimately
providing a rather unique platform for protein-protein in-
teraction (PPI) network analysis. We used Metascape to
annotate and enrich SMYDs and 100 genes similar in terms
of expression to SMYDs [29]. We subjected genes to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses using Metascape.
Enriched terms with min overlap� 3, p value cutoff <0.01,
and min enrichment >3 were considered statistically sig-
nificant. To further define the relationship between terms,
a subset of enriched terms was selected and presented as
a network graph, where terms with similarity >0.3 were
connected by edges. We selected the item with the best p

value from each of the 20 clusters, limiting each cluster to no
more than 15 items and a collective total of nomore than 250
items. 1e network was visualized using Cytoscape [30],
where each node represents an enriched term, by first
coloring its cluster ID and then its p value. 1e PPI network
analysis was performed using the following databases:
STRING [31], BioGrid [32], OmniPath [33], and InWeb_IM
[33]. Only STRING (physical score >0.132) and physical
interactions in BioGrid were used. Furthermore, the Mo-
lecular Complex Detection (MCODE) algorithm [34] was
applied to identify densely connected network components.

2.7. Analysis of Competing Endogenous (ce)RNA Mechanism
of SMYD Family Gene Regulation in GC. We used the
ENCORI (https://starbase.sysu.edu.cn/) [35] and TargetScan
[36] (https://www.targetscan.org/vert_80/) databases to
predict micro (mi)RNAs regulated upstream of SMYDs. We
input the prediction results in LncBase v3.0 [37] (https://
diana.e-ce.uth.gr/lncbasev3/interactions) to further identify
the long non-coding (lnc)RNAs regulated upstream of re-
liable miRNAs and then selected three most reliable
lncRNAs per miRNA sample. 1e regulatory network
comprising mRNA, miRNA, and lncRNA was constructed
using Cytoscape [30].

2.8. Immunohistochemistry (IHC). Protein expression levels
of SMYD2 in GC versus paired paracancerous tissues were
assessed using IHC. We used paraffin-embedded samples
stored in the pathology department at the Heilongjiang
Provincial Hospital affiliated to Harbin Institute of Tech-
nology. Eight GC and eight paired paracancerous tissues
were acquired, the latter of which were defined as tissues
located at least 5 cm away from the edge of the tumor.
Sections were incubated with an anti-SMYD2 antibody
(AB_10616551, 1 : 200) overnight at 4°C. 1e percentage of

positive cells and staining intensity under the microscope
were scored based on semiquantitative results. 1e number
of positive stained cells was determined by observing five
high-power fields (×200) and counting the percentage of
positive cells. Scores of 0, 1, 2, 3, and 4 points were assigned
when the proportions of positive cells were <5%, 5–25%,
26–50%, 51–75%, and 76–100%, respectively. Positive
staining intensity was scored as 0 points for colorless, 1 point
for pale yellow, 2 points for brownish yellow, and 3 points
for dark brownish. 1e net positive grade was obtained by
multiplying the two scores and classified as follows: 0 was
not detected, 1–4 indicated low, 5–8 indicated medium, and
9–12 indicated high [38]. All sections were independently
scored by two pathologists.

3. Results

3.1. SMYDs Are Differentially Expressed at the mRNA and
Protein Levels in GC and Normal Gastric Tissues.
Differential expression analysis was performed on TCGA
RNA-sequencing data of 375 patients with GC and 32
normal gastric tissue samples (Figure 1(a)). 1e expression
of SMYD1 was significantly lower, while that of SMYD2/3/4/
5 was significantly higher in GC tissues compared with that
in normal gastric tissues (p < 0.001).

1e differential analysis of SMYD protein levels was
performed using HPA data (Figure 1(b)). SMYD1 was not
expressed in GC but showed low expression in normal
gastric tissues. SMYD4 was moderately expressed in GC and
showed low expression in normal gastric tissues. SMYD5
was highly expressed in GC but not expressed in normal
gastric tissues, consistent with SMYD1/4/5 mRNA expres-
sion. SMYD2 exhibited low expression in GC and moderate
expression in normal gastric tissues. SMYD3 also showed
low expression in GC but high expression in normal gastric
tissues. 1is result was not consistent with that of SMYD2
and SMYD3 mRNA expression. In conclusion, SMYD1/2/3
protein levels were lower and SMYD4/5 levels were relatively
higher in GC than in normal tissues.

Immunohistochemical representative images of three
pairs revealed moderate SMYD2 expression in GC samples
and low expression in paired paracancerous tissues
(Figure 1(c)). 1e other five pairs showed higher SMYD2
expression in GC samples than in the paired paracancerous
tissues, except for sample 5 (Supplementary File 1).

3.2. Expression of SMYDs Is Significantly Correlated with OS
andPFS inPatientswithGC. We conducted a Kaplan–Meier
survival analysis based on SMYD levels in patients with GC.
SMYD1/2/4/5, but not SMYD3, was significantly associated
with OS, which was shorter in the high expression groups
(SMYD1 :HR 1.73 [1.38–2.15], p � 1.2e − 06; SMYD2 :HR
1.98 [1.64–2.38], p � 2.6e − 13; SMYD3 :HR 1.19
[0.98–1.44], p � 0.072; SMYD4 :HR 1.27 [1.02–1.57], p �

0.032; SMYD5 :HR 1.82 [1.51–2.21], p � 3.1e − 10). Further,
SMYD1/2/3/5, but not SMYD4, was significantly associated
with PFS, which was shorter in the high expression groups
(SMYD1 :HR 1.65 [1.29–2.12], p � 6.1e − 05; SMYD2 :HR
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Figure 1: Continued.
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2.04 [1.65–2.52], p � 1.9e − 11; SMYD3 :HR 1.26
[1.02–1.56], p � 0.035; SMYD4 :HR 0.84 [0.65–1.08], p �

0.18; SMYD5 :HR 1.94 [1.55–2.42], p � 2.3e − 09)
(Figure 2). Taken together, elevated SMYD levels are largely
associated with worse GC prognosis.

3.3. Signature-Based Prognostic Model Shows =at SMYDs
HavePotentialPrognosticValue inGC. 1eRNA-sequencing
and survival data of 375 patients with GC obtained from
TCGA were analyzed. 1e corresponding optimal risk score
was determined via LASSO regression (Figures 3(a)–3(c))),
using the following formula: risk score� (0.0593)
× SMYD1+ (0.2556)× SMYD3+ (−0.3325)× SMYD4. 1e
patients were divided into high and low-risk groups based on
median risk score. OS in the high-risk group was significantly
shorter than that in the low-risk group (p � 0.008)
(Figure 3(d)). 1e prognostic signature consisted of SMYD1/
3/4 (Figure 3(e)), and the ROC curves of 1 and 3-year survival
time had areas under the curve of 0.636 and 0.627, re-
spectively. 1ese results suggest that the model can reliably
predict patient survival (Figure 3(f)).

3.4. SMYD-BasedNomogramModel Shows=atSMYDsHave
Potential Prognostic Value in GC. SMYD mRNA expression
profiles were combined with age, gender, pTNM stage, and
new tumor event type characteristics in patients with GC.
Univariate and multivariate analyses revealed that SMYD3
mRNA expression, age, and pTNM stage were independent
prognostic risk factors (Figures 4(a) and 4(b))). 1erefore,
we used these factors to construct a nomogram model for

predicting 1 and 3-year survival (C-index� 0.653, p < 0.001
) (Figure 4(c)). 1e calibration curve confirmed that our
nomogram model has prognostic potential (Figure 4(d)).

3.5. SMYD Expression Is Closely Related to Immune Cell In-
filtration, TMB, and MSI. 1e EPIC algorithm was used to
analyze TCGA RNA-sequencing data of GC patients.
SMYD1 expression was positively correlated with unchar-
acterized cells and negatively correlated with CD4+T and
endothelial cells. SMYD2 expression was significantly neg-
atively correlated with CD8+ Tcells but positively correlated
with endothelial and B cells. SMYD3 expression was posi-
tively correlated with CD4+T and endothelial cells. SMYD4
expression was positively correlated with uncharacterized
cells but negatively correlated with CD8+T, CD4+T, endo-
thelial, and B cells. SMYD5 expression was negatively cor-
related with uncharacterized cells but positively correlated
with macrophages and CD4+T, endothelial, and B cells
(Figure 5(a)). 1e expression of SMYDs was closely asso-
ciated with the levels of most immune cell types, both
positively and negatively, indicating their important role in
regulating GC immune microenvironment. In addition,
correlation analysis between risk score and immune cell
infiltration revealed a negative correlation with CD4+T,
CD8+T, neutrophil, and myeloid dendritic cells (p � 0.008,
0.003, 3.12e− 04, and 0.002, respectively) (Figure 5(b)).
1ese results show that our prognostic signature is closely
related to immune cell infiltration.

Correlation analysis between SMYDs and TMB scores
revealed that TMB was significantly negatively correlated
with SMYD1 expression but positively correlated with

Paracancerous Cancer

staining: Low staining: Medium

Sample 2
SMYD2

Paracancerous Cancer

staining: Low staining: Medium

Sample 1
SMYD2

Paracancerous Cancer

staining: Low staining: Medium
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SMYD2

(c)

Figure 1: Analysis of mRNA and protein expression levels of SMYDs in gastric cancer and normal gastric tissues. (a) mRNA expression
distribution of SMYDs in gastric cancer and normal gastric tissues. 1e x-axis represents the gene name and y-axis represents the mRNA
expression distribution of the related gene. Red represents the normal gastric tissue group and blue represents the gastric cancer group
(∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001) (TCGA). (b) Representative immunohistochemical images (HPA) of SMYDs in gastric cancer
and normal gastric tissues. (c) Representative immunohistochemical images of SMYD2 in gastric cancer and paired paracancerous tissues
(tissue specimen validation). Scale bar, 50 μm; magnification, ×200.
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Figure 2: Prognostic value of the mRNA expression levels of SMYDs in gastric cancer patients (Kaplan–Meier Plotter). 1e relationships
between high expression (red) and low expression (black) of each SMYDmRNA and OS and PFS are presented. Statistical significance is set
at p < 0.05.

0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.2

0.0

0.2

L1 Norm

Co
ef

fic
ie

nt
s

0 3 3 3 3 5

SMYD1
SMYD2

SMYD3

SMYD4

SMYD5

(a)

−6 −5 −4 −3

11.7

11.9

12.1

Log (λ)

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e 5 5 5 4 4 3 3 3 3 3 3 3 3 3 2

(b)

−1.0

−0.5

0.0

Ri
sk

sc
or

e

Risk Type

High_risk

Low_risk

(c)

Median time:2.1 and 3.8

Log−rank P = 0.00849
HR (High groups) = 1.558

 95%CI (1.12, 2.168)

0.00

0.25

0.50

0.75

1.00

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

High groups

Low groups

185 28 7 2 0
185 42 7 2 1Low groups

High groups

0 2.5 5 7.5 10

Time (years)

(d)

Figure 3: Continued.

Journal of Oncology 7



SMYD2/5 expression (p � 0.004, 2.21e− 12, and 1e− 05,
respectively) (Figure 5(c)). Furthermore, MSI was signifi-
cantly positively correlated with SMYD2/5 expression
(p � 2.36e − 07 and 0.001, respectively) (Figure 5(d)), in-
dicating that both TMB andMSI are closely related to SMYD
expression in GC.

3.6. Functional Enrichment and PPI Network Analysis of
SMYDs and Similar Genes in GC. Genes correlated to
SMYDs based on expression were obtained via the Corre-
lation Analysis module in GEPIA. 1e top 20 most corre-
lated genes per SMYD family member were selected,
resulting in a total of 100 genes (Table 2). We subjected
SMYDs and related genes to GO and KEGG enrichment
analyses (Figures 6(a)–6(c))) and found that most genes
were mainly involved in non-membrane-bounded organelle
assembly, DNA biosynthesis, cellular responses to DNA
damage stimuli, chromosome segregation, mRNA meta-
bolism, chromatin remodeling, ncRNA metabolism, nega-
tive regulation of cell cycle, positive regulation of mRNA
metabolism, and protein localization to the nucleus. 1e
enriched molecular functions included participation in
histone-lysineN-methyltransferase activity, structural com-
ponents of muscle, catalytic activity on RNA, and chromatin

binding. 1e enriched cellular component terms included
ribonucleoprotein complexes, cell division sites, sarco-
lemma, nuclear chromosomes, chromosomal regions, and
transferase complexes (Table 3). To better understand the
mechanisms underlying the relationship between SMYDs
and GC, we performed a PPI network analysis. 1e sub-
stantially enriched terms included spliceosome, mRNA
treatment, histone-lysine N-methyltransferase activity, his-
tone methyltransferase activity, and protein lysine N-
methyltransferase activity (Figures 6(d) and 6(e)).

3.7. Analysis of the ceRNA Network of SMYDs in GC. A total
of 191 reliable miRNAs, which could regulate five mRNAs,
were identified. LncBase was used to predict the lncRNAs
regulated upstream of reliable miRNAs; we selected the top
three most reliable lncRNAs per miRNA. Finally, 466 reli-
able lncRNAs were obtained, and the mRNA-miRNA-
lncRNA regulatory network was constructed (Figure 7).

4. Discussion

While SMYDs are known to play important roles in tumor
formation, research on their prognostic value and un-
derlying mechanisms in GC has been scarce. 1erefore,

0.0

2.5

5.0

7.5

10.0
Ti

m
e

Status

Alive

Dead

SMYD1

SMYD3

SMYD4

−2−1 0 1 2z−score of expression

(e)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

1−Years, AUC=0.636, 95%CI (0.575−0.698)

3−Years, AUC=0.627, 95%CI (0.55−0.704)

(f )

Figure 3: Construction of the SMYD signature prognostic model in gastric cancer. (a) 1e coefficients of the selected features are
represented by the lambda parameter, the x-axis represents the value of the independent variable lambda, and the y-axis represents the
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through public data analysis, we comprehensively explored
differences in the expression of SMYD family members and
their prognostic merit.

SMYDs have unique tissue specificity and act on both
histone and non-histone targets to regulate gene expression
and protein activity, with evidence of their involvement in
cancer increasing every year [8]. 1e SMYD1 methyl-
transferase is specifically expressed in cardiac and skeletal
muscle, where it methylates lysine in histone H3, a modifi-
cation that often occurs at positions K4, K9, K27, K36, and
K79. 1e methylation of histone H4 is mostly observed at
K20 [8]. SMYD1 plays a key role in the regulation of em-
bryonic development, cell differentiation, and car-
diomyocyte specification [39]. In addition, overexpression of
SMYD1 is a high-risk factor in patients with GC [40].

SMYD2 is widely distributed across normal and tumor
tissues and, like SMYD1, is involved in cardiac and skeletal
muscle cell differentiation andmaturation [41]. SMYD2 plays
an important role in various cancers; for example, it increases
zeste homolog 2 methylation and promotes epithelial-to-
mesenchymal transition (EMT) in breast cancer cells [42].
SMYD2 regulates the occurrence and metastasis of RPS7-

mediated lung adenocarcinoma, representing itself as a po-
tential prognostic biomarker and therapeutic target [43].
High SMYD2 expression in cervical and liver cancer pro-
motes the proliferation of cancer cells and is considered a risk
factor for prognosis [10, 44]. In addition, SMYD2 knockdown
in seven GC cell lines inhibited the proliferation, migration,
and invasion of SMYD2-overexpressing cells in a manner
independent of TP53mutation. Analysis of primary GC tissue
specimens revealed that SMYD2 overexpression was posi-
tively correlated with tumor size, invasion, lymph node
metastasis, and recurrence rate [45]. Overexpressed SMYD2
can methylate β-catenin and maintain its stability, thereby
activating the Wnt/β-catenin signaling pathway to promote
GC cell proliferation and metastasis via the EMT [46]. 1e
mechanism of SMYD2-mediated GC metastasis is relatively
clear, though identifying the upstream regulatory mechanism
is the focus of our next study.

SMYD3 is highly expressed in human platelets and testes
[47]. Its roles in cancer include promoting cell proliferation,
cell cycle alteration, EMT, increasing telomerase activity,
and promoting cell immortalization [48–51]. SMYD3
mRNA and protein expression levels were significantly
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Journal of Oncology 9



increased in GC tissues and cell lines relative to that in
healthy tissues, with high SMYD3 expression being signif-
icantly associated with larger tumor size, lymph node me-
tastasis, and later TNM staging. Further, patients with high
SMYD3 expression appear to have a significantly lower 5-
year survival rate than those exhibiting low expression [52].
1e methylation level of SMYD3 promoter is significantly

lower in colorectal cancer tissues than in adjacent normal
tissues. Specifically, SMYD3 promoter methylation is sig-
nificantly decreased in patients with lymph node metastasis
and stage III/IV disease [53]. Furthermore, SMYD3 is sig-
nificantly associated with the proliferation, invasion, cell
cycle regulation, prognosis, and recurrence of malignant
tumors, such as liver, breast, and prostate cancers [54–58].
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Figure 5: Correlation analysis between SMYDs and infiltration of seven types of immune cells. (a) 1e x-axis in the heat map represents
SMYDs while the y-axis represents seven types of immune cells, where in red represents a positive correlation and blue represents a negative
correlation. Correlation is represented by the color intensity: darker the color, the stronger the correlation between them. 1e asterisk
represents the degree of statistical significance (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001). (b) Correlation analysis between the signature
model score and immune cell expression score. In the figure, the x-axis represents the risk score distribution, y-axis represents the immune
score distribution, right density curve represents the immune score distribution trend, upper density curve represents the risk score
distribution trend, and the upper value represents the correlation p value, correlation coefficient, and correlation calculation method.
(c) Correlation analysis of SMYDs and TMB scores. In the figure, the x-axis represents the expression level distribution of SMYDs, the y-axis
represents the TMB score distribution, the right density curve represents the TMB score distribution trend, the upper density curve
represents the expression distribution trend of SMYDs, and the upper value represents the correlation p value, correlation coefficient, and
correlation calculation method. (d) Correlation analysis of SMYDs and MSI scores. In the figure, the x-axis represents the expression
distribution of SMYDs, y-axis represents the MSI score distribution, right density curve represents the MSI score distribution trend, upper
density curve represents the SMYD expression distribution trend, and the upper value represents the correlation p value, correlation
coefficient, and correlation calculation method.
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Table 2: Genes with similar expression patterns to SMYD family members (GEPIA).

Similar
genes (top 20)

SMYD1
POPDC2, MORN, SYNM, PSD, HAND2-AS1, ACTG2, LINC01573, TPM1,

ARHGEF26, CNN1, MYLK, CAP2, LDB3, PGM5, CASQ1, MYH11, PDZRN4,
ANGPTL1, CSRP1, DES

SMYD2 INTS7, C1orf112, CENPF, KIF14, UBE2T, DTL, RRP15, UCHL5, HJURP, NEK2,
RCN2, TSEN15, CCT3, EXO1, ILF2, RACGAP1, RBBP5, RBMX, TBCE, USP39

SMYD3
ACBD6, NVL, H3F3A, SRP9, NUP133, IPO9, INTS7, PIGC, SERPINA11, CENPF,
GGPS1, PEG10, RFWD2, RP11-358L22.3, MAP10, PAH, POLR3F, SPRTN, TBCE,

TRMT6

SMYD4
KIAA0753, RPA1, USP22, AKAP10, ANKFY1, THRAP3, SMCR8, RABEP1, ZNF490,
AGO3, ZNF445, ZNF740, NR2C2, LATS1, DDX6, NSD1, CELF1, NRF1, PRPF8,

ATF7IP

SMYD5 RTKN, CAD, GTF3C2, PNPT1, CIAO1, PNO1, SMPD4, NOL10, MEN1, ZBTB9,
TTI1, PPM1G, CPSF3, GPN1, EIF2B4, E2F6, MEMO1, SNRNP200, ACTR5, HTRA2
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Figure 6: Continued.
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Table 3: GO and KEGG functional enrichment analysis results of SMYDs and similar genes in gastric cancer (Metascape).

GO Category Description Count % Log10 (P) Log10 (q)
GO:0140694 GO biological processes Non-membrane-bounded organelle assembly 12 11.88 −8.13 −3.99
GO:0018024 GO molecular functions Histone-lysine N-methyltransferase activity 6 5.94 −8.06 −3.99
GO:0071897 GO biological processes DNA biosynthetic process 8 7.92 −6.7 −3.33
GO:1990904 GO cellular components Ribonucleoprotein complex 13 12.87 −5.98 −2.87
GO:0032153 GO cellular components Cell division site 5 4.95 −5.36 −2.39
GO:0042383 GO cellular components Sarcolemma 6 5.94 −5.14 −2.21
GO:0008307 GO molecular functions Structural constituent of muscle 4 3.96 −4.92 −2.06
GO:0006974 GO biological processes Cellular response to DNA damage stimulus 12 11.88 −4.83 −2
GO:0007059 GO biological processes Chromosome segregation 8 7.92 −4.64 −1.83
GO:0016071 GO biological processes mRNA metabolic process 11 10.89 −4.61 −1.81
GO:0000228 GO cellular components Nuclear chromosome 6 5.94 −3.92 −1.25
GO:0098687 GO cellular components Chromosomal region 7 6.93 −3.77 −1.15
GO:1990234 GO cellular components Transferase complex 10 9.9 −3.67 −1.09
GO:0006338 GO biological processes Chromatin remodeling 6 5.94 −3.66 −1.09
GO:0034660 GO biological processes ncRNA metabolic process 8 7.92 −3.63 −1.07
GO:0045786 GO biological processes Negative regulation of cell cycle 7 6.93 −3.5 −0.97
GO:0140098 GO molecular functions Catalytic activity, acting on RNA 7 6.93 −3.41 −0.92
GO:1903313 GO biological processes Positive regulation of mRNA metabolic process 4 3.96 −3.17 −0.73
GO:0003682 GO molecular functions Chromatin binding 8 7.92 −3.17 −0.73
GO:0034504 GO biological processes Protein localization to nucleus 5 4.95 −2.53 −0.29
1e table includes the top 20 clusters and their representative enrichment terms (one per cluster). “Count” refers to the number of genes in the provided list
that have membership within the given ontology term. “%” is the percentage of all genes provided found within a given ontology term (only input genes
annotated with at least one ontology term are included in the calculation). “Log10(P)” is the p value based on Log10. “Log10(q)” is a multiple-test adjusted p

value based on Log10.
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Figure 6: Enrichment analysis of SMYDs and similar gene functions in gastric cancer patients (Metascape). (a) 1e heat map of GO and
KEGG enrichment analysis of SMYDs and 100 genes related to them is colored based on the p value. (b, (c) Term-enriched networks:
clusters were colored based on cluster IDs, where nodes sharing the same cluster ID are often close to each other, colored based on p value,
and terms containing more genes tend to have more significant p values. (d, (e) Associated protein interaction networks and MCODE
components in SMYDs; the pathway and process enrichment analyses were independently applied to each MCODE component, and the
three descriptions with the best p values were retained as functional descriptions of the corresponding components. 1e corresponding
network diagram is shown in the table below.
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1e results of the present study showed that, in addition
to the significantly low expression of SMYD1 mRNA,
SMYD2/3/4/5 mRNAs were significantly overexpressed in
GC tissues. 1e protein expression of SMYD1/2/3 in GC
tissues was lower than that in normal gastric tissues, while
that of SMYD4/5 was higher. Meanwhile, SMYD2/3 protein
expression exhibited a trend contrasting that of mRNA
expression, possibly because of the unpaired nature of the
GC and normal gastric tissue samples in the HPA database
or the existence of post-transcriptional regulatory mecha-
nisms. 1erefore, IHC was used to verify the protein ex-
pression level of SMYD2 in this study. 1e results showed
that this level was higher in GC tissues than in adjacent
normal tissues. Survival analysis revealed that, in general,
SMYDs were closely related to OS and PFS in patients with
GC, wherein higher expression was associated with worse
prognosis. To date, there are relatively few studies on the
function of SMYD4 and SMYD5 in cancer, which necessitate

further research.1e few existing studies have suggested that
SMYD4 acts as a tumor suppressor in breast cancer by
locally inhibiting platelet growth factor receptor [59], while
miR-1307-3p can promote tumor cell proliferation by tar-
geting SMYD4 transcripts [18]. In colon and lung cancer
cells, SMYD5 maintains chromosomal integrity by regu-
lating heterochromatin and repressing endogenous re-
petitive DNA elements during cell differentiation [60].
SMYD5 is differentially expressed in GC, indicating that it is
a potential marker for diagnosis and prognosis [19, 20]. By
constructing the SMYD-based signature and nomogram
model, we confirmed that SMYDs are closely related to GC
prognosis and are thus potential prognostic markers.

A close relationship has been described between SMYDs
and immune infiltration. SMYD2 is a novel negative reg-
ulator of macrophage activation andM1 polarization, whose
upregulation inhibits IL-6 and TNF, thereby suppressing the
expression of cell surface molecules such as MHC-II and
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Figure 7: Regulatory network of SMYD ceRNA mechanism in gastric cancer.
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costimulatory factors [61]. Further, H4K20me3 methyla-
tion/demethylation catalyzed by SMAD5 and PHF2 regu-
lates the immune balance in vivo, which is essential for
inflammatory response regulation [62]. In the present study,
we used the EPIC algorithm to analyze TCGA tran-
scriptomic data, which revealed that the expression of
SMYDs was closely related to most of immune cells, through
which they may regulate the GC immune microenviron-
ment. In addition, a close relationship was observed between
the SMYD signature model score and immune cell in-
filtration, further supporting evidence of a close relationship
between SMYDs and immune infiltration. Although TMB
andMSI are established as predictive biomarkers of immune
checkpoint inhibitor response [63], their association with
various potential therapeutic targets and prognostic markers
remains unclear. We analyzed the correlation of SMYD
expression with TMB and MSI in GC for the first time,
confirming that TMB was significantly negatively correlated
with SMYD1, while SMYD2/5 was significantly positively
correlated with both TMB and MSI. GO and KEGG en-
richment analyses and MCODE component analysis
revealed that the biological functions of SMYDs and related
genes were significantly related to spliceosome, mRNA
treatment, histone-lysine N-methyltransferase activity, his-
tone methyltransferase activity, and protein lysine N-
methyltransferase activity. After analyzing the ceRNA
mechanism of SMYDs, we found that chr22-38_28785274-
29006793.1, XLOC_002309, CTD-2008N3.1, and other
lncRNAs could modulate SMYD expression by regulating
multiple miRNAs. Of these, chr22-38_28785274-29006793.1
might be of the greatest importance, as it is significantly
associated with tumor-infiltrating CD4+ and CD8+ Tcells in
invasive breast and colon cancers [64, 65]. 1e regulatory
mechanism, however, warrants further validation.

1is study explored the differential expression of SMYDs
in GC and normal gastric tissues, verifying the protein levels of
SMYD2. Using various databases, we comprehensively ana-
lyzed the relationships between SMYDs and immune in-
filtration, TMB, and MSI, in addition to the associated ceRNA
mechanisms in GC for the first time.1is study was conducted
to introduce a more accurate prognostic model for GC.
However, our study also has some limitations. For example, we
only verified the protein expression of SMYD2 in patient
tissues, and the sample size was relatively small. In conclusion,
our study shows that SMYDs are differentially expressed inGC,
indicating their potential prognostic value, and that they are
closely related to immune infiltration, TMB, and MSI.
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