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Background. Hypoxia is regarded as a key factor in promoting the occurrence and development of ovarian cancer. In ovarian
cancer, hypoxia promotes cell proliferation, epithelial tomesenchymal transformation, invasion, andmetastasis. Long non-coding
RNAs (lncRNAs) are extensively involved in the regulation of many cellular mechanisms, i.e., gene expression, cell growth, and
cell cycle.Materials and Methods. In our study, a hypoxia-related lncRNA prediction model was established by applying LASSO-
penalized Cox regression analysis in public databases. Patients with ovarian cancer were divided into two groups based on the
median risk score. Te survival rate was analyzed in the Cancer Genome Atlas (TCGA) and International Cancer Genome
Consortium (ICGC) datasets, and the mechanisms were investigated. Results. Trough the prognostic analysis of DElncRNAs
(diferentially expressed long non-coding RNAs), a total of 5 lncRNAs were found to be closely associated with OS (overall
survival) in ovarian cancer patients. It was evaluated through Kaplan–Meier analysis that low-risk patients can live longer than
high-risk patients (TCGA: p � 1.302e − 04; ICGC: 1.501e− 03). Te distribution of risk scores and OS status revealed that higher
risk score will lead to lower OS. It was evaluated that low-risk group had higher immune score (p � 0.0064) and lower stromal
score (p � 0.00023). Conclusion. It was concluded that a hypoxia-related lncRNA model can be used to predict the prognosis of
ovarian cancer. Our designed model is more accurate in terms of age, grade, and stage when predicting the overall survival of the
patients of ovarian cancer.

1. Introduction

Ovarian cancer is a type of malignant tumor that cannot be
easily detected in the early stage and has a poor prognosis.
Tere are many risk factors associated with its occurrence
and development, i.e., family history of ovarian or breast
cancer, obesity (BMI of 30 and above), genetic mutations,
delayed menopause, fertility treatments, polycystic ovary
syndrome, and smoking. Te mortality rate of this type of
tumor is ranked ffth among other female malignant tumors
[1]. Due to the concealment of the incidence of ovarian
cancer, more than half of the patients lost the opportunity
for early diagnosis, which seriously afects its prognosis [2].
Surgery plus chemotherapy is a classic treatment for ovarian
cancer. First-line maintenance therapy, including bev-
acizumab or PARP inhibitors, can prolong progression-free

survival (PFS), which is diferent fromOS [3, 4].Terefore, it
is necessary to explore more treatments to prolong the
lifespan of ovarian cancer patients. At present, immuno-
therapy is the new major therapeutic tool of ovarian cancer.
However, the efect of single immunotherapy for ovarian
cancer is not obvious [5, 6].

When malignant tumors increase in their size, tumors
gradually form a hypoxia environment, due to which the
cancer cells undergo some adaptive changes, such as pro-
liferation and angiogenesis [7]. Te direct reaction of
molecules to reverse hypoxia is to stabilize the HIFs. Oth-
erwise, HIF can enhance cell viability and increase angio-
genesis and cell invasion. HIF can help in the survival of
cancer cells that can undergo apoptosis [8, 9]. Hypoxia can
also alter the immune microenvironment of malignant tu-
mors [10]. In ovarian cancer, hypoxia promotes cell
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proliferation [11], epithelial to mesenchymal trans-
formation, invasion, and metastasis [12]. Te aforemen-
tioned phenomenon may lead to higher mortality of
patients [13].

lncRNAs consist of more than 200 nucleotides and can
interact with various kinds of biomolecules such as DNA,
RNA, and proteins, which have attracted increasing atten-
tion. lncRNAs are extensively involved in the regulation of
many important cellular processes, such as gene expression,
dosage compensation, and regulation of the cell growth and
cell cycle [14]. lncRNAs may play their role in the nucleus as
well as in the cytoplasm.Te lncRNAs can act as modulators
to afect the protein-coding gene expression by regulating
the transcriptional and post-transcriptional processes. As
there is diference in expression of IncRNAs in various
tissues, some of them have been identifed for their impli-
cation in the pathogenesis of the diseases, such as tumor,
neurological, cardiovascular, and orthopedic disease. Recent
evidence suggests that lncRNAs precipitated the malignant
phenotype of cancer through genomic or transcriptional
changes. In addition to these changes, changing the immune
environment may also promote the malignant phenotype
[15, 16]. However, a study on hypoxia-related lncRNA in
ovarian cancer is still need of the hour.Terefore, a hypoxia-
related lncRNA model was established in our study. Tis
model can be applied to pre-calculate the prognosis of
ovarian cancer. More importantly, the immune status can be
predicted by this model, which can act as a guiding tool for
better clinical treatment.

2. Materials and Methods

2.1. Data Acquisition. TCGA database (TCGA-OV, 379
samples) (https://tcga-data.nci.nih.gov/tcga/) and the ICGC
portal (OV-AU, 81 samples) (https://dcc.icgc.org) were used
to extract the RNA sequence data. At the same time, the
corresponding clinical features were also downloaded. One
of the inclusion criteria of the study was that the patients
must survive more than 30 days. Te gene expression
profles of normal ovarian tissue as a controlled study were
downloaded from the GTEx database (88 samples).

2.2. Obtention of Genes and lncRNAs Tat Are Related to
Hypoxia. We downloaded 200 genes related to hypoxia
(Table S1 of GSEA). In TCGA database, using Pearson
correlation (|R|> 0.4, p< 0.001), 1330 lncRNAs that have
a relationship with hypoxia were selected. Ten, the dif-
ference analysis was performed by a limma R package.
To screen the hypoxia-related diferentially expressed
lncRNAs (DElncRNAs), we set the standard as (FDR)
< 0.05 and |log2FC|≥ 1.

2.3. Risk Scoring of Candidate Genes for Hypoxia-Related
lncRNAs. To identify candidate genes for hypoxia-related
lncRNAs from TCGA cohort, we analyzed OS by univariate
Cox analysis. Firstly, we built the prognostic model using
LASSO-penalized Cox regression analysis. Te risk score
was calculated using the following formula.

RiskScore � (CoeCCLlncRNACC

× expressCConoCClncRNACC).
(1)

Ovarian cancer patients were then categorized into two
groups on the basis of median of TCGA cohort risk scores
and named as high or low risk. PCA was performed with the
“stats” R packages to explore the distribution of the groups.
OS of the two groups was analyzed by Kaplan–Meier
analysis. ROC curves with “survival ROC” R package were
plotted for 1/3/5 years. Cox regression was utilized to predict
the independent values. Te above analyses were carried out
simultaneously in TCGA and ICGC datasets. After that, the
nomogram including risk, grade, stage, and age was set up by
the “rms” R package. Finally, we plotted the correction curve
to evaluate the diference between the predicted values and
actual values.

2.4. GSEA. GSEA between the two groups was performed in
the gene set with the parameter kegg.v7.4.symbols.gmt. To
detect the signifcantly enriched pathways, the criterion was
p< 0.05 and FDR< 0.05.

2.5. ImmunityAnalysis. Te following methods were used to
calculate the immune penetration status between TCGA
project samples, including XCell, TIMER, QUANTISEQ,
EPIC, CiberSort-ABS, and CiberSort. All these methods are
in silico techniques that were used to integrate the advan-
tages of gene enrichment. Tese are deconvolution tech-
niques to reanalyze the data in comprehensive way [17, 18].
Meanwhile, we compared the TME scores between the two
risk groups by the “ggpubr” R package.

2.6.Division ofClusters byRiskModel. Using the “Consensus
Cluster Plus” R package, two molecular subgroups were
grouped based on the prognostic model in ovarian cancer
patients. Kaplan–Meier survival analysis, PCA, and tSNE
were performed. In addition, analysis of immune-related
indexes including immune infltration cells and TME scores
was carried out between the two molecular subgroups.

3. Results

3.1.Hypoxia-Related lncRNAs inOvarianCancer. In ovarian
cancer, we identifed 1330 hypoxia-related lncRNAs. Te
network of the hypoxia-related genes and lncRNAs is pre-
sented in Figure 1(a). Tere were a total of 145 hypoxia-
related DElncRNAs, of which 111 lncRNAs were down-
regulated, and 34 were upregulated (Table S2). Trough the
prognostic analysis of DElncRNAs, a total of 5 lncRNAs
were found closely associated with OS of ovarian cancer
patients, serving as candidate lncRNAs for modeling
(Figure 1(b)).

3.2.EvaluationofPrognosticRoleofHypoxia-Related lncRNAs
by Risk Model. We constructed a risk model including 5
lncRNAs (DNM3OS, AC073046.1, AC083799.1, C6orf223, and
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HCP5) in TCGA cohort. Te formula we used to calculate the
risk score is risk score�DNM3OS× 0.152+AC073046.1× 0.126-
AC083799.1× 0.184-C6orf223× 0.097-HCP5× 0.082. After cal-
culations, we evaluated revisions to the risk models established in
TCGA and ICGC databases. Kaplan–Meier analysis showed that
low-risk patients can live longer than high-risk patients (TCGA:
p � 1.302e − 04; ICGC: 1.501e− 03) (Figures 2(a) and 2(b)). At
the same time, we analyzed the OS time of patients in diferent
clinical groups in TCGA dataset. Tere was no signifcant dif-
ference in OS time when patients were diagnosed with stage I-II
or grade 1-2 (p � 0.765, 0.651). But, signifcant diferences were
observed in OS time for the stage III-IV group (p< 0.001), G3
group (p< 0.001), under 60 years (p � 0.033), and over 60 years
(p � 0.003) (Figures 2(c)–2(h)).

In ROC curve analysis, the one-year AUC in TCGA
cohort was 0.652, while the 3- and 5-year AUCs were 0.641
and 0.613, respectively (Figures 3(a) and 3(c)). Te value
of AUC in the ICGC cohort was calculated as 0.707, 0.626,
and 0.626, respectively (Figures 3(b) and 3(d)). We also
found that the model was more accurate in terms of age,
grade, and stage when predicting the OS. Te distribution
of risk scores and OS status indicated that a higher risk
score will lead to a lower OS (Figures 3(e)–3(h)).

When univariate Cox regression analysis was per-
formed, core risk showed its association to OS. Te HR
value of TCGA cohort was 2.714 (95% CI � 1.652–4.458,
p> 0.001). For the ICGC cohort, the HR value was 3.248
(95% CI � 1.189–8.869), and the p value was 0.022. (Fig-
ures 4(a) and 4(b)). Diferent from univariate analysis,
multivariate analysis demonstrated an independent role of
the risk score in predicting OS in the both cohorts. For
TCGA cohort, the HR value was 2.574, 95% CI was 1.560

to 4.248, and the p value was 0.001. For the ICGC cohort,
the HR value was 3.404 (95% CI � 1.123–10.324, p � 0.030)
(Figures 4(c) and 4(d)). PCA verifed that the predictive
model could divide ovarian cancer patients into two
diferent groups in two datasets (Figures 4(e) and 4(f )).

Finally, we used other factors including risk, grade, age,
and stage to predict 1-/3-/5-year OS (Figure 5(a)). Cali-
bration chart was used to judge whether the result of the
nomogram is accurate (Figure 5(b)).

3.3. Cancer-Related Pathways Are Enriched. In the high-risk
group, the pathways enriched in cancer-related pathways
were adherens junction, TGF-beta, Wnt, Notch, GnRH
signaling pathway, and glycerophospholipid metabolism. In
the low-risk group, the pathways were enriched in oxidative
phosphorylation, antigen processing, antigen presentation,
graft-versus-host disease, metabolism related to glutathione,
allograft rejection, and protein export (Figure 6).

3.4. Immune Scoring of Risks Groups Evaluated by GSEA.
We further analyzed the immune status of the two groups
with diferent risks in TCGA database. More M1 mac-
rophages, myeloid dendritic, activated NK, and
CD8 + T cells were detected in the low-risk group, while
fewer cancer-associated fbroblasts (CAFs) and neutro-
phils were detected in the low-risk group (Figure 7(a),
Supplementary 1). Te low-risk group had a higher im-
mune score (p � 0.0064) and a lower stromal score
(p � 0.00023). However, the ESTIMATE score did not
show signifcant diferences between the two risk groups
(Figures 7(b)–7(d)).
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Figure 1: (a) Te network of the hypoxia-related genes and lncRNAs. (b) DElncRNAs related to prognosis.
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Figure 2: Continued.
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Figure 2: Kaplan–Meier analysis in TCGA cohort (a) and ICGC cohort (b). Kaplan–Meier analysis of the OS time in diferent clinical
groups in TCGA cohort ((c, d) stage; (e, f ) grade; (g, h) age).
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3.5. Analyses Related to Molecular Subtype. Based on this
hypoxia-related lncRNAmodel, we redivided ovarian cancer
patients into two clusters (Figure 8(a)). Te OS of cluster1
patients was shorter than cluster2 patients (Figure 8(b)).
Most of the patients of cluster2 were in the low-risk group,
while most patients of cluster1 were in the high-risk group
(Figure 8(c)). PCA and tSNE2 clearly showed that patients
can be grouped as two completely various subgroups
(Figures 8(d) and 8(e)).

Cluster1 showed lower stromal score (p � 0.0071)
(Figure 9(a)), lower immune score (p � 1.2e − 14)
(Figure 9(b)), and lower ESTIMATE score (p � 7.7e − 09)
(Figure 9(c)).

Te heatmap of immune cells was drawn by using the
following methods, including TIMER, CIBERSORT,
CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,
XCELL, and EPIC. All the graphs are presented in Figure 10.

4. Discussion

Ovarian cancer is a malignant disease that cannot be cured
completely. Surgery, chemotherapy, and targeted therapy
are the most commonly used methods for its treatment

nowadays, but the prognosis remains poor [19, 20]. Many
research studies have evaluated that hypoxia-related
lncRNAs are involved in the progression of various can-
cers. Hypoxic regions are commonly found in solid tumors,
and the appearance of these regions often harms the pro-
gression of tumors and triggers tumor immunosuppression
and may afect the therapeutic response. However, the
underlying mechanism is not fully understood. In our study,
hypoxia-related lncRNA was selected as the standard to
subgroup patients with various risks. Patients in diferent
groups have diferent prognoses and diferent immune
statuses. Tis model can help the clinicians to classify and
individualize the treatment of ovarian cancer patients and
inspire researchers to gain insight into the important role of
hypoxia-related lncRNAs in ovarian cancer.

Hypoxia can change the repair mechanism of DNA [21],
promote tumorigenesis [22] andmetastasis [23, 24], and lead
to the development of cancer stem cells [25, 26], which are
resistant to chemotherapy and radiotherapy [27, 28].
Terefore, the relationship between hypoxia and cancer
needs further study, including hypoxia-related coding genes
and non-coding genes. However, it is reported that DNA
damage is not induced by hypoxia; instead this hypoxia leads

0 100 200 300

-1.5

-1.0

-0.5

0.0

Patients (increasing risk score)

Ri
sk

 sc
or

e

High risk
low Risk

(e)

0 100 200 300

0

5

10

15

Patients (increasing risk score)

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

Dead
Alive

(f )

0 20 40 60 80

-1.0

-0.5

0.0

Patients (increasing risk score)

Ri
sk

 sc
or

e

High risk

low Risk

(g)

0 20 40 60 80

0

5

10

15

Patients (increasing risk score)

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

Dead
Alive

(h)

Figure 3: (a, b) ROC curve analysis of 1/3/5 years (a) in TCGA cohort (b) in ICGC cohort, (c, d) ROC curve analysis of risk sore and other
clinicopathological features in (c) TCGA cohort, (d) ICGC cohort, (e) distribution of risk scores, (f ) survival status, in the TCGA database,
distribution of (g) risk scores, and (h) survival status in the ICGC database.
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to some genomic instabilities [21].Temodeling of hypoxia-
related lncRNA to stratify patients with malignant tumors
has been a concern by some scholars. For example, related
research has been carried out on hepatocellular cancer and
renal cell cancer [29, 30]. In our study, a prognostic model
consisting of fve lncRNA was constructed, including
DNM3OS, AC073046.1, AC083799.1, C6orf223, and HCP5.
DNM3OS was overexpressed in ovarian cancer and facili-
tated ovarian cancer progression, and its high expression
might lead to a poor prognosis [31]; the conclusion is similar
to our research. At the same time, the role of DNM3OS in
other malignant tumors has been confrmed. Tumor-
associated mesenchymal stem cells can target DNM3OS,
leading to the progression of hepatocellular cancer [32]. In
retinoblastoma, the DNM3OS-miR-134-5p-SMAD6 axis
can promote cell proliferation, migration, and the EMT
process [33]. DNM3OS can also promote tumor progression
in gastric cancer [34] and oral cancer [35]. HCP5 has been
studied in several kinds of tumors, including ovarian [36],
esophageal [37], gastric [38], and colorectal cancer [39]. It

has been demonstrated that HCP5 can target miR-525-5p/
PRC1 signaling pathway and can target the Wnt/beta-
catenin pathway [36]. Other types of lncRNAs are presented
for the frst time, through our study.

In the high-risk group, enriched Wnt, Notch, TGF-beta,
and tumor-related pathways were found. It has been
regarded as one of the leading factors of highmortality in the
high-risk group. Wnt/beta-catenin pathway played an im-
portant role in ovarian cancer cells’ carcinogenesis, stem-
ness, and resistance ability against chemotherapy [40]. Te
hyperactivation of the Wnt signaling pathway mediated
some drug resistance in ovarian cancer, such as olaparib
[41]. Te synergistic efect of Wnt and Notch signaling
pathway can promote the proliferation of cancer cells and
further increase the migration of cancer cells [42]. Studies
have shown that the Notch pathway is closely related to
angiogenesis and chemotherapy resistance of ovarian cancer
[43, 44]. Te Notch signal pathway was regarded as the
characteristic of enriched ovarian cancer stem cells induced
by hypoxia [45]. TGFβ pathway also facilitates epithelial-
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mesenchymal transition (EMT) of epithelial ovarian cancer
(EOC) [46].

Hypoxia can promote the development of malignant
tumors, including ovarian cancer. At the same time, ascites
can also induce hypoxia [47]. One reason is that the function
of anti-tumor immune cells is inhibited in a hypoxia en-
vironment [10]. Terefore, the immune environment of the
two groups was compared. More M1 macrophages, myeloid
dendritic cells, activated NK cells, and CD8+T cells were
detected in the low-risk group, while less cancer-associated
fbroblasts (CAFs) and neutrophils were detected in the low-
risk group. M1 macrophages have an anti-tumor efect,
while M2 macrophages can promote tumor [48]. M2
macrophages were also closely related to the progression of
cancer cells [49]. We found higher M1/M2 values in the low-
risk group, which did not difer from previous fndings, and
patients with higher M1/M2 values lived longer [50].

Dendritic cells can activate T cells such as CD4+ and CD8+
cells to fght tumors by presenting an antigen [51, 52]. Other
studies have shown that NK cells had abilities that could lead
to ovarian cancer cell death, and they often co-infltrate with
CD8+Tcells [53]. CD8+Tcells are quite important in anti-
tumor immunity, and further, we can predict patients’ OS
[54]. In ovarian cancer, CAF may lead to deterioration and
drug resistance of the ovarian cancer [55]. Regarding the
former research, ovarian tumors are generally regarded as
cold tumors, which pose a challenge to the treatment. Te
immune activity of patients in the low-risk group tends to be
“hot” and may be sensitive to immunotherapy, which
provides new opportunities for patients.

lncRNAs play many roles in cancer diagnosis and treat-
ment, but the most important role of these RNAs is to control
gene expression and regulate many important biological
processes in the body, such as proliferation, genome stability,
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apoptosis, pyrolysis, autophagy, and immunity, and dysregu-
lation of these functions contributes to the progression ofmany
tumors. We can conclude that the model is verifed in the
external dataset; the model can be further stratifed through
analysis of patients with diferent clinicopathological charac-
teristics, which can provide more accurate guidance for clinical
treatment. Te limitation of study is that there is no experi-
mental verifcation of lncRNA in the model. Te reason is that
it is impossible to accumulate enough fresh tissue specimens
for survival analysis in a short period.

5. Conclusion

It was concluded the hypoxic microenvironment is closely
related to the occurrence and development of ovarian
cancer. Our established hypoxia-related lncRNA model can
be applied to pre-calculate the prognosis of ovarian cancer.
In addition, the immune status can be predicted using this
model. Our result indicates that the hypoxia-related lncRNA
model can serve as a guiding tool for better clinical treatment
of ovarian cancer.
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