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Background. Current research studies have suggested that glucose deprivation (GD)-based tumor microenvironment (TME) can
promote epithelial-mesenchymal transition (EMT) of tumor cells, leading to tumor invasion and metastasis. However, no one has
yet studied detailedly the synthetic studies that include GD features in TMEwith EMTstatus. In our research, we comprehensively
developed and validated a robust signature regarding GD and EMT status to provide prognostic value for patients with liver
cancer.Methods. GD and EMTstatus were estimated with transcriptomic profles based on WGCNA and t-SNE algorithms. Two
cohorts of training (TCGA_LIHC) and validation (GSE76427) datasets were analyzed with the Cox regression and logistic
regression analyses. We identifed a 2-mRNA signature to establish a GD-EMT-based gene risk model for the prediction of HCC
relapse. Results. Patients with signifcant GD-EMTstatus were divided into two subgroups: GDlow/EMTlow and GDhigh/EMThigh,
with the latter having signifcantly worse recurrence-free survival (P< 0.01). We employed the least absolute shrinkage and
selection operator (LASSO) technique as a method for HNF4A and SLC2A4 fltering and constructing a risk score for risk
stratifcation. In the multivariate analysis, this risk score predicted recurrence-free survival (RFS) in both the discovery and
validation cohorts and remained valid in patients stratifed by TNM stage and age at diagnosis. Te nomogram that combines risk
score and TNM stage as well as age produces improved performance and net benefts in the analysis of calibration and decision
curves in training and validation groups. Conclusions. Te GD-EMT-based signature predictive model may provide a prognosis
classifer for HCC patients with a high risk of postoperative recurrence to decrease the relapse rate.

1. Introduction

Hepatocellular carcinoma (HCC) accounts for 75–85% of all
primary liver malignancies [1]. During the last decades, attempts
at therapeutic approaches for HCC have been in progress not
only for early stages but also for advanced stages, such as ag-
gressive surgery, liver transplantation, chemotherapy with sor-
afenib, andmultikinase inhibitors, all of which are recognized as
efective treatments for suferers [2, 3], as well as CAR-T cell

dysfunction, which is considered a novel approach to afect the
immune microenvironment and the immunotherapeutic re-
sponse in HCC [4]. However, without targeted therapy, patients
with early and advanced HCC have a poor prognosis, with
a median survival of 6–9months and 1-2months, respectively
[5]. Furthermore, a relapsed rate of 50%–70% has been achieved
even after surgical resection of the lesion, let alonemany patients
who are not eligible for resection [6, 7]. Hence, the identifcation
of novel panels providing more predictive value for suferers’
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recurrence status is highly demanded clinically for improving
the prognostication for liver cancer. Terefore, to improve the
prognosis of liver cancer patients, there is a great clinical need to
discover novel panels that have more predictive value for pa-
tients’ recurrence status.

On account of the coevolution of malignant cells and
their direct environment, the tumor forms an organ-like
structure. Studies clearly show that cancer development and
metastasis rely on the mutual cointeraction between tumor
cells and their environment, which leads to the formation of
the tumor microenvironment [8]. Te rapid proliferation of
cancer cells makes it often necessary for tumors to expe-
rience rapid angiogenesis, hypoxia, acidosis, glucose dep-
rivation, immune cell infltration, and decreased activity,
which all contribute to the development of cancer as well as
drug resistance [9, 10]. Tus, TME is equipped with low
pH values, glucose deprivation (GD), severe hypoxia, high
glutathione (GSH) content, and excessive hydrogen per-
oxide (H2O2) [11]. Accumulated evidence has testifed that
tumor cells have high migratory potential for constantly
situating in glucose deprivation-based TME [12–14]. Te
epithelial-mesenchymal transition (EMT) refers to the
transition from polarized epithelial cells to motile mesen-
chymal cells through the activation of a series of signals that
enhance tumor stem cell-like properties, invasion, and
metastasis [15]. Current research has suggested that a GD-
based microenvironment can promote EMT of tumor cells,
leading to tumor invasion and metastasis [16, 17]. Although
there is an explicit link between the GD status and the EMT
phenomenon of TME, an integrated analysis of the re-
lationship between the GD state and the EMT response
is rare.

In this study, we synthetically developed and validated
robust signatures of GD and EMT status to provide prog-
nostic value for HCC patients. Firstly, we fltered GD-related
diferentially expressed genes (DEGs) and EMT-related
DEGs associated with prognosis and applied them to
model construction in silico. Furthermore, multiple in-
dependent HCC datasets were integrated to develop a risk
score based on GD-EMTstatus, and the functional studies of
relevant genes were validated in vitro. Ultimately, an original
model incorporating GD-EMT status and clinicopatholog-
ical features was indicated through a range of systematic
analyses aimed at predicting RFS in liver cancer with uni-
versal applicability in clinical practice.

2. Materials and Methods

2.1. Data Retrieval and Preprocessing. Te mRNA expres-
sion data and corresponding clinical characteristics of
HCC patients were collected from Te Cancer Genome
Atlas (TCGA) cohort (https://portal.gdc.cancer.gov/) and
the Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/). Te study contained 418 HCC tumor
samples with integrated clinical characteristics and valid
survival data in TCGA database, 108 liver cancer patients
from GSE76427 dataset, and 8 HepG2 cells treated with
variously concentrated glucose (4 high glucose-relevant
and 4 GD-related cells) from GSE140867 dataset. Te

mRNA expression matrix (FPKM) value from TCGA and
GEO database was converted into TPM value. Besides,
samples from TCGA cohort were randomly assigned to
two phases, namely, training and internal validation co-
hort. Te discovery set retrieved from the GSE76427
dataset was used for external validation. Tus, the tissue
samples from TCGA-LIHC and GSE76427 datasets were
assigned to diverse phases incorporating training, internal
validation, entire, and external validation cohorts. Pa-
tients’ clinicopathologic characteristics are listed in Ta-
ble 1. All of the patients from the above two sets who met
the following selection criteria could be enrolled: (a)
histologically diagnosed malignant hepatocellular carci-
noma; (b) eligible RNA expression; and (c) available RFS
data. Te workfow shown in Figure 1 was composed of
feature selection, silico analysis, validation, and model
construction.

2.2. Verifcation of GD Status and GD-Associative DEGs.
We performed a weighted gene coexpression network
analysis (WGCNA) using the WGCNA R package (ver-
sion 3.613) to screen for genes associated with GD status
and divided the associated mRNAs into the same coex-
pression modules [18]. On the basis of the results of the
module-trait relationship, the module with the higher
correlation was selected as the research object for the next
study, and the genes in the pivotal module were con-
sidered as GD-related genes. Furthermore, t-distributed
stochastic neighbor embedding (t-SNE) is a non-
parametric and unsupervised algorithm that classifes or
condenses patients into diverse clusters based on hub
features or hallmarks by using the R package Seurat [19].
According to the RFS data, two clusters were singled out
for comparison to determine the “GDhigh” and “GDlow”
groups. Te limma algorithm was employed to fltrate
DEGs between the two groups [20], and genes generated
with a false discovery rate (FDR) corrected P value <0.05
and an absolute log2-fold change value >1 were regarded
as GD-related DEGs.

2.3. Identifcation of EMT States and EMT-Related DEGs.
Terewere 1184 EMT-related hallmark genes extracted from the
dbEMT2.0 database (https://dbemt.bioinfo-minzhao.org/index.
html), consisting of 1011 protein-coding genes and 173 non-
coding RNAs. Similarly, patients were sectionalized into diverse
clusters to compare the RFS data to ascertain the “EMThigh” and
“EMTlow” groups. Tus, EMT-related DEGs could be further
confrmed by the limma arithmetic, with the screening criteria of
FDR-adjustedP< 0.05 and |log2FC|>1.

2.4. Generation of GD-EMT Related DEGs. GD and EMT
status identifed above were divided into three groups, such as
GDlow/EMTlow, GDhigh/EMThigh, andmixed groups.Te GD-
EMT-related DEGs could be acquired by detecting expression
diferences between the GDlow/EMTlow and GDhigh/EMThigh

groups (FDR-adjustedP< 0.05, |log2FC|> 1). Finally, the set
of genes most relevant to GD-EMTstatus can be obtained by
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comprehensively analyzing GD-EMT-associated DEGs and
GD/EMT-associated DEGs distinguished above.

2.5. Establishment and Validation of Profling Based on GD-
EMT-Relevant DEGs. We performed univariate Cox re-
gression analysis among GD-EMT-related DEGs using the R
package “survival” and obtained preliminary GD-EMT-
related DEGs that were signifcantly correlated with RFS in
the training cohort, of which P< 0.05 was treated as sig-
nifcant. Afterwards, the least absolute shrinkage and se-
lection operator (LASSO) method was used to calculate risk
scores for HCC patients, which is characterized by pre-
serving valuable variables and avoiding overftting [21].
Based on these prognostic candidates, LASSO-Cox re-
gression analysis was used to select genes to minimize the
risk of overftting. A risk prediction model was constructed
and the penalty regularization parameter lambda (λ) was
chosen through the cross-validation routine with an n-fold
equal to 10 by using the R package glmnet. Meanwhile,
lambda.min was identifed to pick out the variables. Sub-
sequently, we combined the regression coefcients from
multivariate Cox regression models and optimized gene
expression for each patient’s risk score for RFS, that is, risk
score� coefcient (i)× expression of signature gene (i).
Te coefcients of gene (i) originated from the LASSO-Cox
regressionmodel, while its expression was derived from each
patient. On the basis of risk scores, patients were divided
into high-risk and low-risk groups. Besides, the
Kaplan–Meier survival and principal component analysis

(PCA) were drawn using the software “GraphPad prism 8.0”
and the R package “rgl” for cluster analysis, respectively, to
assess the predictive value of prognostic characteristics
for RFS.

2.6. Enrichment Analysis. We conducted functional en-
richment analysis using the package “cluster profler” to
explore potential molecules associated with GD-EMT-
associated DEGs. Meanwhile, the correlations between risk
scores and the enrichment scores of EMT-predicted path-
ways or GD-predicted pathways were conducted by the R
package “ggcor.”

2.7. Construction and Assessment of the Nomogram. To es-
timate the feasibility of the risk score in depth, we se-
lected patients with clinicopathological information
from the TCGA dataset, which included age at diagnosis,
alpha-fetoprotein (AFP) level, pathological tumor stage,
gender, microvascular invasion, hepatitis B virus, and
Barcelona Clinic Liver Cancer (BCLC) stage, and these
characteristics were evaluated as categorical variables.
Terefore, univariate and multivariate Cox regression
analyses were performed to analyze the relationship
between each variable and patient RFS. Nomograms are
widely used for cancer prognosis, primarily because of
their ability to reduce statistical predictive models into
a single numerical estimate of the probability of an event,
such as death or recurrence, which is tailored to the

Table 1: Patient characteristics for the discovery and validation cohort.

Characteristics Training set Internal validation
set Entire set External validation

set P value

No. of patients 148 270 418 108
Age (y)

0.0059<60 years 84 112 196 45
≥60 years 64 158 222 63

AFP (ng/ml)
0.2622<4000 52 93 145 NA

≥4000 96 177 273 NA
Gender

0.5660Female 33 54 87 93
Male 115 216 331 15

HBV
0.7793Negative 10 18 28 NA

Positive 138 252 390 NA
TNM stage

0.0147I 77 114 191 55
II 27 67 94 35
III/IV 44 89 133 18

Microvascular invasion
0.0061No 61 147 208 NA

Yes 87 123 210 NA
BCLC stage

0.6947A 140 209 349 74
B 8 60 68 23
C 0 1 1 11

Recurrence status
0.0275Yes 59 114 173 44

No 89 156 245 64
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profle of an individual patient. Te “rms” R package was
utilized to construct nomograms. For 1-, 3-, and 5-year
survival rates, calibration curves were used to quantify
the agreement between the predicted and actual results.
Te ROC curve was developed with the R package
“pROC” to evaluate the nomogram’s efciency.

2.8. Cell Culture and Staining. Te human liver cancer cell
line SMMC-7721 was obtained from the School of Bioscience
and Technology, Chengdu Medical College (Chengdu,
China). SMMC-7721 cells were cultured in high glucose

(4500mg/L) DMEM (Gibco) and low glucose (1000mg/L)
DMEM (Gibco), respectively. Both were supplemented with
10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin. Cells were then placed in a sterile incubator
with 5% CO2 at 37°C. In addition, the cells were dyed with
crystal violet after treatment with paraformaldehyde.

2.9. Wound-Healing Assay. Te cells were cultured and when
the cells were growing to about 90% confuence, scratched lines
were evenly drawn on the bottom of the 6-well plate with a 20μl
pipette tip and the dropped cells were gently washed with PBS.

Glucose deprivation

EMT
GD-related genes

EMT-related genes

Feature selection
dbEMT2.0 databaseHub module selection

EMT-related genesGD-related genes

GD-EMT-related genes
Clustering

Cluster I
Cluster II
Cluster III
Cluster IV
Cluster V
Cluster VI

Survival analysis Heatmap demonstration

In silico analyses

Cox regression

Risk score assessment

Validation

Survival analysis
Low risk
High risk

Clustering

Lasso-cox
two-gene signature

Model construction

Nomogram Roc analysis Calibrate curve Risk prediction

Figure 1: Schematic diagram of the study design. Feature selection: a panel of integrated GD-EMT-related DEGs was identifed based on
WGCNA and t-SNE algorithms; silico analyses: a two-gene signature was fnally estimated using the LASSO-Cox regression models;
validation: the crucial roles of novel signatures in GD and EMT status were further validated in multiple cohorts; model construction:
nomogram establishment to predict RFS for HCC suferers. GD, glucose deprivation; EMT, epithelial-mesenchymal transition; DEGs,
diferentially expressed genes; WGCNA, weighted gene coexpression network analysis; t-SNE, t-distributed stochastic neighbor embedding;
LASSO, least absolute shrinkage and selection operator; RFS, recurrence-free survival; HCC, hepatocellular carcinoma.
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Completemediumcontaining 0.5%FBSwas added to eachwell to
continue the culture, and the healing of the scratches in the three
fxed areas was photographed at 0 and 48hours, respectively.

2.10.Cell InvasionandMigrationAssays. Invasion assays were
performed in 24-well Transwells (8μm pore size; BD), self-
coated withMatrigel (356234; BD). Cells were added to a coated
flter (5×104 cells/flter) in 200μl of serum-free medium in
triplicate wells. Next, 500μl of medium with 10% FBS was
appended in the lower chamber. After 36h, the upper surface of
the flter was wiped of with a cotton swab. Cells on the lower
surface of the membrane were fxed with 4% paraformaldehyde,
stained with 0.5% crystal violet, photographed, and counted
under a microscope in three random felds. Similarly, the mi-
gration assays were implemented with the same procedures,
except that the plates were not coated with Matrigel and the
plates were incubated for 12h.

2.11. StatisticalAnalysis. Te R version 3.6.1 (https://www.r-
project.org) and the corresponding package were utilized for
full data analysis. Cell experiments were repeated at least

three times, and data was expressed using the mean-
± standard error of the mean (SEM). Statistical analysis was
achieved with a one-way ANOVA test using GraphPad
Prism 8. Recurrence-free survival analysis was estimated
using the Kaplan–Meier method. Te value of P< 0.05 was
considered statistically signifcant.

3. Results

3.1. EMT Occurrence in Glucose Deprivation-Based
Microenvironment. EMT has been revealed to play an ex-
tremely signifcant role in the development andmetastasis of
tumors [22]. Previous studies have found that glucose
deprivation treatment of tumor cells can lead to EMT in-
duction and malignant transformation. An alteration of
SMMC7721 cell lines from EMT-like phenotypes was evi-
dent after exposure to glucose deprivation for 48 hours
(Figure 2(a)). Migration and invasion ability of SMMC7721
cells were signifcantly promoted by glucose deprivation
(Figure 2(b)). Furthermore, cell migration and invasion
ability were detected via the wound-scratch assay, the results
of which showed that low glucose promoted the scratch
healing ability of SMMC7721 cells (Figure 2(c)). In brief, our
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Figure 2: Glucose deprivation induces the EMT in HCC cells. HCC cells were exposed to glucose deprivation for 48 h. (a) Morphology of
SMMC7721 cells in GD-based microenvironment. (b) Migration and invasion abilities were detected with glucose deprivation. (c) Scratch
wound healing assay were used to evaluate the migration of SMMC7721 cell line in GD-based microenvironment. GD, glucose deprivation;
EMT, epithelial-mesenchymal transition. ∗∗∗∗P< 0.0001.
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Figure 3: Coexpression network establishment to identify modules related with glucose deprivation based on WGCNA. (a) A clustering
dendrogram of coexpression modules screened on the basis of glucose deprivation samples from GSE140867. (b) Te heatmap analysis of
the gene coexpression network. (c) Module-trait relationships between gene modules and glucose deprivation. (d) Te blue module was
signifcantly related with glucose deprivation. (e) Te correlation between module membership and gene signifcance in blue module.
(f ) WGCNA clustering of diferentially expressed genes in blue module. WGCNA, weighted gene coexpression network analysis.
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Figure 4: Continued.
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results showed that exposure to low glucose could induce
EMT in HCC cells, which may participate in the malignant
conversion.

3.2. Determination of GD Status and GD-Related DEGs in
Liver Cancer. We analyzed microarray datasets
(GSE140867) generated from 4 high glucose-relevant and
4 GD-related HepG2 cells using WGCNA as a way to study
hub modules in GD-positive samples, and fnally screened
2269 genes with P< 0.05 and log2 (fold change)|> 1. After
constructing the coexpression matrix, four gene modules,
including blue model, yellow model, brown model, and
turquoise model, were obtained by the dynamic hybrid
shearing method (Figure 3(a)). Pearson correlation co-
efcients between expression profles of all gene pairs were
transformed into network connection strengths (indicated
by intensity in red) (Figure 3(b)). After that, the heatmap
exhibited the relevance between four gene modules and
glucose deprivation, resulting in the correlation between the
blue module and glucose deprivation achieving 0.93
(P � 8e − 04) (Figures 3(c) and 3(d)). In addition, the
correlation between module membership and gene signif-
cance was also analyzed, indicating that the blue module
(n� 577 genes) may be especially critical for GD status
(r� 0.84, P � 8.3e − 155) (Figure 3(e)). Meanwhile, the
WGCNA heatmap revealed that the gene expression profle
in the blue module was signifcantly overexpressed in HCC
cells with GD treatment, compared with HCC cells disposed
by high glucose (Figure 3(f )). 418 liver cancer patients,
considered as the discovery cohort, were derived from the

TCGA database. Te expression matrix of 577 GD hallmark
genes in the blue module was adopted to compute the
euclidean distance between any two individuals in the
discovery cohort, and the nonlinear dimensionality re-
duction algorithm t-SNE was further applied to condense
the euclidean distance into two-dimensional points. Sub-
sequently, seven clusters with HCC patients were produced
and every patient was allocated to the closest cluster
(Figure 4(a)), namely, 74, 73, 71, 69, 49, 45, and 37 patients in
seven distinct clusters (from Cluster I to Cluster VII), re-
spectively. Te RFS comparison showed that the most sig-
nifcant diferences were uncovered between Cluster II and
Cluster III (Figure 4(b)). Tus, patients in Cluster III pro-
duced the best RFS, but patients in Cluster II had the worst
prognosis (P � 0.0159; Figure 4(c)), suggesting that Cluster
III and Cluster II perhaps represent the lowest and highest
status of GD. Accordingly, suferers in Cluster II and Cluster
III were sectionalized into “GDhigh” and “GDlow” groups,
separately. To engender GD-related DEGs, the expression
profles of GDhigh and GDlow groups were compared,
resulting in 133 GD-related DEGs being confrmed
(Figure 4(d)).

3.3. Determination of EMT Status and EMT-Related DEGs in
Liver Cancer. 1011 EMT hub genes were acquired from the
hallmark gene sets in the dbEMT2.0 database. Likewise, t-
SNE was applied to cluster the 418 HCC patients according
to the expression profle of 1011 hallmark genes. Five clusters
(120 patients in Cluster I, 85 patients in Cluster II, 82 pa-
tients in Cluster III, 78 patients in Cluster IV, and 53 patients
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Figure 4: Identifcation of GD and EMTstatus and GD- and EMT-related DEGs. (a) Dot plot for seven distinct clusters identifed by t-SNE
algorithm based on 577 GD hallmark genes from blue module. (b) Recurrence-free survival analysis for seven clusters classifed from 418
HCC patients. (c) Kaplan–Meier plot of RFS for HCC patients in Cluster II and Cluster III with worst- and best-prognosis. (d) Heatmap
showing expression profles for GD-related DEGs with comparison between GDhigh and GDlow groups. (e) Five clusters identifcation by t-
SNE algorithm on the foundation of 1011 EMT hallmark genes. (f ) RFS comparison for fve clusters generated from 418 suferers. (g) HCC
patients in Cluster I and Cluster IV yield worst and best RFS demonstrated by Kaplan–Meier plot. (h) EMT-related DEGs resulting from the
comparison between EMThigh and EMTlow groups, revealed by heatmap. GD, glucose deprivation; EMT, epithelial-mesenchymal transition;
RFS, recurrence-free survival.
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in Cluster V) were grouped to analyze the relapse status
among them (Figure 4(e)), which proved that the suferers in
Cluster IV generated the best RFS, regarded as the EMTlow

group, compared with the patients in Cluster I, treated as the
EMThigh group (P � 0.0083; Figures 4(f), and 4(g)). A total
of 225 DEGs correlated with EMT status were distinguished
by comparing the expression matrix of the EMTlow and
EMThigh groups (Figure 4(h)).

3.4. GD-EMT-Related Prognostic DEGs in Liver Cancer.
On the basis of the above results, a two-dimension index,
combined with GD and EMT status, was further explored, that
is, patients were divided into three sets: GDlow/EMTlow, GDhigh/
EMThigh, and mixed groups. RFS analysis revealed positive
diferences among the three groups (P< 0.001). Patients in the
GDlow/EMTlow group had the best RFS, while those in the
GDhigh/EMThigh group had the worst RFS (Figure 5(a)), sug-
gesting that GD and EMT have consistent clues to their efects
on recurrence status in liver cancer patients. To obtain the DEGs
associated with GD-EMT, expression profles were compared
between the GDlow/EMTlow and GDhigh/EMThigh groups,
drawing a conclusion on the identifcation of 17 GD-EMT-
related DEGs (Figure 5(b)), including 2 overexpressed in GDlow/
EMTlow groups where patients had a higher survival rate and 15
overexpressed in GDhigh/EMThigh groups where patients had

a poorer outcome. Consequently, 12 critical GD-EMT-related
DEGs, generated from the overlap among 133 GD-related
DEGs, 225 EMT-correlated DEGs, and 17 GD-EMT-related
DEGs were fltered out (Figure 5(c)). Trough Pearson corre-
lation analysis, relevance among the 12 GD-EMT-related DEGs,
such as SLC2A4, ZNF746, EZR, GNA13, HNF4A, ITGA6, JUN,
LASP1, MCL1, NDRG1, PCBP1, and SHC1 was displayed
(Figure 5(d)), among which the expression level of ZNF746,
EZR, GNA13, HNF4A, ITGA6, LASP1, NDRG1, PCBP1, and
SHC1 was decreased while the expression status of SLC2A4,
JUN, and MCL1 was increased. Furthermore, enrichment an-
alyses of functions revealed that the DEGs were associated with
cadherin binding, cytoplasm, cytosal, liver development, and
actin cytoskeleton reorganization in terms of gene oncology
analysis. According to KEGG pathway analysis, the DEGs could
take part in pathogenic Escherichia coli infection, the AMPK
pathway, regulation of actin cytoskeleton, microRNAs in cancer,
and the ErbB signaling pathway (Figure 5(e)).

3.5.ConstructionandVerifcationof aComprehensive Indexof
GD-EMT-Based Gene Signature in Liver Cancer. In view of
the EMT occurrence in GD-based microenvironment,
a comprehensive analysis covering both GD and EMTstatus
might emerge underlying prognostic value and quantify the
TME. Tus, to distinguish GD-EMT-related prognostic
DEGs, we further discriminated via univariate Cox
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Figure 5: Identifcation and biological function of GD-EMT-related DEGs. (a) Kaplan–Meier plot of RFS for patients in three groups by
uniting the GD and EMT status. (b) Heatmap displaying expression profles for GD-EMT-related DEGs with comparison between GDlow/
EMTlow and GDhigh/EMThigh groups. (c) Venn diagrams show overlaps of GD-EMT-related DEGs with GD-related and EMT-related DEGs
for discrimination of critical DEGs. (d) Correlation among the 12 GD-EMT-related DEGs. (e) Functional enrichment analysis, including
GO enrichment analysis (A) and KEGG enrichment (B) analysis of the 12 GD-EMT-related DEGs. GD, glucose deprivation; EMT,
epithelial-mesenchymal transition; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 6: GD-EMT-based gene signature and prognosis classifer. (a) Univariate Cox regression analyses for GD-EMT-related prognostic
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regression overlapping 4 genes (SLC2A4, HNF4A, JUN, and
MCL1) among the 12 DEGs in the TCGA cohort and
GSE76427 set that have signifcant efects on patients’
prognosis (P< 0.05; Figure 6(a)). To accomplish the estab-
lishment of a predictive model, the LASSO regression
analysis was then performed to flter signatures from 4 GD-
EMT-related prognostic DEGs. Cross-validation was also
performed to obtain the best λ value from the smallest partial
likelihood bias to further identify DEGs signifcantly asso-
ciated with prognosis in liver patients. Te corresponding
coefcients were generated at the optimal log λ of
0.02036323. Te results are shown in Figures 6(b) and 6(c).
Tus, the risk score was calculated by the following formula:
the combination mRNA panel� (−0.010913578× expression
value of HNF4A+ 0.002874759× expression value of
SLC2A4). Meanwhile, the risk score was closely related to
the expression of most enrichment scores of GD-predicted
pathways (Figure 6(d)) and EMT-predicted pathways
(Figure 6(e)). Subsequently, the patients were classifed as
high-risk or low-risk groups on account of the median value
in training set (Figure 7(a)), validation set (Figure 7(b)),

entire set (Figure 7(c)), and external testing set (Figure 7(d)).
Te number of relapsed patients increased with an in-
creasing risk score. Consistently, SLC2A4 expression was
upregulated along with the downregulated expression levels
of HNF4A. Te Kaplan–Meier analysis manifested that
patients’ RFS was longer in the low-risk group than that in
the high-risk group (P< 0.01). Furthermore, PCA displayed
that patients in diverse groups could be signifcantly clus-
tered based on these two traits in all datasets. In conclusion,
our fndings indicated the applicability of the two-gene trait
in recidivism prediction.

3.6. GD-EMT-Based Risk Score and Prognosis Classifer in
Liver Cancer. Te univariate analysis displayed that the risk
score, age at diagnosis, and TNM stage were signifcantly
associated with patients’ RFS in the training cohort, vali-
dation cohort, the entire TCGA cohort, and external vali-
dation cohort with hazard ratios (HRs) of 0.828797988,
0.899926153, 0.867811632, and 0.774179934, respectively.
Also, multivariate Cox regression analysis further demon-
strated that the risk score remained as an independent
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Figure 7: Construction of the two-gene signature to predict RFS for HCC patients. Assignment of risk score, recurrence status of the
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prognostic factor after integrating with various clinico-
pathologic characteristics, including age at diagnosis, AFP
levels, TNM stage, BCLC stage, HBV, gender, and micro-
vascular invasion (Figures 8(a)–8(d), Table 2). Due to the
signifcant relationship between age, TNM stage, and pa-
tients’ prognosis, the prognostic values of a diversity of age
and TNM stage were also explored. Te Kaplan–Meier
survival curves revealed that age and tumor stage could
predict the outcome (Figure 9). As expected, a higher risk
score was positively associated with older age (Figure 10(a))
and higher tumor stage in four cohorts (Figure 10(b)). Te
prognosis classifer was further validated within low-risk and
high-risk patient subgroups with stage T1/T2 and stage T3/
T4 in four cohorts, respectively. As a result, patients in the
low-risk group were able to generate better RFS compared to
the high-risk group in both the T1/T2 and T3/T4 stage
subgroups (Figures 11(a) and 11(b)). Similarly, stratifed
analysis showed that risk scores could identify a diferent
prognosis for suferers with age≤ 60 or older (>60)
(Figures 11(c) and 11(d)).

3.7. Nomogram Based on Risk Score and Clinicopathological
Features. We incorporated risk scores with clinico-
pathological characteristics (age at diagnosis and path-
ological tumor stage) to construct a nomogram to predict
RFS. Te points for each factor and total points were
calculated separately to assess RFS rates at 3 and 5 years
(Figure 12(a)), and then the validity of the nomogram
was assessed using ROC curves and calibration plots, and
the fndings are shown in Figure 12(b). Te 3- and 5-year
AUCs for both the internal and external validation co-
horts were smaller than those for the training cohort
(0.797 and 0.654 and 0.684 and 0.798, respectively)
(Figures 12(c) and 12(e)). Te AUCs for the two time

points were 0.801 and 0.794 in the TCGA cohort, re-
spectively (Figure 12(d)). In addition, the calibration
plots show excellent agreement between predicted and
observed results in the internal validation cohort
(Figure 12(g)), the training cohort (Figure 12(f )), the
GSE76427 cohort (Figure 12(i)), and the TCGA cohort
(Figure 12(h)).

4. Discussion

It is well known that the tumor microenvironment plays
an important role in tumorigenesis by stimulating sur-
rounding cells through the circulatory and lymphatic
systems, which can further infuence tumor development
[23–25]. At the same time, it can reprogram the sur-
rounding cells so that they play a decisive role in tumor
survival. Malignant tumors with rapidly proliferating
cells regularly experience nutrient (e.g., glucose) dep-
rivation, which promotes tumor progression and ag-
gressiveness through EMT induction [26]. Also, cells
exposed to low glucose could sufer malignant trans-
formation with elevated formation of colonies when
compared to high glucose medium [27]. Trough this
study, we aimed to construct a model to solve the sig-
nifcant clinical issues by means of a comprehensive
analysis of microenvironment characteristics and tran-
scriptional profles. Currently, the coincident efect of
EMT status and GD is apparently related to recidivation
after stratifying patients by clinicopathological risk
factors. Finally, the GD-EMT-basedtwo-gene charac-
teristics were used as prognostic classifers for risk
stratifcation and performed well in both the training and
validation cohorts. Hence, this study synthetically ana-
lyzed the available HCC expression datasets to clarify
GD-EMT-related DEGs to predict RFS for HCC
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Figure 8: Univariate and multivariate Cox regression analyses of the risk score, patients’ age, gender, HBV, tumor stage, microvascular
invasion, AFP and BCLC stage in the training cohort (a), validation cohort (b), entire cohort (c), and GSE76427 cohort (d). Te squares
represent the hazard ratio (HR), and the black lines stand for the 95% CI. CI, confdence interval. Age, age at diagnosis; tumor stage,
pathological tumor stage.
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Figure 9: Kaplan–Meier curves of RFS according to patients’ age at diagnosis (a) and clinical TNM stage (b) factors in the training cohort,
validation cohort, entire cohort, and GSE76427 cohort. RFS, recurrence-free survival.
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Figure 10: Associations of risk score with patients’ age at diagnosis (a) and tumor stage (b) in the training cohort, validation cohort, entire
cohort, and GSE76427 cohort, respectively.
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Figure 11: Kaplan–Meier curves of RFS according to the risk score in patients stratifed by pathological tumor stage and patients’ age at
diagnosis. Kaplan–Meier curves were applied to patients with lower tumor stage (T1/T2) (a), higher tumor stage (T3/T4) (b), lower age at
diagnosis (≤60) (c), and higher age at diagnosis (>60) (d) in the training cohort, validation cohort, entire cohort, and GSE76427 cohort,
respectively.Te tick marks on the Kaplan–Meier curves represent the censored subjects.Te two-sided log-rank test was used to determine
diferences between the two curves. RFS, recurrence-free survival.
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Figure 12: Continued.

Journal of Oncology 17



suferers. Besides, we systematically evaluated the
prognostic value of risk scores in HCC patients to es-
tablish a model with better accuracy.

Previous studies have shown that the GD-based mi-
croenvironment drives the emergence of the EMT state in
cancer, resulting in the invasion and metastasis of tumor
cells [28–30]. However, few indicators regarding GD status
have been developed, much less to focus on comprehensive
efects between GD and EMTstatus, as well as their potential
roles in clinically relevant classifcation. Moreover, de-
termination of GD status by a single biomarker is not
sufcient because it may be liable to omit important in-
formation about biological processes [31–34]. Tus, the
implementation of combined GD-EMT features across co-
horts can be used to develop continuous metrics for the
comprehensive assessment of TME. Te populations were
divided into the GDlow/EMTlow and GDhigh/EMThigh groups
by subgroup classifcation, associated with diferent clinical
prognosis, transcriptional GD-EMTpatterns, and activation
pathways that could be targeted for treatment. t-SNE has
been used to discover potential subtypes of liver cancer,
which provides an elegant dimensionality reduction tech-
nique [35–37]. In our study, t-SNE discerned disparate
patterns of EMT status in TME based on a set of 1067 EMT
hallmark genes from the dbEMT2.0 database, an updated
database for EMT-related genes containing experimentally
validated information and precomputed information on the
regulation of cancer metastasis [38]. Also, EMT-predicted
pathways during the EMT process were analyzed to explore
their relationship with comprehensive features. When en-
tering the GD state, GD-treated cancer cells without a spe-
cifc genetic signature could be classifed into diverse GD
groups. Terefore, WGCNA, an efective method in many
diseases that identifes modules of coexpressed genes [39],
was employed to determine GD-related hub genes in one
microarray dataset (GSE140867). As we all know, the in-
vasive tumor cells in TME constantly exhibit dysregulated
metabolism and enhanced aerobic glycolysis, leading to
glucose depletion, hypoxia, immunosuppression, epigenetic
modifcation, and lactic acid production [40, 41]. Never-
theless, the correlational studies were mostly concentrated

upon the following aspects, such as hypoxia [42, 43], im-
mune status [22, 44], RNA m6A methylation [45, 46], and
lactic acid [47]. As a result, a synthetic study embracing GD
characteristics in TME with EMT germination has not yet
been studied in detail.

Studies have reported that the two signature genes in this
study have a major role in multiple types of cancer. He-
patocyte nuclear factor 4 A (HNF4A), an orphan nuclear
receptor, was one of the most important regulators of he-
patocyte homeostasis, whose expression was frequently
decreased in hepatocellular carcinoma. Cell invasion was
closely associated with the downregulation of HNF4A ex-
pression, which promotes cancer metastasis [48, 49]. As for
solute carrier family-2-member-4-gene (SLC2A4), encoding
glucose transporter-4-protein (GLUT4), it has been reported
to serve as a novel therapeutic candidate for cancer treat-
ment [50]. Te inhibition of SLC2A4 could compromise cell
proliferation and metastasis in breast cancer [51], prostate
cancer [52], and gastric cancer [53]. Tus, the two signature
genes sifted from this study could ofer latent candidates to
elucidate molecular mechanisms in liver cancer.

Tere were a wide variety of potential targets with
corresponding detailed mechanisms having been certifed to
be absolutely vital for tumor development. However,
translating these eforts and discoveries from laboratory
results to clinical applications is difcult. Hence, the in-
corporation of clinicopathological features and molecular
markers could render a bran-new view for individualized
treatment and prognostic observation. Our research pro-
vides a hint that patients in GDhigh/EMTigh status are
considered high-risk patients, which can help clinicians
make better decisions. In conclusion, this study linked
microenvironmental characteristics and genetic profles to
patient prognosis, which could better serve the clinical
therapeutics of patients with liver cancer.

Tere were a few limitations to this study. First, this
study was performed by using bioinformatics analyses.
Tough we validated the results in several cohorts from
public databases, we did not explore the relevant mecha-
nisms in vivo experiments. Second, the clinical signifcance
of the risk score needed further validation in prospective
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Figure 12: Nomogram construction and evaluation for predicting 3- and 5-year RFS in HCC. (a) Nomogram establishment for the 3- and 5-
year RFS probability prediction in the TCGA training cohort. ROC curves evaluated the efciency of the nomogram for predicting 3- and 5-
year RFS in the training cohort (b), internal validation cohort (c), entire cohort (d), and GSE76427 cohort (e). Calibration plots of the
nomogram for predicting the probability of RFS at 3 and 5 years in the training cohort (f ), internal validation cohort (g), entire cohort (h),
and GSE76427 cohort (i). ROC, receiver operating characteristic.
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clinical trials. Tird, we defned median cut-of values for
risk scores in all cohorts rather than optimal cut-of values.
Tus, fndings in this study were waiting for further vali-
dation by well-designed, prospective, multicenter studies.
Terefore, this study awaits further refnement with a well-
designed multicenter prospective study.

5. Conclusion

In brief, the EMT changes due to the tumor GD microen-
vironment that were closely related to the prognosis of liver
cancer patients. Te GD-EMT-based genetic signature
performed well in risk stratifcation and adds value beyond
TNM staging. It can be used in clinical diagnosis for in-
dividualized treatment and prognosis, and follow-up can be
scheduled on this basis.
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