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Background. It is well known that cancer stem cells can induce cancer metastasis, which causes the majority of cancer-related
death, especially in triple-negative breast cancer (TNBC). TNBC features a high metastatic rate and low metastasis-free survival
and is regarded as the most malignant subtype of breast cancer. Te purpose of this study is to explore prognostic biomarkers that
can predict metastasis of triple-negative breast cancer. Methods. Te human triple-negative breast cancerSUM149PT cells were
used for the study. Te cancer stem cell spheres (sum149-Stem) and paired adherent cancer cells (sum149-Tumor) were collected
to extract total RNAs. RNA-seq was used to analysis the mRNA expression of cancer stem cells and paired adherent cancer cells.
Two diferent gene expression omnibus datasets (https://www.ncbi.nlm.nih.gov/gds), GSE58812 and GSE33926, were used to
explore the mechanism of diferent expression genes between stem cells and adherent cancer cells. Seven genes showed prognostic
function in all datasets. Te STITCH database (https://www.stitchdata.com/) was used to explore the possible metastasis-
inhibiting drugs that can target the seven genes. Each gene expression was compared by Pearson analysis. Te receiver operating
characteristic curve (ROC) and Kaplan–Meier survival curve were performed to assess the metastasis prognostic ability of the
seven-gene modeling two diferent GEO datasets. Results. A subset of 7 stemness-related genes (SRGs) containing UCN,
ST3GAL5, FDPS, HK2, MALL, LMTK3, and CRHR2 were identifed in three independent cohorts. Univariate Cox analysis
showed that ST3GAL5 plays an antitumor role in TNBC metastasis, and the other 6 genes promote the metastatic progression of
TNBC.Te ability of the 7-SRGs gene Cox model to predict TNBCmetastasis was constructed with the GSE58812 dataset. Most of
the genes showed signifcant expression in patients with diferent risk levels. Additionally, the model showed predictive value in
another GEO dataset of TNBC patients. ROC curves indicated that the seven-gene model has a signifcant predictive value of
TNBC metastasis. Conclusions. Expression analysis of the 7-SRGs signature model at diagnosis has predictive value for metastasis
in TNBC patients.

1. Introduction

Breast cancer is the most commonly diagnosed cancer and
the leading cause of cancer-related death in the female
population worldwide [1]. Breast cancer can be classifed
into fve subtypes: luminal A, luminal B, HER2 (human
epidermal growth factor receptor 2) overexpressing, triple-
negative breast cancer (TNBC), and unclassifed [2, 3].
TNBC is characterized by lacking of estrogen receptor (ER),

progesterone receptor (PR), and HER2 by immunohisto-
chemistry (IHC) (also defned by FISH). TNBC accounts for
about 15–20% of all breast cancers [4]. Compared to other
subtypes of breast cancer, women sufering from TNBC have
a poor outcome and low survival rate, with great potential
for metastasis and relapse [5]. However, the therapeutic
option for this subtype of cancer is monotonous. Due to
negative PR, ER, and HER-2, hormonal therapy (target on
ER and PR) and treatment with trastuzumab (target on
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HER-2) are ruled out [6, 7]. Terefore, chemotherapy with
Anthracyclines or taxanes remains the standard of treat-
ment. Although standard chemotherapy can be efective at
early-stage TNBC, the median overall survival (OS) of those
who develop the metastatic disease is only 4–12months, per
a recent retrospective multicenter analysis reported [8, 9].
Hence, new efective therapies for patients with metastatic
disease are needed.

Advanced genomic profling of TNBC has reported that
TNBC harbors abundant cancer stem cells (CSCs), especially
tumor cells with enriched ALDH1 and CD44+/CD24− ex-
pression signatures [10, 11]. Multiple studies have shown
that CSCs serve as determining factors that contribute to the
self-renewal capacity and heterogeneity of tumor cells [12].
CSCs are responsible for chemotherapy resistance as a result
of several mechanisms, including high expression of mul-
tidrug resistance (MDR) transporters such as ATP-binding
cassette (ABC) efux transporters of P-glycoprotein (P-gp/
ABCB1), multidrug resistance-associated protein 1 (MRP1/
ABCC1), and breast cancer resistance protein (BCRP/
ABCG2) [13]. As a result, current chemotherapeutic drugs
can not totally eradicate CSCs, and there is an urgent need
for novel compounds that target CSCs by regulating the
expression of associated genes and their signaling pathways.

Cancer stem cells are a group of tumor cells with strong
carcinogenic ability. Tese cells can self-renew to maintain
the growth and proliferation of tumors and lead to the
formation of metastasis. Studies have shown that cancer cells
expressing stem cell markers have been detected in the blood
of breast cancer patients, and when they are inoculated into
immunodefcient mice, these cells will metastasis to bone,
liver, lung, and other organs [14]. High expression of stem
cell markers in cancer is associated with poor prognosis and
metastatic recurrence [15]. Te acquisition of stem cell
characteristics is related to epithelial-mesenchymal transi-
tion (EMT). EMT is a crucial process of embryogenesis [16].
Neoplastic cells undergoing EMT could lose their in-
tercellular adhesion and apical polarity and gain a migratory
behavior that surpasses these barriers [17]. Additionally, the
overexpression of EMT transcription factors promote tumor
metastasis in breast cancer and pancreatic cancer cells
[18, 19]. By transplanting EMT into immunodefcient mice,
the increased tumor spread potential has been associated
with EMT and tumor cell stemness. Promoting the ex-
pression of EMT, such as transcription factors, TWIST1 or
SNAIL1 in breast epithelial cells increases the ability of
secondary tumors caused by transplantation [20, 21].
Compared with traditional two-dimensional (2D) cell cul-
ture systems, three-dimensional (3D) analysis can better
stimulate cell conditions in the body and afect the formation
of subpopulations of cancer cells with stem cell-like prop-
erties. Compared with the 2Dmodel, the 3D cancer stem cell
model can better simulate the tumor microenvironment,
promote the formation of ECM, and stimulate the increase
in the expression of stemness-related genes. In vitro-grown
mammospheres, subsequently implanted orthotopically in
mice, showed that uPAR signaling can induce CSC-like
behavior in breast cells [22]. Signatures of genes in CSCs
are proven to predict tumor metastasis, which provides

evidence that CSCs may be metastatic precursors [23], for
instance, a review released in 2017 revealed that several
microRNAs (miRNAs) may also participate in the activation
of CSC-related metastasis [24].

In our study, we extracted total RNA from cancer stem
cell spheres (sum149-Stem) and paired adherent cancer cells
(sum149-Tumor) and then analyzed the mRNA expression
by RNA-seq. Afterwards, bioinformatics analysis was uti-
lized to determine potential metastasis-correlated mRNA,
and their prognostic ability on metastasis was assessed.
Besides, we explored possible metastasis-inhibiting drugs.
Consequently, a subset of 7 stemness-related genes (SRGs)
was identifed. All SRGs are signifcantly diferentially
expressed in the sum149-Stem sequence, and 5 of these
genes have been documented to support cancer cell stem-
ness. After knocking down LMKT3, we found that the
formation of stem cell spheres decreased signifcantly and
the invasion of triple-negative breast cancer cells was
inhibited. Based on the correlation between cancer stem cells
and metastasis, we created a gene signature with SRGs
expression. Te SRGs signature was proved to be of pre-
dictive value for metastasis in TNBC, which may provide
a valuable therapeutic target for the treatment of TNBC with
the metastatic disease through eliminating cancer stem cells.

2. Materials and Methods

2.1. Cancer Cell Culture. Human triple-negative breast
cancer cell lines SUM149PT and BT549 were purchased
from American Type Culture Collection (ATCC) and cul-
tured according to the supplier’s instructions.

2.2. Cancer Cell Sphere Formation. Te adherent cancer cells
were collected by trypsin digestion.Te culture medium was
discarded by centrifugation at 1000 rpm (157rcf) for 3mins.
Te cells were washed with PBS 3 times and immediately
suspended in a sphere formation medium. Te sphere
formation medium was made by supplementing RPMI1640
with 20 ng/ml EGF, 20 ng/ml bFGF, 5ml Penicillin-
Streptomycin solution, and 50ml B27. About 100 cancer
cells were added into the ultralow attachment dishes
(Corning Inc., Corning, NY, USA) and incubated for
7–14 days in the condition of 37°C, 5% CO2 for the for-
mation of spheres. Te culture medium was changed every
4 days.

2.3. RNA-Sequence Analysis of Cancer Cells. Te total RNA
of triple negative breast cancer cells was extracted by Trizol
(Ambion) reagents. RNA samples were quantifed by
NanoDrop ND-2000 (Termo Scientifc) and OD 260/
280> 1.8, and total RNA concentration >100 ng was con-
sidered adequate for RNA-sequence analysis. Te eukaryotic
mRNA was enriched on mRNA Enriching Beads Oligo dT.
Te mRNA was disrupted into short fragments after adding
the fragmentation bufer. Using the mRNA as a template,
a strand was synthesized with a six-base random primer
(random hexamer) and then the bufer, dNTPs, DNA po-
lymerase I, and RNase H to synthesize double-stranded
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DNA. AMPure XP bead was used to purify double-stranded
cDNA. Te purifed double-stranded cDNA was frst
repaired, a tail was added, and the sequencing connector was
connected, and then the fragment size was selected with
AMPure XP beads. Finally, the PCR amplifcation was
carried out and AMPure XP beads were used to purify PCR
products to obtain the fnal library. Te Qubit 2.0 is used for
preliminary quantifcation, the library is diluted, and then
the insert fragment size of the library is detected by Agilent
2100. After the insert fragment meets the expectations, the
efective concentration of the library is obtained by using the
real-time PCR(qPCR) method to ensure the quality of the
library. Te high-throughput sequencing platform was used
to pool diferent libraries to fow cell BOTclusters according
to the requirement of efective concentration and data
volume (HiSeq/MiSeq) sequencing.

2.4. qRT-PCR and siRNA Transfection. Total RNA was
extracted with TRIzol reagent (Invitrogen). qRT-PCR was
performed with SYBR Premix Ex Taq (Takara). Primer in-
formation is listed in Supplementary Table 1. Te siRNA of
LMTK3 was designed through the DSIR website tool and
purchased from GeneCopoeia (USA). Te sense sequence of
si-LMTK3 is 5′-GCAACUACAAGGAGGACUACU-3′, and
the antisense sequence is 5′-UAGUCCUCCUUGUAGUUG
CUG-3′. Transfection was conducted with Lipofectamine
3000 (Invitrogen).

2.5. Transwell Assay. Matrigel was melted and added into
transwell chambers (BD Biosciences). 2×104 cells were
suspended in serum-free culture medium and added into the
upper chamber. Culture medium with 10% fetal bovine
serum was added to the lower chambers. Te cells were
incubated at 37°C for 24 h. Methanol was added to fx the
cells in the lower chamber. Te invasive cells were stained
using 0.01% crystal violet and counted under the
microscope.

2.6.TeAcquisitionandNormalizationGeneExpressionData.
Te workfow of this study is shown in Figure 1. All sample
data were acquired from the gene expression omnibus. Te
inclusion criteria are as follows: molecular subtype diagnosed
with triple-negative breast cancer; gene expression profle and
valid metastasis data. Patients were excluded from the study if
missing records of follow-up. Totally, 107 patients from
GSE58812 and 48 patients from GSE33926 were included [25].
GEO data were normalized using quantile normalization. All
gene expressions were transformed into the FPKM. Te
metastatic occurrence was used as the analysis outcome. Te
patients were divided into a high-expression group and a low-
expression group according to the average gene expression.Te
univariate Cox regression analysis was performed if the low
expression of a gene is a risk factor for patients.

2.7. Te Analysis of TNBC Patient Data. Te heatmap was
applied to visualize the gene expression characteristics of
diferent cell types with the Heatmap package in R. Te
common genes among the three gene sets were depicted with
a VennDiagram package in R software. DAVID database [26]
was used to predict the biological functions and relative
pathways of DEGs. Predictive correlation between genes and
target drugs came from the STITCH database [27]. Forest plot
was performed to visualize the hazard ratio and signifcance of
the prognostic genes to tumor metastatic events. Te cor-
relation between the seven genes was analysis and visualized
by the corrplot package with Pearson analysis in the R
platform. Te MFS Kaplan–Meier survival curves of each
gene were depicted with the ggsurvplot package. Log-rank
t test was used to calculate the signifcance of high or low-
expression groups. Te Cox proportional hazard model was
employed to assess the prognostic value of the identifed
signature. A patient was classifed into the high- or low-risk
group by median risk scores. A two-tailed P value <0.05 was
considered signifcant. AUC was calculated with the time
ROC package in R(19). Te signature model was established
withmultivariate Cox hazard ratio analysis.Te risk score was
calculated through the following formula:

Riskscore � (0.139∗ expression level of CRHR2) +(−0.800∗ expression level of ST3GAL5)

+(0.438∗ expression level of LMTK3) +(0.027∗ expression level of MALL)

+(0.107∗ expression level of HK2) +(0.460∗ expression level of FDPS) +(0.209∗ expression level of UCN).

(1)

3. Results

3.1. Triple Negative Breast Cancer Data Acquisition. Te
whole study was conducted following the design in Figure 1.
We compared the diferent expression profles between
TNBC adherent cancer cells and stem cells. Two GEO TNBC
data sets were applied to explore the function of diferent
expression genes (DEGs). Te triple-negative breast cancer
data set and clinical data were acquired from GEO (https://
www.ncbi.nlm.nih.gov/geo/). 107 patients from GSE58812

and 48 patients from GSE33926 were included based on the
inclusion criteria.

3.2. Te Analysis of Diferent Expression Genes (DEGs).
Genes withFDR (false discovery rate)< 0.05 and |
log2FC|(log2FoldChange)> 1 were considered expressed
signifcantly between diferent groups. A total of 2877 genes
were found diferently expressed in adherent cancer cells and
cancer stem cells.Te distinct expression profle of each gene
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in adherent cancer cells (T149) and cancer stem cells (S149)
were shown in Figure 2(a), and 1827 genes were identifed as
upregulated in cancer stem cells, while 1049 genes down-
regulated. GO (gene ontology) and KEGG analysis were
conducted to explore the biological function of diferent
expression genes (DEGs). GO analysis results identifed
DEGs closely related to development, procession, and cell
diferentiation (Figure 2(c)). Te top 20 pathway terms
enriched were shown in this study (Figure 2(d)). In cancer
stem cells, KEGG analysis revealed that the DEGs were
enriched in metabolism pathways such as glycine, serine and
threonine, phenylalanine, steroid biosynthesis metabolism,
and immunology pathways (complement and coagulation
cascades).

3.3. Stemness-Related Genes(SRGs) Were Highly Associated
with TNBCMetastasis. To validate the relationship between
SRGs and triple-negative breast cancer metastasis, the study
selected two independent TNBC gene expression omnibus
(GEO) datasets. All GEO datasets contain the information
on cancer metastasis and gene expression. Univariate Cox
analysis was applied to explore the prognostic value of SRGs
in two GEO datasets. In the GSE58812 dataset, 888 genes
were found to signifcantly afecting tumor metastasis.
Additionally, 1297 genes were found to signifcantly af-
fecting tumor metastasis in the GSE33926 dataset. 7 genes
were found signifcantly afected TNBC metastasis, in-
cluding CRHR2, MALL, LMTK3, UCN, FDPS, HK2, and

ST3GAL5 (Figure 3(a)). Setting clinical metastasis as the
outcome, Kaplan–Meier curve was used to measure the
predictive value of each of the seven genes on tumor me-
tastasis. As the results showed, the high-expression of six
genes, including CRHR2, MALL, LMTK3, UCN, FDPS, and
HK2, are related to a high rate of metastasis (Figures 3(b)–
3(g)). Combined with Figure 2(b), the six genes were
upregulated in TNBC stem cells when compared with TNBC
adherent cells, which can support the result of those
Kaplan–Meier curves that the six genes are correlated with
TNBC metastasis, respectively. Instead, high ST3GAL5
expression levels were signifcantly associated with a high
metastatic ratio (Figures 3(h)), and 2(b) shown when
comparing with TNBC adherent cells, the expression of
ST3GAL5 was downregulated in TNBC stem cells, and
summarize those evidence, ST3GAL5 may acts as an anti-
tumor factor. To explore the potential drugs for inhibiting
TNBC metastasis, the online gene-drug database STITCH
was used to investigate the interactions between SRGs and
potential target molecules. Te 7 assumed target proteins
were predicted to interact with 6 drugs in the STITCH
database (Figures 3(i)–3(j)). Most of these drugs were
confrmed having the antitumor ability.

3.4.Te Construction of a Gene Signature with Seven SRGs for
Predicting Metastasis of TNBC. Te forest plot showed the
prognostic role of the seven SRGs for TNBC metastasis with
an overall corrected hazard ratio (HR). Consistent with the

RNA-sequence
SUM149 adherent cancer cells and cancer

stem cells

2877 DEGs
FDR (false discovery rate)<0.05 and

|log2FC|(log2FoldChange)> 1

2877
SRGs

KEGG

G O

GSE33926
GSE58812

univariant COX

Pearson
correlation

Kaplan-Meier
analysis

ROC curves

Validation set
GSE33926 7-genes signature

Figure 1: Te fow chart of the research strategy.
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Figure 2: Continued.
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Figure 3: Continued.
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results of Kaplan–Meier curve, low-expression of ST3GAL5
is a risk factor for metastasis. Instead, the low expression of
the other 6 genes can prevent metastasis (Figure 4(a)).
Pearson correlation analysis revealed that the correlation
between the expression levels of each gene within the 7 genes
set (Figure 4(b)). Based on the previous result, we tried to
constructed a multivariate Cox model to study whether the
combination of the seven SRGs could act as a predicting
index for metastasis of TNBC. Among these 107 patients
from database GSE58812, 31 patients were diagnosed with
clinical metastasis, and the remaining 76 patients were
metastasis-free till the end of follow-up. Te Cox regression
coefcients were used in the risk prognostic model. Te 107
patients were divided into high- and low-risk groups
according to the risk score. Te high-risk group is consisted
of patients with prognostic scores higher or equal to the
median of the total risk score, while the low-risk group is
composed of patients with prognostic scores lower than the
median. Te distribution of the prognostic score and the
status of metastasis of each patient are shown in Figure 4(c).
Each of the seven genes expression between two diferent
risk groups was shown in Figure 4(d). A time-dependent
ROC curve with an AUC (area under curve) at 0.769, which
indicated the capability of the 7-SRGs signature to predict
metastasis at 18months (Figure 4(e)).

3.5. Knockdown of LMKT3 Inhibit the Cell Sphere Formation
and Invasion of Triple-Negative Breast Cancer Cells. Te
expression level of the 7-SRGs were explored in triple-
negative breast cancer cells. Te results demonstrated that
CRHR2, MALL, LMTK3, UCN, FDPS, and HK2 mRNA
levels were upregulated in TNBC stem cells.While ST3GAL5
was downregulated (Figure 5(a)). After knocking down
LMKT3, we found that the formation of stem cell spheres
decreased signifcantly, and the invasion of triple-negative
breast cancer cells was inhibited (Figures 5(b) and 5(c)).

3.6. Te Seven SRGs Signature Precisely Predicts Metastasis of
TNBC. Notably, patients with high prognostic scores
(n� 20) appeared prone to metastasis (p� 0.02) (Figure 6(a))
and poor survival outcome (Figure 6(b)). Tese results
suggest that the 7-SRGs gene signature at diagnosis may be
useful for the prediction of metastasis in TNBC patients. To
further validate the signifcance of the 7-SRGs signature in
predicting TNBC metastasis, we applied the Cox pro-
portional hazard model to another independent GEO
dataset (GSE33926). Consisting of the observations made
with the discovery cohort, the the7-SRGs signature model
divided the patients into the high- and low-risk groups based
on the median risk score and the patients with high
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Figure 3: Seven SRGs signifcantly afect the metastasis of TNBC. (a) Te common prognostic genes among three cohorts. (b–h) Te
Kaplan–Meier survival curves of each of the seven SRGs. (i) Te target drugs of the seven SRGs. (j) Te description of the target drugs.
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prognostic scores (n� 24) appeared prone to metastasis
(p� 0.018) (Figure 6(c)). When time-dependent ROC curves
created at 1-, 3-, and 5-years were used to evaluate the power
of the 7-gene signature to predict metastasis, the area under
the curve (AUC) of the classifcation model reached 0.962 at
1-year, 0.785 at 3-years, and 0.837 at 5-years (Figure 6(d)).
Tese results suggest that the 7-SRGs gene signature may
also be useful as a predictive marker in TNBC patients.

4. Discussion

Triple-negative breast cancer is the subtype of breast cancer
with the poorest prognosis. Due to the lack of hormone
receptors, there are few efective target drugs for the treatment
of TNBC. TNBC patients showed higher metastasis and re-
currence rate compared to other breast cancer subtypes. It is
well known that cancer stem cells are closely associated with
cancer metastasis [28]. In this study, we compared the ex-
pression profle between adherent and suspended cancer cells
and validated a set of DEGs that might play roles in main-
taining cancer cell stemness. As cancer stem cells are im-
portant to the invasion and metastasis of neoplastic cells, two
metastasis GEO datasets were used to explore the value of
stemness-related genes in the progression of metastasis. After
selecting the common genes in two GEO datasets, we found 7
genes are critical in the metastasis of TNBC patients.

In these7 genes, the expression of ST3GAL5 is inversely
correlated with the metastasis of TNBC. Other 6 genes
promote the occurrence of TNBCmetastasis. It is interesting
that all seven proteins are upregulated in the high-risk
group, indicating that the model can well divide the risk
factors and is good for predicting the clinical outcomes. In
the seven SRGs, urocortin (UCN) encodes a member of the
corticotropin-releasing factor I family and is highly related
to glioma stemness. UCN is an endogenous ligand for both
corticotropin-releasing factor receptor 1 and corticotropin-
releasing factor receptor 2(CRHR2), that belong to G-pro-
tein-coupled receptors (GPCRs) and play diferent roles in
the central and periphery nervous systems [29]. It was shown

that CRH was also related to TNBC metastasis. CRH family
peptides were found in a series of endocrine-related-cancer
tissues, such as breast cancer and prostate cancer. It is re-
ported that CRH-UCN in cancer cells regulates cellular
proliferation, apoptosis, and migration. CRH inhibited
TGFβ1-induced EMT of breast cancer cells via CRHR1 and
R2, where Snail1 and Twist-repressed E-cadherin expression
is involved. CRH-UCN signaling pathway might play a vital
role in triple-negative breast cancer stem cells. ST3 beta-
galactoside alpha-2,3-sialyltransferase 5(ST3GAL5) is
known to participate in the induction of cell diferentiation,
proliferation, and integrin-mediated cell adhesion [30]. It is
reported that ST3GAL5 can prevent muscle invasion and the
malignant progression of bladder cancer [31]. ST3GAL5
expression knockdown promotes the chemoresistance of
AML cells. Te expression of ST3GAL5 increased signif-
cantly in MCF-7 stem cells. However, this study showed that
ST3GAL5 is downregulated in sum149 stem cells and cor-
related with a good prognosis. Te reason for this phe-
nomenon might be due to the heterogeneity in diferent
breast cancer subtypes. Lemur tyrosine kinase 3(LMTK3) is
an oncogenic receptor tyrosine kinase (RTK) implicated in
various types of cancers, including breast, gastric, and co-
lorectal cancer and melanoma [32–35]. KRAB-associated
protein 1 (KAP1) binding to LMTK3. PP1α stabilized
LMTK3/KAP1 complex by specifcally suppressing KAP1
phosphorylation at LMTK3-associated chromatin regions,
inducing chromatin condensation and resulting in LMTK3-
bound tumor suppressor-like gene silencing, and H3K9me3
modifcation [36]. Mal-T cell diferentiation protein-like
(MALL), is reported to be upregulated in ovarian carci-
noma [37]. MALL overexpression was associated with high-
grade serous ovarian carcinoma stem cells. Patients with
MALL upregulation had poor clinical outcomes [38].
Hexokinase 2(HK2) phosphorylates glucose to produce
glucose-6-phosphate, the frst step in most glucose meta-
bolism pathways. HK2 is expressed at a high level in cancer
cells. HK2 ablation inhibits the neoplastic phenotype of
human gallbladder, lung, and breast cancer cells both in vitro
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Figure 5: Knockdown of LMKT3 inhibits the cell sphere formation and invasion of triple-negative breast cancer cells: (a) the relative
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and in vivo [39–41]. HK2 deletion in lung cancer cells
suppressed glucose-derived ribonucleotides and impaired
glutamine-derived carbon utilization in anaplerosis, thus
inhibiting the proliferation of cancers that rely on rapid
glucose metabolism [41]. HK2 can promote prostate cancer
stem cell self-renewal by enhancing glucose metabolism.
Farnesyl diphosphate synthase (FDPS), a mevalonate
pathway enzyme that catalyzes the production of geranyl
diphosphate and farnesyl diphosphate (FDP) from iso-
pentenyl pyrophosphate and dimethyl-allyl pyrophosphate
[42]. FDPS plays a critical role in cholesterol biosynthesis
(CBS) and protein prenylation [43]. FDPS was found highly
expressed in several cancers. Upregulated FDPS expression
promotes PTEN-defcient prostate cancer proliferation by

activating AKT and ERK signaling by prenylation Rho A,
Rho G, and CDC42 small GTPases [44]. Te FDPS inhibitor
signifcantly reduces the formation of glioma spheres. Most
of the seven SRGs have close interactions. Tey play im-
portant roles in cancer progression. Te model established
by combing the expression of 7 SRGs might be a good
prognostic marker of cancer metastasis.

In summary, we select the stemness-related genes that are
signifcantly related to tumor metastasis in two independent
cohorts. Based on the multivariant COX model, we estab-
lished a model combining the expression of SRGs and the risk
coefcient of the genes. Our results suggest that these seven
proteins contribute to the metastasis of triple-negative breast
cancer and have predictive value for clinical outcomes.
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