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Increasing evidence suggests that diverse activation patterns of metabolic signalling pathways may lead to molecular diversity of
cervical cancer (CC). But rare research focuses on the alternation of fatty acid metabolism (FAM) in CC. Terefore, we con-
structed and compared models based on the expression of FAM-related genes from the Cancer Genome Atlas by diferent
machine learning algorithms. Te most reliable model was built with 14 signifcant genes by LASSO-Cox regression, and the CC
cohort was divided into low-/high-risk groups by the median of risk score. Ten, a feasible nomogram was established and
validated by C-index, calibration curve, net beneft, and decision curve analysis. Furthermore, the hub genes among diferential
expression genes were identifed and the post-transcriptional and translational regulation networks were characterized. Moreover,
the somatic mutation and copy number variation landscapes were depicted. Importantly, the specifc mutation drivers and
signatures of the FAM phenotypes were excavated. As a result, the high-risk samples were featured by activated de novo fatty acid
synthesis, epithelial to mesenchymal transition, angiogenesis, and chronic infammation response, which might be caused by
mutations of oncogenic driver genes in RTK/RAS, PI3K, and NOTCH signalling pathways. Besides the hyperactivity of cytidine
deaminase and defciency of mismatch repair, the mutations of POLEmight be partially responsible for the mutations in the high-
risk group. Next, the antigenome including the neoantigen and cancer germline antigens was estimated.Te decreasing expression
of a series of cancer germline antigens was identifed to be related to reduction of CD8 T cell infltration in the high-risk group.
Ten, the comprehensive evaluation of connotations between the tumour microenvironment and FAM phenotypes demonstrated
that the increasing risk score was related to the suppressive immune microenvironment. Finally, the prediction of therapy targets
revealed that the patients with high risk might be sensitive to the RAF inhibitor AZ628. Our fndings provide a novel insight for
personalized treatment in CC.

1. Introduction

Even with the implementation of HPV vaccination and
screening programs, cervical cancer (CC) remains a major
public health problem among women in high-development
index countries and poverty areas [1]. CC patients often
progress into the advanced stage, and recurrence leads to
a poor prognosis [2]. How to identify the CC patients with
high risk at the time of diagnosis still needs to be addressed
in clinical practice.

Fatty acids (FAs) serve as important components of the
membrane structure, secondary messengers, and fuels of
energy production in cells [3]. To keep rapid and uncontrolled
growth, the cancer cells consume a huge amount of nutrients,
such as FAs and glucose, while excreting wastes which lead to
a nutrient-defcient, acidic, and hypoxic tumour microen-
vironment (TME) [4]. Such hostile TME impairs the normal
metabolic requirements of other intertumoural cells [5].
Among the genetically driven metabolic reprogramming of
cancer cells, the FA metabolism (FAM) has been
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demonstrated to infuence the growth and metastasis of tu-
mour cells and modulate the recruitment and diferentiation
of tumour infltrating cells in the TME [6]. Memory Tcells fail
to develop without FAs in culture [7]. Dendritic cells accu-
mulating large amounts of lipids have been found to lose their
antigen-presenting function in a variety of cancers [8].
Cancer-associated fbroblasts in the TME enhance FAO to
boost colorectal cancer metastasis resulting in a poor prog-
nosis [9]. Te enhanced lipolysis and de novo FA synthesis
also lead to lymphangiogenesis with endothelial cells [10].
However, rare research studies focus on the correlation be-
tween the prognosis of CC and FAM, which needs to be
elucidated. Furthermore, the FAM can be regulated by on-
cogenic signalling pathway directly, namely, growth-factor
receptor tyrosine kinases (RTKs)/RAS [11], phosphoinositide
3-kinase/protein kinase B (PI3K/AKT), and the mitogen-
activated protein kinase (MAPK) signalling pathway [12].
However, the mechanisms driving particular FAM pheno-
types in CC are still unclear. Moreover, increasing pieces of
evidences indicate that the FAs as pivotal mediators can
rewrite the TME and enhance cancer immune evasion and
spread [5]. How FAM phenotypes afect the infltration of
immune and stromal cells is also unknown in the TME of CC.

To clarify the questions mentioned above, our study aims
to construct a reliable and feasible prognostic model
according to the FAM to stratify the CC patients. Fur-
thermore, the specifc mutation drivers of the FAM phe-
notypes and the connotations between the TME landscape
and FAM phenotypes were evaluated systematically. Finally,
due to the essential role of FAM reprogramming in cancer
progression, potential therapy targets were predicted in CC
patients which may provide a novel insight for personalized
treatment.

2. Materials and Methods

2.1. Data Resource and Collection of FAM-Associated Genes.
Te transcriptome data and clinicopathologic information
were downloaded from the Cancer Genome Atlas (TCGA)
database (https://tcga-data.nci.nih.gov/tcga/ and https://
portal.gdc.cancer.gov/), and mRNA expression was
extracted from TCGA RNA-seq data for 306 CCs and 3
surrounding non-cancer tissues [13]. Te genes were an-
notated by gencode.gene.info.v22. After removing patients
without detailed clinicopathologic and overall survival (OS)
information, we obtained 274 patients with CC in TCGA.
Te expression profles of GSE44001 [14], which contained
300 early CC cases with disease-free survival (DFS) in-
formation, were obtained from the GEO (https://www.ncbi.
nlm.nih.gov/geo/) database.Te intersection was made from
the genes related with FAM from GeneCards (https://www.
genecards.org) and gene sets concerning FAM from the
Molecular Signature Database (MSigDB) v7.4. Finally, 309
FAMs were selected (Supplementary Table 1).

2.2. Construction andValidation of FAM-Relevant Prognostic
Signature. Randomly drawn 55% of samples (151 samples)
were used for model training, and the remaining 45% (123

samples) were used for validation in the following analysis.
Te least absolute shrinkage and selection operator (LASSO)
Cox regression analysis was employed in the training set to
build a prognostic model for OS, using the R package
“glmnet” [15]. LASSO-Cox regression analysis primarily
selected useful predictive features to reduce the model
complexity and multicollinearity and avoided overftting to
some extent.Te proportional hazards (PH) assumption was
conducted on the FAM-relevant prognostic genes by the R
package “survival” and “survminer.” According to the
prognostic model, the risk score was exported for each CC
patient:

risk  score(RS) � 
n

i

(Expi∗Coefi). (1)

Expi means the expression level of each FAM gene, and
Coef stands for the corresponding regression coefcient. To
make the prognostic model as concise as possible, the pa-
tients were divided into high-risk and low-risk groups by the
median of RS.Te risk curve was plotted according to the RS
and risk group, and the survival status and RS were evaluated
according to the curve.

To evaluate the feasibility of the prognostic model in
predicting survival in CC patients, we conducted
a Kaplan–Meier analysis of overall survival (OS) by the R
package “survival,” operating characteristic curve (ROC),
and area under the curve (AUC) by the means of the R
package “timeROC” in both the training dataset and testing
dataset. Kaplan–Meier survival curves were plotted and p

values were calculated using the log-rank test to explore the
survival diference between risk groups [16]. Te AUC
ranges from 0 to 1. When AUC lies between 0.5 and 0.6, 0.6
and 0.7, or is >0.7, the performance of the model is con-
sidered poor, fair, or good, respectively.

2.3. Establishment and Validation of a Nomogram. Te PH
assumption was conducted on the RS and risk grouping by
the R package “survival” and “survminer.” To compare the
predictive value of risk grouping or RS in survival analysis
with traditional clinical-pathologic parameters, the uni-
variate Cox regression and multivariate Cox regression were
employed to calculate hazard ratios (HRs) and 95% conf-
dence intervals (CIs) by the R package “survival” and
“survminer.” To further improve the predictive accuracy of
our FAM gene signature by combining it with other clinical-
pathologic features (e.g., body mass index (BMI), pathology
type, pathology grade, and stage), we built an easy-to-use
and clinically adaptable risk nomogram for predicting the
OS probability in CC patients using the “rms” package in R
[17].TeOS probabilities were predicted for 1-, 2-, 3-, and 5-
year survival.

Te validation of the nomogram-based prediction model
was accessed via bootstrapped calibration curves using
“rms” in R and quantifed as a Harrell’s concordance index
(C-index) by the function “rcorrcens” in R package “Hmisc.”
C-index was utilized to evaluate the discriminative capa-
bilities of the nomograms. Calibration curves (1000 boot-
strap resamples) were generated to compare the consistency
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between the predicted and observed OS for 1, 2, 3, and
5 years [18]. Te net reclassifcation index (NRI) was
employed to evaluate the added value of new risk group or
RS to existing prognostic models. Decision curve analysis
(DCA) was applied to evaluate the impact on decision
making in clinical practice of the nomograms using the
“stdca” function in R [19].

2.4. Comparison of Models Built by Other Machine Learning
Methods. Furthermore, to choose the best prognostic
model, the support vector machine (SVM) and the random
forest method were performed to classify the vital status in
the CC cohort using “e1071” and “randomForest” packages
in R. Te 274 CC cohort was randomly divided into
a training cohort and a testing cohort as described before.
Te Wilcoxon test assessed the performance of the SVM
model and random forest model. Te discriminatory power
of the SVM model and random forest model on vital status
was assessed by the AUC in training and testing datasets. To
obtain the best SVM model, the AUC and prediction ac-
curacy of the linear, polynomial, radial, and sigmoid models
were compared. Te variables were derived from the best
polynomial model. Ten, to further compare the discrimi-
native ability between the FAM genes and our signature
genes, principal component analysis (PCA) was carried out
using the “pca” function.

2.5. Identifcation of Diferential Expression Genes and
Functional Enrichment Analysis. Diferential expression
genes (DEGs) for low/high-risk groups were calculated by
the R “limma” package. Te threshold (adjusted p value
<0.05 and |Log2 fold change (FC)| > 1.2) was used as
a selection criterion for the DEGs. A volcano plot and
a heat map of the DEGs were depictured. Gene ontology
(GO) enrichment [20] and gene set enrichment analysis
(GSEA) [21] were employed to decipher the enrichment of
signalling transductions and biological functions in the
DEGs in CC patients using the functions of gseGO and
gseKEGG in “GSEA” package. Te enrichments according
to the MSigDB and Reactome were analysed. Ten, gene
set variation analysis (GSVA) was further carried out by
the “GSVA” in R [22]. Te gene sets of “h.hall-
mark.v7.4.symbols.gmt” (HALLMARK) and
“c2.cp.kegg.v7.4.symbols.gmt” (KEGG) were used as the
reference molecular signature databases, and adjusted p

value <0.05 and |Log2 (FC)| > 0.1) were considered sta-
tistically signifcant.

2.6. Identifcation of Hub Genes and Regulation Network.
To obtain the hub genes among the DEGs, the “GOSemSim”
package in R was employed [23]. Meanwhile, the likelihood
of protein-protein interactions (PPIs) among the DEGs was
identifed in our study from STRING database, which is
based on either literature of direct interaction experiments
or prediction from co-expression and gene arrangement in
the genome. Moreover, the list of 318 transcription factors
was acquired from https://www.cistrome.org/. Te

correlation between the DEGs and transcription factors was
defned as the correlation coefcient (R) = 0.5, p val-
ue = 0.001. Additionally, the miRNAs that interact with the
DEGs, validated by luciferase reporter assay, were obtained
by R packages “multiMiR” and “mirtarbase” [24]. Te long
non-coding RNAs (lncRNAs) interacting with miRNAs
were obtained from “starbase” [25]. Te correlation among
the DEGs, miRNAs, and lncRNAs was illustrated by
“ggalluvial” package.

2.7. Somatic Genomic Alternation Analysis. To identify the
gene mutation characteristics in CC patients, we analysed
somatic mutation data by the R package “maftools” [26].Te
summary oncoplots were based on MutSigCV algorithm by
maftools. Te mutation pattern of specifc genes was rep-
resented by oncoplot function in maftools. Transitions and
transversions were calculated using the titv function in
maftools. Te changes in the amino acid of a certain protein
were depictured by the lollipopPlot in maftools. Te tumour
mutational burden (TMB) values were calculated in units of
mutations per megabase (MB) and characterized as low
(TMB< 6), intermediate (6≤TMB< 20), or high
(TMB≥ 20) [27].

2.8. Identifcation of Mutation Driver and Afected Signalling
Pathway. Te function oncodrive in maftools [26] was
employed to identify driver genes, based on Onco-
driveCLUST algorithm [28]. Te OncogenicPathways
function was used to check the enrichment of oncogenic
signalling pathways. Te efects of a specifc gene mutation
on OS were manifested by mafSurvival in maftools [26]. Te
comparison of the two risk groups to detect diferentially
mutated genes was achieved by mafCompare in maftools
and then the result was visualized by forestPlot in maftools.
Te drug-gene interactions were checked by the dru-
gInteractions in maftools.

2.9. De Novo Mutational Signature Analysis and APOBEC
Enrichment Estimation. Te signature analysis was per-
formed by a series of functions in maftools. Te mutational
matrix was frst decomposed into signatures by negative
matrix factorization. Te extracted signatures then were
compared against the Catalogue of Somatic Mutations in
Cancer (COSMIC) mutational signatures v2 and updated
v3 [29]. Te diferent mutation patterns between apoli-
poprotein B mRNA editing enzyme, catalytic polypeptide-
like (APOBEC) enriched and non-APOBEC enriched
samples were achieved by the function plotApobecDif of
maftools.

2.10. Copy Number Variation Analysis. Because the copy
number variations (CNVs) can contribute to cancer sus-
ceptibility, we further detected the common CNV regions by
the GenePattern website (https://cloud.genepattern.org/gp/
pages/index.jsf ) with corresponding GISTIC 2.0
module [30].
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2.11. Identifcation of Neoantigens. We sought to explore
neoantigen in the both groups of CC patients and re-
sponsiveness to therapies. Te neoantigen data from the CC
cohort were downloaded from https://biopharm.zju.edu.cn/
tsnadb [31] and https://tcia.at/home [32]. Te neoantigen
burden of a certain patient was predicted bioinformatically,
as following standards. Te half maximal inhibitory con-
centration (IC50)< 500 nM was considered a predicted
binder. Patient-specifc neoantigens were defned as any
unique combination of peptide sequence: human leukocyte
antigen (HLA)-allele with mutant peptide-binding afnity
IC50< 500 nM, and corresponding wild-type peptide
IC50> 500 nM. Expressed neoantigens were defned as
neoantigens with RNA-sequencing counts ≥1 [33].

2.12. Correlation between Cancer Germline Antigens and
Immune Cell Infltration. To chart the antigenome for each
sample, we used RNA-sequencing data to derive expression
levels of cancer germline antigens (CGAs). Due to the low
tumoural specifcity of CGAs, we used the CGA gene list
retrieved from https://tcia.at [32]. Te expression levels of
CGA genes were compared between both of the groups, and
we obtained 37 diferentially expressed CGAs according to
the risk levels. Furthermore, we explored the relationship
between the 37 genes and CD8 T and regulatory T cell
enrichment by the “corrplot” in R.

2.13. Evaluation of the Cellular Composition in Tumour
Microenvironment. To provide a comprehensive view of the
cellular composition of the intratumoural immune in-
fltrates, we carried out the immunogenomic characteriza-
tion of the CC patients by the “IOBR” package [34], which
includes 8 algorithms to estimate the immune infltrating
cells. To further identify the signifcantly enriched cells in the
TME, the correlations between the RS and each type of
infltrating cells were calculated by “corrplot” in R and the
importance of each infltrating cells in survival was calcu-
lated as log10 transformed p value by Cox regression. Te
infltrating cell types with a p value of correlation under 0.01
were selected and depictured. Potential implications for
immunotherapy were calculated by the website https://tide.
dfci.harvard.edu/ [35].

2.14. Exploration of Potential Terapeutic Drugs concerning
PrognosticModels. To explore potential clinical drugs for the
treatment of high-risk CC patients, we used the R package
“pRRophetic” to predict the sensitivity to the compounds
obtained from the Genomics of Drug Sensitivity in Cancer
(GDSC) website according to the CC dataset in TCGA
database [36].

2.15. Statistical Analysis. Continuous variables were com-
pared by the Wilcox test, while categorized variables were
compared by ANOVA. All the analyses were performed by R
software (Version 4.1.3, the R foundation for statistical
computing). P values lower than 0.05 were considered to be
signifcant unless special instruction was given.

3. Results

3.1. Construction and Validation of FAM-Relevant Prognostic
Model. We utilized the LASSO-penalized Cox regression to
determine the LASSO tuning parameter λ, resulting in the
minimum squared error. Te results showed that when
specifc 14 genes were included in the prognostic model, the
model contraction was stable, the partial likelihood deviance
was minimal, and the optimal λ was 0.01961 (Figures 1(a)
and 1(b)). Finally, 14-gene signature based on FAM, in-
cluding CD1d molecule (CD1D), carboxyl ester lipase
(CEL), non-SMC condensin II complex subunit H2
(NCAPH2), succinate dehydrogenase complex subunit D
(SDHD), alcohol dehydrogenase class II Pi chain (ADH4),
holocytochrome C synthase (HCCS), thyroid hormone-
responsive (THRSP), glutaryl-CoA dehydrogenase
(GCDH), nudix hydrolase 7 (NUDT7), dipeptidase 2
(DPEP2), serine incorporator 1 (SERINC1), macrophage
migration inhibitory factor (MIF), ELOVL fatty acid elon-
gase 7 (ELOVL7), and cytochrome P450 family 1 subfamily
A member 1 (CYP1A1), was identifed to construct the
prognostic model. Te coefcient of each gene is summa-
rized in Supplementary Table 2. Te results of the PH as-
sumption of each gene are listed in Supplementary Table 3
and Supplementary Figures 3a–3n and 3q–3t.Te CC cohort
was divided into a low-risk group and a high-risk group by
themedian of RS (Figure 1(d)).Te expression levels of these
14 genes were represented in the diferent risk groups
(Figure 1(c)). To verify the utility of our prognostic model,
the associations among vital status, time, and RS of each
group were determined. With the increasing RS, the death
events tended to increase in CC patients (Figure 1(e)).
Furthermore, the results showed that the patients in the
high-risk group had a worse OS than those in the low-risk
group in both the training cohort and testing cohort
(p< 0.001 and p � 0.035, respectively, Figures 1(f) and
1(g)). Furthermore, ROC was employed to confrm the
predictive value of the model. We observed that the AUC
values were 0.891, 0.851, and 0.870 at 1 year, 3 years, and
5 years, respectively, which may suggest that the perfor-
mance of the model was good at all three time points in the
training dataset (Figure 1(i)). In the testing dataset, the
performance of the model decreased a bit at 1 year to a fair
level (AUC: 0.674), but it came back to a good level at 3 years
and 5 years (AUC: 0.724 and 0.730, Figure 1(j)). As there is
no available CC dataset with OS, we utilized the early CC
dataset GSE44001 with DFS to validate the predictive validity
of our model. We revealed a trend that the patients had
shorter DFS in the high-risk group than those in the low-risk
group (p � 0.061, Figures 1(h)). In the early CC cohort, the
AUC was 0.631, 0.627, and 0.544 at 1, 3, and 5 years, re-
spectively (Figure 1(k)), which indicates a fair performance
to predict DFS in early CC patients. All the results above
suggest that our FAMmodel can be used in the prediction of
the survival status in CC patients.

3.2. Establishment and Validation of a Nomogram. In the
univariate and multivariate analysis, the risk group
(p< 0.001, HR 3.858, 95% CI: 2.025–7.348; p< 0.001, HR:
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Figure 1: Construction and validation of FAM-relevant prognostic signature. Shrinkage of coefcients (a) and partial likelihood deviance
(b) in LASSO-Cox regression analysis. (c) Expression levels of 14 signifcant genes in LASSO model. (d) Te grouping of patients based on
the median risk score. (e)Te survival time of patients concerning the risk score. Kaplan–Meier (KM) analyses of OS based on risk group in
training cohort (f ) and testing cohort (g). KM analyses of DFS based on risk group in validation cohort GSE44001 (h).Te receiver operating
characteristic curve of the LASSO model in training cohort (i), testing cohort (j) and validation cohort (k). CD1D, CD1d molecule; CEL,
carboxyl ester lipase; NCAPH2, non-SMC condensin II complex subunit H2; SDHD, succinate dehydrogenase complex subunit D; ADH4,
alcohol dehydrogenase class II Pi chain; HCCS, holocytochrome C synthase; THRSP, thyroid hormone responsive; GCDH, glutaryl-CoA
dehydrogenase; NUDT7, nudix hydrolase 7; DPEP2, dipeptidase 2; SERINC1, serine incorporator 1; MIF, macrophage migration inhibitory
factor; ELOVL7, ELOVL fatty acid elongase 7; CYP1A1, cytochrome P450 family 1 subfamily A member 1.
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3.963, 95% CI: 2.064–7.612, respectively) and advanced stage
(p< 0.001, HR: 2.900, 95% CI: 1.606–5.236; p< 0.001, HR:
3.091, 95% CI: 1.585–6.107, respectively) emerged as sig-
nifcant risk factors for worse OS (Figures 2(a) and 2(b)). We
also established the univariate and multivariate Cox re-
gression model for the RS and revealed that the RS was the
independent predictor for predicting worse OS in both
univariate and multivariate analysis in CC patients
(p< 0.001, HR: 5.746, 95% CI: 3.281–10.061; p< 0.001, HR:
5.210, 95% CI: 2.695–10.072; Supplementary Figures 1a and
1b), while only the advanced stage showed signifcance in
univariate analysis (p< 0.001, HR: 1.779, 95% CI:
1.353–2.339; Supplementary Figures 1a and 1b). In addition,
the results of the PH assumption of risk score and risk group
are shown in Supplementary Figures 3o, 3p, 3u, and 3v and
Supplementary Table 3, and no statistically signifcant results
were found. Taken together, our results suggest that our
FAM gene signature is not inferior to traditional clinico-
pathological variables, such as stage, and even superior to the
pathology grade and type in the clinical practice and can
serve as an independent predictor of survival in CC patients.
As depicted in Figure 2(c) and Supplementary Figure 1c,
a higher total score according to the sum of the assigned
numbers for each parameter in the nomogram was corre-
lated with worse 1-, 2-, 3-, and 5-year OS probabilities. For
instance, a patient with an advanced stage and a higher risk
score would yield a total of 180 points (80 points for stage 4,
and 100 points for the high-risk group), with predicted 3-
year OS rates of less than 90% (Figure 2(c)).

To validate the risk nomogram model, the predictive per-
formance of the nomogram was assessed by computing the
discrimination index and the calibration plot of the model for
the 1-, 2-, 3-, and 5-year survival. Te C-index was 0.77 or 0.79
for our nomogramwith the risk group or RS, respectively, which
suggests a good discriminative ability of the nomogram. Cali-
bration plots measure the coherence between the outcomes
predicted by the nomogrammodels and the actual outcomes in
the CC cohort. Te predictions made by the nomogram model
were close to the observed outcomes (1-, 2-, 3-, and 5-year
survival) (Figures 3(a)–3(d) for the nomogram with risk group;
Supplementary Figures 2a–2d for the nomogram with RS). In
addition, to access the accuracy of movement in risk classif-
cation, we calculated theNRI for our newprognosticmodel with
the risk group. As a result, when our newmodel with risk group
was compared with the previous standard, NRI displayed an
improved reclassifcation with 72.14% improvement in the
prediction accuracy of 3-year survival probability and 49.98%
improvement in the prediction accuracy of 5-year survival
probability (Figures 3(e)–3(h) for the nomogram with risk
group). For the nomogram model with RS, a 45.72% im-
provement in the prediction accuracy of 3-year survival prob-
ability and a 33.75% improvement in the prediction accuracy of
5-year survival probability were observed in the newmodel with
RS (Supplementary Figures 2e–2h). Finally, DCA plots revealed
the clinical utility of the nomogram model with or without the
risk group and the net beneft of using both models to stratify
patients relative to none (assuming that no patient will have an

event). Te nomogram with risk group displayed a larger net
beneft across the range of risk thresholds (≥0.15 for 1-year
survival, 0 to around 0.22 for 2-year survival, and 0 to around 0.4
for 3-year and 5-year survival) compared to the model with
clinical variables only (Figures 3(i)–3(l)). Better net benefts were
observed in the nomogram with RS in comparison to the
traditional model of 1-, 2-, 3-, and 5-year survival (Supple-
mentary Figures 2i–2l).

3.3. Comparison of Models Built by Other Machine Learning
Methods. Next, to compare the predictive value among dif-
ferent models, we used the expression levels of the 309 FAM
genes to construct the SVMmodel.Te polynomial SVMmodel
performed rather impressively with the best degree of 4 and
coefcient of 0.1 in the training dataset (p< 0.001 by Wilcoxon
test, AUC=1, Figures 4(a) and 4(c)), but it failed in the testing
dataset (p � 0.52 by Wilcoxon test, AUC=0.54, Figures 4(b)
and 4(d)). Te signifcant variable list in SVM is summarized in
Supplementary Table 4 (Figure 4(q)). Similar classifcation re-
sults were observed using the random forest algorithm, a sig-
nifcant result in the training cohort (p< 0.001 byWilcoxon test,
AUC=1, Figures 4(i) and 4(k)), but an underwhelming result in
test dataset (p � 0.048 by Wilcoxon test, AUC=0.62,
Figures 4(j) and 4(l)). Te selection process and the top 40
important genes in the random forest are shown in Figures 4(r)
and 4(s). Besides, we performed the univariate Cox regression to
select the genes correlatedwithOS (Supplementary Table 5).Te
intersection of signifcant genes in each model is displayed in
Figure 4(t) and Supplementary Table 6. Ten, we employed the
14 specifc genes to construct the classifcation by SVM and
random forest to check whether the predictive value was im-
proved. In the training cohort, the performance of the SVM and
random forest model was impressive (p< 0.001 by Wilcoxon
test, AUC=0.91 in the SVMmodel; p< 0.001 by the Wilcoxon
test, AUC=0.1 in the random forest model; Figures 4(e), 4(g),
4(m) and 4(o)). Te predictive value of the SVM model with
signature genes (p � 0.039 by the Wilcoxon test, AUC=0.63,
Figures 4(f) and 4(h)) was slightly improved as compared to the
SVM model with the FAM genes in the testing dataset. Te
discriminative ability of the random forest model with signature
genes did not improve compared to the model with FAM genes
(p � 0.052 byWilcoxon test, AUC=0.62, Figures 4(n) and 4(p))
in the testing cohort. In addition, a separation was observed
using a PCA analysis using the 14-gene signature, but there was
no separation using the FAM genes (Figures 4(u) and 4(v)).
Taken together, the predictive ability of the LASSO-Cox model
was the best among all the models we established, which was
superior to the SVM and random forest models according to
the AUC.

3.4. Identifcation of the FAM Phenotype concerning the Risk
Grouping. Te FAM remodeling in cancer contains aberrant
changes in endogenous FA uptake, de novo synthesis, and
β-oxidation to produce energy and store FA. Terefore, we
further explored the FAM alteration in high-risk CC patients.
Te transporters of FA on the plasma membranes contain the
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FA transport protein family, FA binding proteins, and FA
translocase [37]. We found that the FA translocase, CD36,
tended to be increased (p � 0.067, Supplementary Figure 4e),
while the solute carrier protein family 27 (SLC27) was de-
creased (p � 0.029 for SLC27A1,p � 0.0069 for SLC27A2,p �

0.00044 for SLC27A3, p � 0.015 for SLC27A5, Supplementary

Figures 4ag, 4ah, 4ad, and 4ak) in the high-risk group, which
may suggest that those cancer cells do not rely on the exog-
enous uptake of FA much. Since the CC cells in the high-risk
group do not rely on the exogenous uptake of FA, the bio-
synthesis of FA from glucose, acetate, or glutamine is apparent
to be important. Notably, we revealed that the de novo
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Figure 2: Establishment of a FAM-related clinicopathologic nomogram. Univariate Cox regression analysis (a) and multivariate Cox
regression analysis (b) of the risk group based on FAM signature and clinicopathologic parameters. Bars indicate 95% CI of HR. (c)
Establishment of a prognostic nomogram to predict 1-, 2-, 3-, and 5-year OS in CC patients.
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synthesis of FA was signifcantly upregulated in CC patients
with high risk. Te enzymes involved in the synthesis of
glutamine or acetate to citrate were enhanced, including glu-
taminase (GLS, p � 0.0013) (Supplementary Figure 4ab).
Moreover, the production of palmitate from citrate was pro-
moted through the upregulated expression of ATP-citrate lyase
(ACLY, p � 0.034, Supplementary Figure 4a), FA synthase
(FASN, p � 0.042, Supplementary Figure 4aa), and long-
chainacyl-CoA synthetase 3 (ACSL3, p � 0.041, Supplemen-
tary Figure 4b). Ten, the saturation of FA was promoted by
high expression of stearoyl-CoA desaturase (SCD, p � 0.018,
Supplementary Figure 3af). However, the alternation of β
oxidation was complex. Some enzymes of β oxidation were
downregulated, such as carnitine palmitoyltransferase 1A
(CPT1A, p � 1.9 × 10− 5) and CPT1B (p � 0.00024) while the
CUB domain-containing protein 1 (CDCP1) was increased
(p � 2.6 × 10− 5, Supplementary Figure 4g). Similarly, the
elongation of FA has to be checked comprehensively, as the
expression of ELOVL FA elongase 2 (ELOVL2, p � 0.0088)

was increased while ELOVL7 (p< 0.001) was decreased in the
high-risk group (Supplementary Figures 4k and 4p). So, we
may speculate that the CC patients with high risk were featured
by enhanced de novo synthesis of FA in our study.

3.5. Identifcation of DEGs and Functional Enrichment
Analysis. To search for the regulation factors and efectors
between the two groups, diferential gene expression analysis
was frst performed. Diferential expression analysis identifed 51
DEGs between the two groups, in which 27 genes were upre-
gulated, whereas 24 geneswere downregulated (Figure 5(a)).Te
top 5 upregulated and downregulated genes are highlighted in
Figure 5(b).Ten, the GO and KEGG enrichment analyses were
performed among the DEGs. Te results of the GO analysis are
demonstrated in Supplementary Figure 5a. In the KEGG
analysis, the metabolic pathways were signifcantly enriched
(p � 0.0054, Supplementary Figures 5b and 5c). In addition, the
housekeeping genes were activated in the Msigdb enrichment,
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Figure 3: Validation of nomogram with risk group. Calibration curve to assess the consistency of predicted at 1 year (a), 2 years (b), 3 years
(c), and 5 years (d) by the nomogram with risk group and actual overall survival. Te net reclassifcation index (NRI) to evaluate the added
value of new nomogram with risk group to existing prognostic models at 1 year (e), 2 years (f ), 3 years (g), and 5 years (h). Decision curve
analysis (DCA) to evaluate the clinical decision-making benefts of the nomogram with risk group at 1 year (i), 2 years (j), 3 years (k), and
5 years (l). NRI, net reclassifcation index; DCA, decision curve analysis.
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among which COX6A1 and COX8A were involved in ATP
synthesis and mitochondrial energy metabolism (Supplemen-
tary Figure 6a), and the metabolic genes regulated by TP53 were
activated in the Reactome analysis (Supplementary Figure 6b).
Te results above indicate that the metabolism was enhanced in
the high-risk group.

In the GSVA analysis, according to the HALLMARK gene
set, we found that the coagulation, Kirsten rat sarcoma viral
oncogene homolog (KRAS) signalling, tumour necrosis factor
(TNF) signalling via nuclear factor κB (NFκB), complement
and infammatory response, interleukin 6(IL6)-Janus kinase
(JAK)-signal transducer and activator of transcription 3
(STAT3) signalling, transforming growth factor β (TGFβ)
signalling, apical junction, angiogenesis, and epithelial-
mesenchymal transition were activated in the high-risk
group, whereas the E2F targets, G2M checkpoint, DNA re-
pair, and oxidative phosphorylation were inhibited in the high-
risk group (Figure 5(c)). Similar results were obtained in KEGG
analysis, for example, complement and coagulation cascades

were activated in the high-risk group, and oxidative phos-
phorylation, homologous recombination, base excision repair
nucleotide excision repair, DNA replication, mismatch repair,
and cell cycle were downregulated in the high-risk group
(Figure 5(d)). Tose results may indicate that special in-
fammatory mediators, TNFα, IL6, TGFβ, and complements,
might create an immunosuppressive microenvironment with
chronic infammation in high-risk CC patients, which support
tumour progression and metastasis by activating several sig-
nalling pathways, namely, NFκB, JAK-STAT3, TGFβ, and
KRAS signalling.

3.6. Identifcation of Hub Genes and Regulation Network.
Te hub genes among the DEGs obtained by “GOSemSim”
analysis are listed in Figure 5(e). Te likelihood of PPI is
identifed in Figure 6(a). Ten, the proteins in the PPI
network were further analysed by Cytoscape CytoHubba.
Te top 40 genes were fltered by the algorithm “closeness” as
in Figure 5(f). Te intersection of the hub genes derived
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Figure 5: Identifcation of diferential expression genes and functional enrichment analysis. (a) Heatmap of 51 diferentially expressed genes
concerning the risk groups. (b) Volcano plot exhibiting 51 DEGs with highlighting of the top 5 upregulated genes in red and top 5
downregulated genes in blue. HALLMARK (c) and KEGG (d) pathways based on risk groups by GSVA. Te hub genes among DEGs
identifed by “friends” analysis (e) and “closeness” in Cytoscape CytoHubba (f ).
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Figure 6: Continued.
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from “friends” and “closeness” is listed in Supplementary
Table 7. Besides the direct interaction of proteins among
DEGs (Figure 6(a)), we also explored the transcription
regulation and identifed 32 transcription factors based on
the DEGs as shown in Figure 6(b) (the transcription factors
are listed in the Supplementary Table 8). Furthermore, the
post-transcriptional regulations by miRNA and lncRNA
were inferred (Figure 6(c)).

Notably, the SRY-box transcription factor 2, SOX2, was
rather active. SOX2 is the centre of the transcriptional network
infuencing pluripotency and is essential in formation of cancer
stem cells and resistance to treatment [38, 39].

3.7. Somatic Genomic Alternation Analysis. First, the somatic
mutation landscapes were summarized according to risk
grouping (Figures 7(a) and 7(b)). Te somatic variants contain
single-nucleotide variants (SNVs) and small insertions/deletions
(indels). In both the risk groups, the top 3 variant classifcations
were missense mutation, nonsense mutation, and frameshift
deletion and the most frequent variant type was single-
nucleotide polymorphism (SNP) (Figures 7(a) and 7(b)).
SNV with C>Toccurred predominantly in both groups. Tere
were 17606 C>Tbase substitutions in the high risk group and
30151 C>T base substitutions in the high risk group
(Figures 7(a) and 7(b)). Te median of variants per sample was
69.5 in the low-risk group and 64.5 in the high-risk group
(Figures 7(a) and 7(b)). Similar to the results of variants per
sample, the TMB was 1.39/MB in the low-risk group and 1.29/
MB in the high-risk group, suggesting low TMB in CC patients
(Supplementary Figures 7c and 7d).Te top threemutated genes

were tinin (TTN), mucin 4 (MUC4), and phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in
the low-risk group and TTN, mucin 16 (MUC16), and PIK3CA
in the high-risk group (Figures 7(a)–7(c)). In addition, 210
samples (84.68%) were detected to have somatic mutations in
the whole CC cohort (Figure 7(c)). Among them, 114 samples
(90.48%) had somatic mutations in the low-risk group, and 107
(87.7%) had somatic mutations in the high-risk group (Sup-
plementary Figures 8a and 8b). Next, we found that the mu-
tation frequency of the signature genes difered in diferent risk
groups (Figure 7(d)). For example, the mutation rate of
NCAPH2 was 6% in the high-risk group, whereas only 1% was
in the low-risk group (Figure 7(d)). Te mutation pattern of the
signature genes was distinguished in the respective group
(Figure 7(e)), especially NCAPH2, which was identifed as
a potential driver gene in CC [40].

As SNPs are classifed into two conversions of transitions
(A>G/G>A and T>C/C>T) and four conversions of
transversions (C>A/A>C, C>G/G>C, T>A/A>T, and
T>G/G>T) according to the types of base substitution.
Supplementary Figure 9 shows the fraction of conversions in
each sample. Te C>T transversion accounted for the
highest incidence among the six conversions in both groups.

3.8. Identifcation of Mutation Driver and Afected Signalling
Pathway. During the progression of cancer, initiation and
promotion of tumour development are considered by driver
mutations [41]. Te comparison revealed 28 signifcant
genes with diferential mutation patterns concerning the risk
grouping (p< 0.05, Figure 8(a)). Among them, 25 genes
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Figure 6: Regulation network of DEGs. (a) Te direct interactions of protein among DEGs. (b) Te transcriptional regulation network
among DEGs. (c) Te post-transcriptional regulation network of DEGs.
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Figure 7: Somatic genomic alternation analysis. Te summary of the mutated genes, according to variant classifcation, variant type and
SNV class, mutation load for each sample, and variant classifcation type in the low-risk group (a) and the high-risk group (b). (c) Te
oncoplot displays the somatic mutation landscape of top 20 genes based on risk levels. (d) Te mutation patterns of the 14 signature genes
based on risk groups. (e) Lollipop plot displays mutation distribution and protein domains for NCAPH2 in diferent risk groups with
labelled recurrent hotspots. SNVs, single-nucleotide variants.

Journal of Oncology 17



>

>
>

>

0 1 2 3

FBXW7
FAT1
ZDBF2
PXDN
PCDH15
DIP2B
CACNB4
SYT14
SPARCL1
SETX
SCAF11
RAB3GAP2
PRDM15
PCDHB11
MAP7D2
JAK2
IDE
EIF4G1
EHBP1L1
CFI
ASCC3
ADGRG2
DMD
SCN11A
VPS13A
PLEKHG4
CRYBG3
NBEAL1

highrisk (n = 122) v/s lowrisk (n = 126)

8
13
8
8
8
0
0
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
9
7

10
8
8

10

high
risk

20
4
1
1
1
7
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

23
0
1
0
0
0

low
risk

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
**
**
**
**
***

P−value

Odds ratio with 95% CI
(1 = no efect, < 1 highrisk has more mutants)

(a)

lowrisk (N = 126)

16
3
1
1
1
6
6
0
0
0
0
0
0
0
0
0
0
0

18
0
1
0
0
0

FBXW7
FAT1

ZDBF2
PXDN

PCDH15
DIP2B

CACNB4
SYT14

SPARCL1
SETX

MAP7D2
JAK2

IDE
EIF4G1

EHBP1L1
CFI

ASCC3
ADGRG2

DMD
SCN11A
VPS13A

PLEKHG4
CRYBG3
NBEAL1

highrisk (N = 122)

7
11
7
7
7
0
0
5
5
5
5
5
5
5
5
5
5
5
7
6
8
7
7
8

(%
)

(%
)

Missense_Mutation
Nonsense_Mutation
Splice_Site
Frame_Shif_Del

Multi_Hit
Frame_Shif_Ins
In_Frame_Del

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5
KRAS (2)

PIK3CA (4)

ERBB3 (1)
FBXW7 (3)

Fraction of variants within clusters

−l
og

10
 (f

dr
)

Low Risk

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

ERBB2 (1)
NBPF14 (2)

MAPK1 (1)

KRAS (1)

Fraction of variants within clusters

−l
og

10
 (f

dr
)

High Risk

(d)

NRF2

MYC

TP53

Cell_Cycle

TGF−Beta

PI3K

Hippo

WNT

NOTCH

RTK−RAS

Pathway

3/3

5/13

5/6

6/15

6/7

20/29

25/38

30/68

41/71

59/85

0.00 0.25 0.50 0.75 1.00

Fraction of pathway afected

7/126

6/126

16/126

18/126

11/126

52/126

44/126

33/126

68/126

73/126

0.00 0.25 0.50 0.75 1.00

Fraction of samples afected

Low Risk

(e)

NRF2

TP53

TGF−Beta

MYC

Cell_Cycle

PI3K

Hippo

NOTCH

WNT

RTK−RAS

Pathway

3/3

5/6

6/7

10/13

12/15

23/29

30/38

50/71

50/68

68/85

0.00 0.25 0.50 0.75 1.00

Fraction of pathway afected

9/122

14/122

15/122

10/122

13/122

59/122

50/122

62/122

39/122

66/122

0.00 0.25 0.50 0.75 1.00

Fraction of samples afected

High Risk

(f )

Figure 8: Identifcation of mutation driver and afected signalling pathway. (a) Diferentially mutated genes between the low-risk group and
the high-risk group are displayed as a forest plot. Bars indicate 95% CIs of OR. Te table in the right demonstrated the number of
sampleswith the mutant in the low-risk group and the high-risk group.. ∗∗∗p< 0.001, ∗∗p< 0.01, and ∗p< 0.05. (b)Temutation patterns of
the diferentially mutated genes are based on risk groups. Driver genes identifed by oncodrive function in maftools in the low-risk group (c)
and in the high-risk group (d), and the highlighted number with the brackets stands for closely spaced mutational clusters. Te enrichment
of known oncogenic signalling pathways in the low-risk group (e) and in the high-risk group (f) displayed in fraction of pathway afected
and fraction of samples afected.
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were signifcantly enriched in the high-risk group, and the
other four were enriched in the low-risk group (Figures 8(a)
and 8(b)). Furthermore, the top four driver genes, KRAS,
PIK3CA, F-box and WD repeat domain containing 7
(FBXW7), and ERBB3, were identifed in the low-risk group,
enriched in RTK-RAS and PI3K-AKT signalling pathway
(Figure 8(c)). Interestingly, the mutation of FBXW7, in-
volved in NOTCH signalling, was detected in 16% of low-
risk patients (Figure 8(b)); however, the overall mutation
frequency of FBXW7 in CCwas around 6% [42]. Meanwhile,
neuroblastoma breakpoint family member 14 (NBPF14),
ERBB2, MAPK1, and KRAS were identifed as driver genes
in the high-risk group, mainly enriched in the RTK-
RAS-MAPK signalling pathway (Figure 8(d)). Te mutation
hotspots of the top four driver genes in the two cohorts are
shown in Supplementary Figure 10. G12V and G12D mu-
tations of KRAS were observed in the low-risk groups, while
G12C was observed in the high-risk group and G13D was
observed in both groups (Supplementary Figure 10a). Te
E542K and E545K mutations of PIK3CA were present in
both groups, (Supplementary Figure 10b). Tis result was
consistent with the previous result that PIK3CA is the third
mutated gene in both groups (Figures 7(a) and 7(b)). Te
E322K ofMAPK1was found in both groups, and D321N and
R135K were exclusively in the high-risk group (Supple-
mentary Figure 10c). Te R505, R479, and R465 mutations
of FBXW7 mostly occurred in the low-risk group (Sup-
plementary Figure 10d). Te E872G mutation of NBPF14
was only found in the high-risk group (Supplementary
Figure 10e).

Notably, themutation patterns of RTKs, ERBB3 andERBB2,
difered in both groups (Figures 9(b) and 9(d)). Te S310F
mutation of ERBB2 was only present in the high-risk group,
known as oncogenic driver mutation (Figure 9(b)) [43]. Te
mutated ERBB2 led to worse OS in CC patients (p � 1 × 10− 4,
Figure 9(a)), whereas the mutated ERBB3 seemed to not afect
OS (p � 0.363, Figure 9(c)).Te resultsmay partially explain the
high-risk group with the ERBB2 as the driver gene had worse
OS. Additionally, mutations occurred in amutual co-occurrence
manner in both groups (Supplementary Figures 7a and 7b).

Consistent with the enriched signalling pathway by
driver mutation genes, the top three frequently mutated
oncogenic signalling pathways were RTK/RAS, NOTCH,
and PI3K in the two groups (Figures 8(e) and 8(f )). Te
detailed mutation patterns of RTK/RAS, PI3K, and NOTCH
signalling pathways are shown in Supplementary
Figures 11–13.

3.9. De NovoMutational Signature Analysis. Te progression
of cancer leaves behind a distinctive mutational pattern that can
display its mutagenic processes [29]. In themutational processes
analysis, we obtained three signatures as compared against the
COSMIC signatures v2 in the low-risk group, while fve sig-
natures were in the high-risk group (Supplementary Figures 14a
and 14b). Tose signatures also were compared against the
updated COSMIC signatures v3, and the results are demon-
strated in Figures 10(a) and 10(b). Te matched COSMIC
signatures and corresponding aetiology are summarized in

Table 1. Notably, the SBS10, only observed in the high-risk
group, is related to defective DNA polymerase ε which is re-
sponsible for the exonuclease proofreading and prevention of
the accumulation of mutations. Te POLE gene encodes the
catalytic subunit for 5′-3′ DNA polymerase and 3′-5′ exo-
nuclease, which is important for genome stability.Te incidence
of POLE somatic mutations was 2.79%; however, it is 4.92% in
the high-risk group while 2.38% in the low-risk group (Sup-
plementary Figure 14c).We further identifed the P254L, S297F,
and V411L mutations of POLE only presented in the high-risk
group (Supplementary Figure 14c).

Oncogenes are clustered around mutational hotspots
[28]. Hypermutated genomic regions, named “kataegis,” are
defned as those genomic segments containing six or more
consecutive mutations with an average inter-mutation
distance of less than or equal to 100 base pairs [44]. Te
formation of kataegis is hypothesized to result frommultiple
cytosine deamination and enrichment in C>T and C>G
substitutions, which is caused by the unleashed activity of
apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like (APOBEC), a family of cytidine deaminases
[44]. Figures 10(c) and 10(d) demonstrate the samples with
the most kataegis region, TCGA-JW-A5VL in the low-risk
group and TCGA-2W-A8YY in the high-risk group. Fur-
thermore, we explored the status of APOBEC-associated
mutations in both the risk groups in CC patients
(Figures 10(e) and 10(f)). As a result, 73.81% (93 of 126
samples) of patients in the low-risk group were enriched for
APOBEC-associated mutations (APOBEC enrichment score
>2, Figure 10(e)), while 73.98% (91 of 123 samples) of
patients in the high-risk group (Figure 10(f)). Furthermore,
in the low-risk group, increased mutation rates within FLG,
TNN, and NAV3 genes were detected in APOBEC-enriched
samples, while FOLH1, ADGRG4, MAP3K15, MEGF8, and
ADAMTS18 with higher mutation rates were detected in
non-APOBEC-enriched samples (Figure 10(e)). However, in
the high-risk group, top genes with increased mutation rates
were found in non-APOBEC-enriched samples, such as
PTEN and ARID1B (Figure 10(f )). Since the most frequent
mutations were in the non-APOBEC-enriched samples in
the high-risk group, we speculate that the mutations might
be related to the SBS10a exonuclease domain mutations of
POLE in the high-risk group. Interestingly, R793C, R616C,
V411L, and P254L of POLE occurred in the same patient
with the most kataegis region in the high-risk group, TCGA-
2W-A8YY (Figure 10(d)).

3.10. CopyNumberVariationAnalysis. We identifed several
CNVs in the low-risk group (Supplementary Figure 15),
including the deletions on 2q33.2 (NBEAL1, CD28, CTLA4,
CYP20A1), 2q22.1 (THSD7B, CXCR4), 2q37.2 (SH3BP4),
10q23.31 (FAS, PTEN), and 13q14.2 (RCBTB1)
(Figures 11(a) and 11(c)). In the high-risk group, the most
prevalent duplications were 11q22.2 (MMP1) and 11q22.1
(YAP1, BIRC2/3), while the most prevalent deletions were
2q37.1 (UGT1A1), 2q22.1 (THSD7B, CXCR4), and 19p13.3
(granzyme M) (Figures 11(b) and 11(d)). In the high-risk
group, the deletion of granzyme M might lead to defciency
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of cytotoxic lymphocytes [45] and amplifcation of YAP1
and MMP1 may result in enhanced angiogenesis and EMT
[46, 47].

3.11. Identifcation of Neoantigens. Te correlation between
the mutation burden and predicted neoantigen load revealed
a positive linear relationship (r=0.89, p � 1.36 × 10− 53,

Supplementary Figure 16). Sparse predicted neoantigens were
shared across the population. Te most common neoantigen,
PIK3CA-STRDPISEITK-HLA A∗ 03: 01, was present in 8
patients (Figure 12(a)), which might be generated as of-shelf
products. Temost frequent neoantigens were derived from the
mutation of PIK3CA, E1A binding protein P300 (EP300), and
ERBB3in the low-risk group (Figure 12(b)) and PI3KCA,
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Figure 9: Efects of ERBB2 and ERBB3mutations on survival. Survival analysis based on ERBB2 (a) and ERBB3 (c) mutation status. Mutant
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MAPK1, and ERBB2 in the high-risk group (Figure 12(c)),
which is coherent with the driver mutation in respective risk
groups (Figures 8(c) and 8(d)). More types of neoantigen were
identifed in the low-risk group than in the high-risk group, and
this result is partially in agreement with the previous results that
higher TMB in the low-risk group (Supplementary Figures 7c
and 7d).

3.12. Correlation between Cancer Germline Antigens and
Immune Cell Infltration. Besides neoantigens, which re-
sult from somatic mutations, the cancer antigenome also
contains CGAs. CGAs are proteins normally expressed in
germline cells and aberrantly expressed in tumour tissue.
We found a distinct expression pattern of CGAs between
low/high-risk groups (Supplementary Figure 17). Tere
are 36 signifcant genes and diferentially expressed CGA

genes between the low- and high-risk groups (Supple-
mentary Figure 18). Te expression of a number of CGA
genes, including PBK, SPAG8, TSGA10, LDHC, TAF7L,
PRSS55, ODF2, TPPP2, OIP5, NUF2, TSSK6, CEP55,
IGSF11, and CASC5, was signifcantly downregulated in
the high-risk group (Supplementary Figure 18). Te ex-
pression levels of MPP1 andKDM5B were enhanced in the
high-risk group (Supplementary Figure 18). Next, we
further explored whether the expression of CGAs is as-
sociated with the immune infltration cells. Notably, we
identifed that several CGAs were positively correlated
with the CD8 T cell enrichment, namely, PBK
(Figures 13(b), 13(d), 13(k), and 13(v)), SPAG8
(Figures 13(c), 13(z), and 13(w)), TSGA10 (Figures 13(f )
and 13(y)), LDHC (Figures 13(h) and 13(m)), TAF7L
(Figure 13), ODF2 (Figure 13(l)), TPPP2 (Figure 13(n)),
OIP5 (Figure 13(o)), CASC5 (Figure 13(q)), and PRSS55
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Figure 11: Copy number variation analysis. G-scores assigned by GISTIC for every cytoband plotted along the chromosome in the low-risk
group (a) and in the high-risk group (b). GISTIC results plotted as function of altered cytobands, mutated samples, and genes involved
within the cytoband in the low-risk group (c) and in the high-risk group (d). Te bubble sizes are according to –log10 transformed q values.
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(Figure 13(s) and 13(x)), which were remarkably sup-
pressed in the high-risk group (Supplementary Figure 17),
indicating an immune inhibitory environment in the
high-risk group, while KDM5B, enhanced expression in
the high-risk group, was negatively associated with CD8
T cell enrichment, also suggesting an inhibitory immune
environment in the high-risk group (Figures 13(a), 13(g),
13(j), 13(r), and 13(t)). However, there were some CGA
genes negatively correlated with CD8 T cell enrichment
and most of them were in a relatively low expression level
such as MAFEA9B (Supplementary Figure 19). Our re-
sults are consistent with the fndings that some CGAs are
signifcantly correlated with activated CD8T cells [32].

Moreover, we also identifed a negative correlation be-
tween the enrichment of Treg cells and the expression of
PBK, NUF2, TSGA10, TSSK6, ODF2, OIP5, LDHC, and
CEP55 (Supplementary Figures 20 and 21). Tose genes
were downregulated in the high-risk group (Supple-
mentary Figure 18), also suggesting a suppressive immune
environment in the high-risk group. Interestingly,
KDM5B, associated with negative Tcell enrichment in the
high-risk group in our analysis, was reported to promote
immune evasion and reprogramming lipid metabolism
[48, 49]. Our results might suggest that the FAM phe-
notype in the high-risk group may be related to the in-
hibitory immune environment.

PI
K3

CA
_S
TR

D
PL

SE
IT
K

PI
K3

CA
_A

IS
TR

D
PL

SK

M
O
RC

2_
YL

H
TN

ST
TH

K

LA
M
C3

_I
LS

D
FH

Q
G
A
K

ER
CC

6_
IM

LN
EA

SG
FK

ER
CC

6_
M
LN

EA
SG

FK

ER
BB

3_
LR

M
V
RG

TQ
V

KR
A
S_
D
G
V
G
KS

A
L

IT
IH

5_
RT

YL
H
TI
TI

IT
IH

5_
YL

H
TI
TI
LI

FB
XW

7_
H
V
A
A
V
G
CV

Q
Y

N
O
D
2_
TR

SQ
RA

RR
L

EP
30
0_
V
YI
SY

LN
SV

M
BN

L2
_M

A
IS
FA

PY
L

A
TX

N
2L

_S
PK

SA
A
PA

PI
L

M
BN

L2
_G

PA
IG

TN
M

EC
T2

_L
V
RL

V
TL

V
Y

N
U
P2

10
L_

FY
A
D
V
EI
G
Q
I

A*03:01

C*07:01

C*07:02

A*11:01

C*05:01

B*07:02

B*08:01

A*68:01

A*23:01

B*15:17

0

2

4

6

8

(a)

ANKRD12_NMEHESLTLQK
ASCC1_FQNPKKLYL
ASCC1_NPKKLYLTI
CNTRL_HISVWLGK

CNTRL_HISVWLGKK
CNTRL_HISVWLGKKLK

CNTRL_SVWLGKKLK
EP300_ISYLNSVHF

EP300_RVYISYLNSVH
EP300_SYLNSVHF

EP300_SYLNSVHFF
EP300_VYISYLNSV

EP300_VYISYLNSVHF
EP300_YISYLNSVHF

EP300_YISYLNSVHFF
ERBB3_RMVRGTQV

FBXW7_YGHTSTVCCM
LIN9_DLPDKIPLPLV

LIN9_LPDKIPLPL
PIK3CA_AISTRDPLSK

PIK3CA_KAISTRDPLSK
PIK3CA_KQEKDFLWSHR

PIK3CA_STRDPLSK
PSME3_ISLWLIISELR

ZBED4_LASSSPDRL
ZFYVE9_IPSNRYNEI

ZFYVE9_NRYNEIMKAM
EP300_ISYLNSVHFF
EP300_RVYISYLNSV

EP300_YISYLNSV
ERBB3_LRMVRGTQV

ERBB3_LRMVRGTQVY
ERBB3_MVRGTQVYDGK

ERBB3_NLRMVRGTQV
ERBB3_RMVRGTQVY

PIK3CA_ITKQEKDFLW
EP300_YLNSVHFF

PIK3CA_STRDPLSEITK

0 1 2 3
Freq

Ex
pr

es
se

d 
ne

oa
nt

ig
en

Low Risk

(b)

APOD_FSWFMPLAPY

APOD_WFMPLAPY

CTNNB1_YLGSGIHSGA

DHPS_YRALLEAL

ERBB2_LSTDVGFCTL

ERBB2_STDVGFCTL

ERBB2_YLSTDVGFCTL

ERBB2_YNYLSTDVGF

PAOX_YVGLPSVSY

PIK3CA_STRDPLSK

MAPK1_KPIAEAPF

MAPK1_YYDPSDKPI

PIK3CA_STRDPLSEITK

0 2 4 6
Freq

Ex
pr

es
se

d 
ne

oa
nt

ig
en

High Risk

(c)

Figure 12: Identifcation of neoantigens. (a) Te heatmap displaying the frequency of predicted neoantigen based on the HLA-allele. Te
most frequently expressed neoantigen in the low-risk group (b) and the high-risk group (c). HLA, human leukocyte antigen.
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3.13. Evaluation of the Cellular Composition in Tumour
Microenvironment. To explore the landscape of TME, an
analysis of immune infltrating cells and other cells in the
TME of CC was performed by the “IOBR” package in R [34].
Te infuence of infltrating cells and risk score on survival by
Cox regression are summarized in Supplementary Table 9.

As shown in Supplementary Figures 22 and 14(a), CD8
T cells, B naı̈ve, plasma cells, and resting mast cells by
CIBERSORT [50] were negatively associated with the RS
which suggests an inhibition of adaptive immune responses
in the high-risk group. Te CD8 T cell by CIBERSORT was
associated with an improved prognosis (HR� 0.86, 95% CIs:
0.52–0.89, p � 0.0053, Supplementary Table 9 and
Figure 14(a)). However, activated mast cells by CIBERSORT
were positively correlated with RS and may lead to a worse
prognosis (HR� 2.31, 95% CIs: 1.76–3.04, p � 1.93 × 10− 9,
Supplementary Table 9 and Figure 14(a)).

Moreover, endothelial cells by both MCPcounter and
xCell [51] were positively correlated with the RS, which

coincided with our result that the genes of hallmarks of
angiogenesis were signifcantly enriched in the high-risk
group in the GSVA analysis (Figures 4(c) and 4(d)). Te
endothelial cells in the MCPcounter resulted in worse
survival (HR� 1.37, 95%CIs: 1.02–1.84, p � 0.0032, Sup-
plementary Table 9 and Figure 14(a)).

Furthermore, fbroblasts by MCPcounter [52], cancer-
associated fbroblasts (CAFs) by EPIC [53], and stromal
score by estimate [54] were positively related to the RS,
indicating that abnormal FAM may relate to enhance f-
broblast activity. Meanwhile, M0 macrophages were
inhibited, but the M1 macrophages were enhanced with the
increasing RS, indicating a chronic infammation featured by
macrophage and lymphocyte infltration [55].

Adipocytes were notably accumulated in the TME of the
high-risk group and had a negative infuence on survival
(HR� 4.89, 95% CIs: 2.01–10.94, p � 0.00035, Supplemen-
tary Table 9 and Figure 14(a)). Megakaryocyte-erythroid
progenitors (MEPs) by xCell and AZ by IPS [32] were
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germline antigens and CD8 T cell infltration calculated by diferent algorithms.
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abrogated in the high-risk group (Figure 14). It has been
reported that the activated mast cells, macrophages, and
neutrophils can secrete the pro-infammatory cytokines, IL-
6 and TNF α, which may activate the IL-6-JAK-STAT3
signalling and TNF-NFκB signalling in the high-risk
group as the results in HALLMARK enrichment
(Figures 4(c) and 4(d)). Te immunosuppressive and
chronic infammatory TME may be the reason for worse OS
in the high-risk CC patients in our study.

3.14. Exploration of Potential Terapeutic Drugs concerning
Prognostic Models. According to the prediction, the RS was
positively correlated with the predicted IC50 of crizotinib
(R� 0.14, p � 0.02, Figure 14(f)), FK866 (R� 0.15, p � 0.012,
Figure 14(g)), and rapamycin, (R� 0.21, p � 0.00061,
Figure 14(h)) but negatively correlated with the predicted IC50
of AZ628 (R� −0.22, p � 0.00039, Figure 14(e)). Further-
more, the CC patients with high risk were more resistant to
crizotinib, FK866, and rapamycin (p � 0.027, p � 0.0064,
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Figure 14: Evaluation of the cellular composition in tumour microenvironment and exploration of potential therapeutic drugs concerning
prognostic models. (a) Network showing the correlation among risk score of the prognostic model and the immune cells calculated by
diferent algorithms. Signifcantly positive and negative correlations are presented in red and blue line, respectively. Te size of the nodes
indicates the p values from Cox regression. Te prognostic predictors for OS are marked with dots in the nodes. Te violin plots display the
TIDE score concerning the risk grouping (b), POLEmutation status in CC patients (c), and POLEmutation status in the high-risk group (d).
A high TIDE score indicates a potential immune escape phenotype and resistance to cancer immunotherapies. Te predicted sensitivity of
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and p � 0.0099, respectively, Figures 14(j)–14(l)). Mean-
while, the CC patients with high risk were predicted to be
more sensitive to the irreversible rapidly accelerated fbro-
sarcoma (RAF) inhibitor AZ628 than the CC patients with
low risk (Figures 14(e) and 14(i)). A further prediction of the
immune therapy response revealed no diference between
the two groups (p � 0.48, Figure 14(b)). Since POLE mu-
tations are reported to be related with good response to the
immunotherapy [56], we compared the prognosis and
predicted immune therapy benefts concerning the POLE
mutation status. However, concerning the POLE mutation
status, we did not fnd the improved prognosis (Supple-
mentary Figure 14d) and predicted immunotherapy benefts
either in all samples or in the high-risk group (p � 0.41, p �

0.15, respectively, Figures 14(c) and 14(d)). Additionally, the
potential drug-target categories based on the risk grouping
are summarized in Supplementary Figure 23.

4. Discussion

Fatty acids (FAs) are the major components of phospho-
lipids, sphingolipids, and triglycerides and have signifcant
roles in the production and storage of energy, synthesis of
the membrane, regulation of membrane fuidity, and sec-
ondary messengers [3]. Remodeling of FAM broadly con-
tains alterations in the transportation of FA, de novo FA
synthesis in the cytosol, and β-oxidation of FA to generate
ATP in the mitochondria in cancer [57]. Enhanced de novo
FA synthesis is necessary for cancer cells to produce
phospholipids for membranes and lipid rafts [58].
β-Oxidation of FA supplies the tumour cells with tremen-
dous energy for aggressiveness [59].

With Pap smear-based screening and HPV vaccination,
the incidence of CC decline signifcantly in high-income
countries [1]. However, CC is still the fourth most com-
monly diagnosed cancer and the fourth leading cause of
cancer deaths in women worldwide [1]. Especially in
transitioning countries, patients diagnosed at advanced
stages lack efcient therapy [43]. On the other hand, as
mentioned in previous research, diverse activation patterns
of metabolic signalling pathways may be the reason for the
molecular diversity of CC [60]. Terefore, we constructed
a valid prognostic model based on FAM genes to distinguish
CC patients at diferent risks. By LASSO-Cox regression, we
obtained a prognostic model with good to fair performance.
Other models built by the SVM and the random forest did
not reach a good performance in the testing cohort. Te
nomogram for clinical application also achieved a good
performance in calibration curves, NRI, and DCA analysis.
Terefore, our model is easy to use and robust. In our FAM
signature, SDHD is vital for cell growth and metabolism
[61]. HCCS participates in oxidative phosphorylation and
apoptosis [62]. SERINC1 is involved in serine-derived lipids
[63]. THRSP can maintain mitochondrial function and
regulate sphingolipid metabolism in human adipocytes [64].
Importantly, we identifed that the high-risk CC patients
were featured by enhanced de novo synthesis of FA.

Ten, we set out to fnd out the underlying mechanisms
leading to diferent FAM phenotypes and OS in our model.
Besides the activation of metabolic pathways in the high-risk
CC patients, our FAM phenotypes are also related to in-
creased infammatory responses. Te infammatory factors,
such as complements, IL6, TNFα, and TGFβ, and the in-
fammatory responses were enriched in the high-risk group.
Te infammatory TME is also verifed from cell levels. With
the increase of RS and the infltration of CD8 Tcells, B naı̈ve,
plasma cells, and resting mast cells, M0 macrophages were
suppressed, while neutrophils, activated mast cells, and M1
macrophages were boosted.Te impaired infltration of CD8
T cells may lead to immunosuppressive TME and a worse
prognosis in CC patients with high RS. Next, we identifed
several CGAs which were associated with CD8 T cell en-
richment. However, those genes were downregulated in the
high-risk group, which might be one reason for the in-
hibitory immune TME. Notably, enriched adipocytes in the
high-risk group are reported to secrete a variety of in-
fammatory cytokines and adipokines, such as TNFα and IL-
6, recruiting lymphocytes, and macrophages [65].

Moreover, in the GSVA analysis, the angiogenesis and
EMTwere also enhanced in the high-risk group, which is in
agreement with the results that endothelial cells, CAFs, and
stromal score enrichment are positively associated with RS.
CAFs can be derived from the migration of adipocytes [66],
and endothelial and epithelial cells, through endothelial or
epithelial to mesenchymal transition [67, 68]. CAFs have
been reported to induce EMTand enhance angiogenesis and
immunosuppression in TME [69, 70]. Besides the pro-
duction of free FAs to support metastatic cancer cell survival
[71], enriched adipocytes can promote the EMT of tumour
cells and stabilize vascularization [72, 73].

Above all, we might confer that aberrant FAM may
trigger tumour-extrinsic infammation, which leads to an
immunosuppressive, proangiogenic, and pro-tumoural
microenvironment [74].

Oncogenic signalling pathways can directly regulate
FAM enzymes to shape tumour lipidome. We identifed
PIK3CA as the frequently mutated gene in both risk groups,
as in the literature [75]. E542K and E545K mutations in CC
patients, activating mutations of the PIK3A helical domain,
are considered to be correlated with APOBEC mutagenesis
[60]. In agreement with the fnding that PI3K/AKTpathway
increases FA synthesis while suppressing the β-oxidation in
diabetes [76], we also found that the CC patients were
featured by enrichment of PI3K/AKT signalling and en-
hanced de novo FA synthesis.

Besides oncogenic mutations in PICK3CA, aggravated
stimulation from RTKs can activate the PI3K-AKT sig-
nalling. We identifed ERBB3 in the low-risk group and
ERBB2 in the high-risk group as driver mutations. Espe-
cially the S310F in the high-risk group is most frequent
among HER2 extracellular domain mutations, which can
form an active heterodimer with the EGFR [77]. Te ac-
tivity of HER2 is stabilized and activated by MUC4, the
second mutated gene in the low-risk group and the fourth

Journal of Oncology 29



mutated gene in the high-risk group [78]. Furthermore, the
recruitment of PI3K to activated ERBB3 can be promoted
by the interaction between MUC4 and ERBB2 [79]. HER2-
positive tumours are featured by sustained de novo syn-
thesis of lipids [80].

Besides the PI3K-AKT signalling pathway, the RTKs
also activate the RAS/MAPK signalling transduction
[81]. In the RAS/MAPK signalling, KRAS mutation in
both groups and MAPK1 mutation in the high-risk group
were also identifed as driver mutations. KRAS is
expressed by the uterus at a high level [82]. G12V and
G12D were observed in the low-risk group, which are the
most frequent mutations across tumour types [82]. G12V
and G12D are weak drivers in colorectal cancer and lung
adenocarcinoma with smoking; however, in endometrial
cancer, they are considered major drivers [82, 83]. G12C
was observed in the high-risk group, which is coherent
with the KRAS-G12C as a major driver in lung adeno-
carcinoma with smoking [29]. G13D of KRAS, presented
in both CC groups with the signature of mismatch repair
defciency, is reported to be associated with mismatch
repair defciency signatures in gastric and endometrial
tumours [82]. MAPK1 E322K can hyperactivate EGFR
and serve as a biomarker for erlotinib sensitivity in head
and neck squamous cell cancer [84]. MAPK1 E322K was
observed in both CC groups, coherent with the previous
study [43]. D321N and R135K of MAPK1 were observed
only in the high-risk group, which can enhance EGFR
activation [85]. D321N has been reported to contribute
high sensitivity to erlotinib, and R135K confers moderate
sensitivity to erlotinib in head and neck squamous cell
carcinoma [85], as potential therapeutic targets in high-
risk CC patients. KRAS/ERK (MAPK1) signalling can
increase the biosynthesis of acetyl-CoA from acetate and
the expression of FASN and SCD in the de novo FA
synthesis [86, 87].

In addition, the NOTCH signalling pathway was
found to be activated in CC patients. Te mutations of
FBXW7, involved in NOTCH signal transduction, were
detected in the low-risk group [88]. FBXW7, a tumour
suppressor, can recognize the substrates, namely, Cyclin
E, c-Myc, Mcl, mTOR, Jun, and NOTCH, for the com-
ponent of the SCF E3 ubiquitin ligase [89]. Te muta-
tional hotspots of FBXW7 R505, R479, and R465 in the
substrate binding domain, WD40 motif, were observed
exclusively in the low-risk group, which may impair the
ubiquitylation and degradation of specifc substrates
[90]. Previous studies have suggested that FBXW7 mu-
tations strengthen the interaction among cancer-
initiating cells via the NOTCH signalling pathway [42].

In the mutational process analysis, three signatures,
SBS13, SBS2, and SBS6, were present in all CC patients.
SBS13 and SBS2 mutations often occur in the kataegis in
the same samples [91]. Both SBS2 and SBS13 are mainly
associated with APOBEC hyperactivation, which may
refect the innate immune response to the virus, retro-
transposon jumping, or tissue infammation in cancer
[91]. Terefore, we can infer that SBS2 and SBS13 may
represent the damage to the genome in the context of

HPV infection and persistent infammation caused by
aberrant FAM in CC patients. SBS6 is featured pre-
dominantly by C > T at NpCpG mutations leading to
substitution and small indels termed as microsatellite
instability caused by defective DNA mismatch repair,
which is coherent with the fndings that G13D mutation
of KRAS, related to defective mismatch repair, was
present in CC patients [91]. Acquisition of SBS1 muta-
tions in the high-risk group referred to as a cell division/
mitotic clock correlates with time or age and the rates of
stem cell division which refects the endogenous muta-
tion process [91]. Te SBS10a, only present in the high-
risk group, may be generated by POLE exonuclease
domain mutations. Te exonuclease domain of POLE
recognizes and removes wrong bases generated during
replication [92]. Te mutations in the exonuclease of
POLE, referred to as hypermutators, cause a 10-to-100-
fold increase in the mutation rate during replication [92],
which is in accordance with the interesting fnding that
CC patients with several hypermutators had the most
kataegis in the high-risk group. Te mutations of S297F
and V411L of POLE were reported to be hotspot mu-
tations and associated with high TMB in endometrial
carcinoma, which was present exclusively in the high-
risk group in our study [93]. Tere are also some shreds
of evidence that the non-exonuclease domain mutations
of POLE have pathogenicity. Te patients with POLE
mutations had a high immune response and good
prognoses in endometrial carcinoma [94]. However, we
did not observe either a good prognosis or an improved
prediction of immune therapy response according to the
mutation status of POLE. According to the instruction,
a high TIDE score indicates a potential immune escape
phenotype and resistance to cancer immunotherapies.
We might infer cautiously that the POLE mutation of
exonuclease might lead to a good immune therapy re-
sponse since the TIDE score had a decreasing trend in the
high-risk group with mutated POLE [35]. Due to the
insufcient sample size with POLE mutation in the CC
cohort and follow-up information, further verifcation is
needed.

In the following exploration of potential therapies for
high-risk CC patients, we found that the CC patients with
high risk might be more resistant to rapamycin (an allosteric
inhibitor of mTOR), crizotinib (an adenosine triphosphate
inhibitor of receptor tyrosine kinases), and FK866 (nico-
tinamide phosphoribosyltransferase inhibitor). However,
AZ628 might be the potential therapeutic option for CC
patients with high risk, which is reported to cause sup-
pression of RAF/ERK signalling in KRAS mutant lung
cancer [95]. We also identifed that the neoantigen PIK3CA-
STRDPISEITK-HLA A∗ 03: 01 with relatively high fre-
quency in CC patients might also be a treatment option.
Hence, our results might improve current treatment strat-
egies to defeat CC.

Concerning the limitation of our study, the gene ex-
pression analyses may not provide a direct refection of
enzyme activity or dependencies on specifc metabolic
pathways, and further experiments are needed to verify the

30 Journal of Oncology



FAM phenotypes, the altered signalling pathways, and the
efciency of those potential drug targets. Next, presently
very limited open data on CC are available, additional
studies are required to validate our prognostic model.
Moreover, we did not consider HPV infection status in our
model which is proved as an important factor in the pro-
gression of CC [96]. Disturbed FAM can infuence chronic
infammation, persistent HPV infection, and carcinogenesis
[97, 98].

According to our aforementioned results, we propose
that distinct mutated driver genes may lead to diferent FAM
features, and aberrant FAM then results in the diferential
infltration and function of cells in TMEs, ultimately leading
to diferent prognoses in CC.

5. Conclusions

In this study, we constructed a reliable model with 14 FAM-
related genes by LASSO-Cox regression, by which we
achieved a good risk stratifcation in cervical cancer patients.
With the risk grouping, a feasible nomogramwas established
and validated. To understand the underlying mechanism, we
found the high-risk samples featured by activated de novo
fatty acid synthesis, epithelial to mesenchymal transition,
angiogenesis, and infammation response, which might be
caused by mutations of oncogenic driver genes in RTK/RAS,
PI3K, and NOTCH signalling pathways. Especially, the
oncogenic mutations of ERBB2, only present in the high-risk
group, led to worse survival. Besides the hyperactivity of
cytidine deaminase and defciency of mismatch repair, the
mutations of POLE might be partially responsible for the
gene mutation in patients with high risk. Moreover, in-
creasing RS was found to be related to chronic infammatory
and suppressive immune microenvironment. Te reduced
expression of CGAs might result in the reduction of CD8
T cell infltration in the high-risk group. Finally, the RAF
inhibitor AZ628 was predicted to be sensitive in patients
with high risk. Our fndings provide a novel insight for
personalized treatment in CC.
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