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Te development and progression of tumors in human tissues extensively rely on its surrounding environment, that is, tumor
microenvironment which includes a variety of cells, molecules, and blood vessels.Tese components are modifed, organized, and
integrated to support and facilitate the growth, invasion, and metabolism of tumor cells, suggesting them as potential therapeutic
targets in anticancer treatment. An increasing number of pharmacological agents have been developed and clinically applied to
target the oncogenic components in the tumor microenvironment, and in this review, we will summarize these pharmacological
agents that directly or indirectly target the cellular or molecular components in the tumor microenvironment. However, dif-
fculties and challenges still exist in this feld, which will also be reported in this literature.

1. Introduction

Te development and progression of cancer enormously
depend on the TME, which typically contains numerous cell
types, including fbroblasts, endothelial cells, pericytes, and
diverse immune cells. Together with tumor cells, these cells
are embedded in the extracellular matrix (ECM) such as
cytokines and growth factors [1]. Tese cells and ECM
components dynamically interact with the tumor cells,
regulating tumor growth, progression, invasion, and me-
tastasis (Figure 1). In recent decades, with the in-depth study
of TME, the mystery of the interplay between TME and
tumor cells has been gradually unraveled and therapeutically
targeting TME has emerged as a promising anticancer
treatment strategy. Herein, we briefy summarize the es-
sential cellular and molecular components of TME with an
emphasis on pharmacological methods against these cells
and ECM as anticancer treatments. Some current challenges

and concerns associated with TME-targeted therapies will be
discussed as well.

2. Strategies Targeting TME

2.1. Targeting Tumor Angiogenesis Mainly through the VEGF-
VEGFR Signaling Pathway. Te tumor-associated neo-
vasculature, generated through the process termed angio-
genesis, satisfes the acquisition of nutrients and oxygen as
well as the evacuation of wastes and carbon dioxide for the
tumor cells. Angiogenesis is mainly regulated by the
proangiogenic factors and antiangiogenic factors. When the
two types of regulators are balanced, the “angiogenic switch”
is in the “of” state. However, when the proangiogenic
factors become dominant, angiogenesis can be triggered [2].
Hypoxia is one of the major angiogenetic stimuli, which
activates angiogenesis through the production of hypoxia-
inducible factor 1 (HIF-1) [3]. Under the stimulation of
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hypoxia, HIF-1 generated by tumor cells facilitates the se-
cretion of various proangiogenic factors, such as fbroblast
growth factor (FGF), platelet derived growth factor (PDGF),
vascular endothelial growth factor (VEGF), and
angiopoietin-1 (Ang-1), thus promoting the proliferation,
migration, and transformation of vascular endothelial cells
[4]. Te constituents of the ECM including elastin, collagen,
laminin, fbronectin, and proteoglycans, are the macro-
molecules secreted by tumor cells and tumor-associated
fbroblasts, which can not only support and protect tumor
cells but also promote tumor invasion and metastasis [5, 6].

Among these proangiogenic VEGF factors, VEGF-A is
the most extensively studied and well-known target of
antiangiogenesis treatment [7]. VEGF-A binds to its re-
ceptor VEGF receptor 1 (VEGFR1) and VEGF receptor 2
(VEGFR2, the major signaling receptor for angiogenesis)
that are predominantly expressed on vascular endothelial
cells, thus activating VEGF-VEGFR signaling [8]. VEGF-
VEGFR signaling activation promotes the proliferation of
endothelial cells, contributing to the formation of new blood
vessels characterized by increased permeability within the
tumors [8, 9]. Terefore, VEGF-VEGFR signaling has
emerged as an appealing anticancer therapeutic target.

Bevacizumab, a humanized monoclonal antibody
against VEGF-A, can bind to VEGF-A and inhibit its activity
through suppressing receptor binding, endothelial cell
proliferation, and neovasculature formation, thus de-
celerating tumor growth (Table 1) (Figure 2) [34–36].
Furthermore, bevacizumab can improve the vascular
structure within tumors and normalize abnormal blood
vessels by inhibiting the activity of VEGF-A, leading to
increased blood vessel permeability, improved local hypoxia
condition, and enhanced anticancer agent delivery [37, 38].
Te study of Soria et al. has identifed bevacizumab in
combination with standard platinum-based chemotherapy
which signifcantly prolonged overall survival and
progression-free survival (PFS) in patients with nonsmall

cell lung carcinoma [10]. In addition, bevacizumab also
improves the outcome of patients diagnosed with renal
cancer [11], metastatic colorectal cancer [12–15], and met-
astatic breast cancer [16]. However, further clinical trials
should focus more on improving the efcacy of bev-
acizumab, including exploring the optimal population,
optimal dose, and optimal timing for bevacizumab-based
therapy.

Ramucirumab, a fully human monoclonal antibody,
specifcally binds to VEGFR2 with high afnity, thus
blocking the binding of VEGFR2 ligands which include
VEGF-A, VEGF-C, and VEGF-D and contributing to the
inhibition of VEGFR2-mediated tumor angiogenesis (Ta-
ble 1) [39, 40]. Terefore, ramucirumab can block the
proliferation and migration of vascular endothelial cells and
ultimately suppress the angiogenesis [41]. Ramucirumab has
been approved for the treatment of diverse malignancies,
including gastric cancer, nonsmall cell lung carcinoma, and
metastatic colorectal cancer [17, 18].

Te VEGF inhibitor, afibercept, is a recombinant fusion
protein that is composed of the ligand-binding element from
the extracellular domain of VEGFR1 and VEGFR2 and the
Fc segment of human immunoglobulin G1 (IgG1) (Table 1)
[42, 43]. Trough binding to VEGFs, afibercept functions as
a “VEGF trap” and inhibits the neovasculature formation
induced by VEGFs and thereby “starving” tumors [42, 44].
Afibercept in combination with fuorouracil, leucovorin,
and irinotecan (FOLFIRI) signifcantly improved overall
survival and PFS inmetastatic colorectal cancer patients who
were previously treated with oxaliplatin [45]. In 2012, afi-
bercept, in combination with the FOLFIRI regimen, was
approved by the United States Food and Drug Adminis-
tration (FDA) for the treatment of patients with metastatic
colorectal cancer.

Tyrosine kinase inhibitors, pazopanib, sunitinib, sor-
afenib, and regorafenib, are multitarget kinase inhibitors
that can potently bind and diminish the activities of
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Figure 1: Schematic representation of the components in the TME: TME is mainly composed of tumor cells, their surrounding immune
cells and infammatory cells, cancer-associated fbroblasts, and nearby interstitial tissues, microvessels, as well as various cytokines and
chemokines, which is a complex comprehensive system.
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VEGFRs, thereby inhibiting tumor angiogenesis and growth
[46–52]. Pazopanib is approved by FDA as an anticancer
medication for metastatic renal cell carcinoma (RCC) and
advanced soft tissue sarcomas (Table 1) [21, 22]. Sunitinib
and sorafenib are also approved for the treatment of RCC
(Table 1). Additionally, sunitinib can also be used in patients
with advanced gastrointestinal stromal tumors (GIST) after
disease progression or intolerance to imatinib [23, 24], and
sorafenib is also approved for the treatment of patients with
inoperable hepatocellular carcinoma [25, 26]. Regorafenib is
approved to treat patients with metastatic colorectal cancer
that progresses after previous antitumor therapy [27], as well
as patients with advanced GIST after the failure of other
anticancer therapy [28] and patients with hepatocellular
carcinoma who progress on sorafenib treatment
(Table 1) [53].

Although these kinase inhibitors exert powerful anti-
cancer efects on multiple malignancies, the development of
resistance against these agents tremendously limits the
beneft that patients can achieve from the therapy. Te
rapamycin analog, everolimus, has been approved by the
FDA as a treatment of RCC refractory to sunitinib or
sorafenib [54]. Everolimus inhibits tumor growth not only
through afecting the PI3K/Akt/mTOR pathway but also
through blocking tumor angiogenesis via downregulating
the expression of HIF-1 and VEGFs (Table 1) [29, 55].

2.2. Targeting Hypoxia. Hypoxia impacts the tumor growth,
progression, and angiogenesis mainly through the tran-
scriptional factor HIF-1α. Topotecan (TPT) is a topoisom-
erase I inhibitor that has been approved for the treatment of
small cell lung cancer, ovarian cancer, and cervical cancer.
TPT can interfere with the process of DNA replication in
tumor cells via slowing down the relegation activity of
topoisomerase I and promoting the conversion of topo-
isomerase I cleavage complexes into DNA damage by
replication-fork collision and transcription (Table 1) [56].

Consequently, this DNA damage can trigger tumor cell
apoptosis [56, 57]. Strikingly, TPT can also inhibit HIF-1α
transcriptional activity and HIF-1α protein accumulation by
afecting its translation [58, 59]. TPT can activate the
deacetylase activity of sirtuin 1 (SIRT1) and lead to the
degradation of HIF-1α through deacetylation. Terefore,
TPT can infuence the angiogenesis of tumors and the
metabolism of tumor cells, thus blocking the tumor
progression [60].

2.3. Target ECM through Destruction and Remodeling.
Collagen is the main structural element of the matrix, of
which type I collagen is the main component of tumor
desmoplasia and is relative to the survival and metastasis of
many types of tumor cells [61]. In normal tissues, the
basement membrane is rich in collagen and laminin, which
separates the endothelial and epithelial layers from the
stroma. In tumors, the basement membrane becomes
thinner due to the reduction of type IV collagen, which is
conducive to tumor invasion and metastasis [62]. Pro-
teoglycan (PG) is the main component of the extracellular
matrix, including many types such as extracellular pro-
teoglycans, pericellular-basement proteoglycans, cell surface
proteoglycans, intracellular proteoglycans, and so on, which
interacts with various growth factors, cytokines, chemo-
kines, etc., to regulate and control the proliferation and
migration of tumors [63]. As the progression of tumors, the
extracellular matrix is remodeled and the structure of the
collagen scafold in the tumor changes seriously, which is
conducive to the angiopoiesis and the migration of the
tumor cells [64].

Activated fbroblasts located within the stroma of tumors
are called tumor-associated fbroblasts (CAFs). CAFs are
mainly derived from resident fbroblasts that can be acti-
vated by PDGF, FGF, and transforming growth factor β
(TGF-β) released by tumor cells [65, 66]. Secondly, epithelial
or endothelial cells in tumors can be transformed into CAFs

VEGF

VEGFR

Bevacizumab
Proliferation

Angiogenesis

Figure 2: Mechanism of bevacizumab against tumor: bevacizumab inhibits cancer cell proliferation and tumor neovascularization by
blocking VEGF/VEGFR.
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through epithelial-mesenchymal transitions (EMT) and
endothelial-mesenchymal transitions (EndMT) [67, 68]. In
addition, studies have confrmed that recruited mesenchy-
mal stem cells (MSCs) derived from bone marrow are also
the origin of CAFs [69, 70]. Compared with normal f-
broblasts, CD34 expression is absent in CAFs, and smooth
muscle actin α (α-SMA) is expressed. Moreover, the mo-
lecular markers of CAFs include platelet-derived growth
factor receptor (PDGFR), vimentin, fbroblast activation
protein (FAP), and CAF specifc protein (FSP1/S100A4)
[71, 72].

CAFs can express fbroblast activating protein α (FAP),
while normal fbroblasts do not. Terefore, it is speculated
that drugs targeting FAP can inhibit the growth and me-
tastasis of tumors through inhibiting CAFs. However, sev-
eral clinical trials targeting FAP with human-derived
monoclonal antibodies have failed to produce clinical
benefts in colon cancer and non-small cell lung cancer [73].

ECM components exert a supportive and protective
efect on tumor cells, and many processes of signal trans-
duction also occur in ECM. ECM components have a pro-
found infuence on the tumor growth, progression, invasion,
and metastasis, indicating them as attractive anticancer
therapeutic targets. Currently, antitumor therapy targeting
ECMmainly consists of two aspects: the destruction of ECM
and remodeling of ECM.

2.3.1. Destruction of ECM

(1) Angiotensin receptor blockers. Angiotensin receptor
blockers (ARBs) such as losartan, valsartan, and their an-
alogs are capable of reducing blood pressure through
blocking the angiotensin II type I receptors (AGTR1) (Ta-
ble 2) [79]. Additionally, numerous studies have demon-
strated that ARBs can inhibit the tumor proliferation,
promote the tumor cell apoptosis, and impede tumor me-
tastasis as well as angiogenesis [74, 80, 81]. Trough
inhibiting AGTR1, losartan and its analogs can decrease the
levels of decrease transforming growth factor-β (TGF-β)
activators such as thromboplastin-1 (TSP-1) to reduce the
quantity of TGF-β, thus inhibiting the synthesis of type I
collagen derived from cancer-associated fbroblasts (CAFs)
to reduce the proliferation of connective tissues [82]. Te
delivery of chemotherapeutic drugs toward tumor cells can
be enhanced by such an antifbrotic efect [82]. Te study of
Busby et al. identifed that ARBs can efectively reduce the
mortality of patients with gastroesophageal cancer [74]. Te
study of Nakai et al. demonstrated that patients with

pancreatic ductal adenocarcinoma who were treated with
ARBs had an overall survival time of approximately
6months longer than those who were not treated with ARBs
[75]. As well as the study of Coulson et al. confrmed that
ARBs restrain the occurrence and development of breast
cancer by inhibiting the AGTR1 [76]. Moreover, the study
by Jain has shown that ARBs can normalize the blood vessels
and collagen matrix in tumors by blocking TGF-β and
improve the efcacy of liposomal doxorubicin [83].

(2) Enzymes that degrade ECM. A number of enzymes, for
example, matrix metalloenzymes (MMPs), hyaluronidases,
and collagenases, are capable of degrading the ECM as well
as loosening the ECM structure, contributing to improved
anticancer drug delivery. MMPs can degrade the entire
components in ECM, including collagen and proteoglycans,
which promote the delivery and convection of drugs [84].
However, MMPs can also promote the angiogenesis within
the tumors by accelerating the release of VEGFs, which is
conducive to the growth, progression, invasion, and me-
tastasis of tumors. For this reason, the application of MMPs
in the treatment of cancer is still under controversy [85].Te
tetracycline analogue Col-3, as an inhibitor of MMPs, can
inhibit the production and activation of MMPs, particularly
MMP-2 and MMP-9, thereby preventing the degradation of
ECM and impeding the progression and metastasis of tu-
mors (Table 2) [86, 87].

Collagen in ECM can signifcantly block the delivery of
macromolecular drugs to tumor cells in vivo [88]. Te study
of McKee et al. proved that, despite increasing the risk of
tumor metastasis, collagenase can enhance the difusion of
macromolecular drugs into the tumor stroma by destroying
the collagen structure in ECM, thus playing a signifcant role
in promoting tumor therapy [89]. Hyaluronic acid (HA) that
is responsible for disorders associated with high interstitial
fuid pressure (IFP) is abundant in ECM. HA leads to
vascular collapse and afects the delivery and difusion of
micromolecular drugs [90].Trough degrading HA in ECM,
hyaluronidase is able to rapidly reduce IFP, thus facilitating
chemotherapeutic drugs to reach the targets of tumor cells at
higher concentration [91]. Terefore, the combination of
hyaluronidase with cytotoxic drugs such as paclitaxel and
gemcitabine immensely improves anticancer efcacy in
patients [91]. Due to the common existence of collagen and
HA all over the human body, the use of these enzymes as
anticancer therapeutics is likely to cause systemic adverse
reactions; therefore, their application remains challenging in
clinical practice [92].

Table 2: Pharmacological agents targeting ECM.

Terapeutic agent Terapeutic agent description Cancer type References

Losartan, valsartan, and their analogs Anangiotensin receptor blockers
Gastroesophageal cancer

[74–76]Pancreatic ductal adenocarcinoma
Breast cancer

Col-3 MMPs inhibitors — [22, 23]

Metformin Remodel ECM Colorectal cancer [77, 78]Cervical cancer

Journal of Oncology 5



2.3.2. Remodeling of ECM. Tumor ECM is extremely dense
and difcult to penetrate which is attributed to the pro-
liferation and expansion of connective tissues. Tis condi-
tion can be modifed by remodeling the ECM and inducing
the normalization of ECM. Metformin, a biguanide anti-
hyperglycemic agent, is the frst-line treatment for type 2
diabetes [93]. Of note, metformin has been shown to act as
an anticancer agent by reprogramming hepatic stellate cells
(PSCs) to reduce the production of components such as type
I collagen and HA in ECM (Table 2) [94]. In addition,
metformin can reduce the production of connective tissue
cytokines, the recruitment of tumor-associatedmacrophages
(TAMs) as well as the polarization of M2 macrophages.
Terefore, metformin is conducive to preventing the in-
vasion and metastasis of tumors as a consequence of the
inhibition of ECM remodeling and epithelial-mesenchymal
transitions (EMT) [94]. Metformin is also a mitochondrial
respiratory poison that can activate adenosine
monophosphate-activated protein kinase (AMPK), which
improves hypoxia within the tumor by decreasing the ox-
ygen consumption [95, 96]. However, multiple clinical trials
indicated that the efect of metformin in the treatment of
various cancers is limited [97, 98].

2.4. Targeting ImmuneCells. Temacrophages that infltrate
around the tumors are referred to as tumor-associated
macrophages (TAMs), which exert immunosuppressive
functions [99]. Tese macrophages are recruited to the tu-
mor tissue by various chemokines released from fbroblasts
and tumor cells, for example, CC chemokine ligand 2
(CCL2), CC chemokine ligand 5 (CCL5), and CXC che-
mokine ligand8 (CXCL8) [100–102]. TAMs play a vital role
in promoting the tumor angiogenesis by releasing proan-
giogenic factors such as TGF-β, PDGF, and VEGF. Fur-
thermore, TAMs produce proteases such as urokinase-type
plasminogen, plasmin, and MMPs (for example, MMP-1,
MMP-2, MMP-3, MMP-9, and MMP-12) that can promote
tumor angiogenesis and can directly remodel ECM. Lym-
phatic endothelial growth factors and vascular endothelial
growth factor receptor 3 (VEGFR3) generated by TAMs
promote lymphangiogenesis, release the epidermal growth
factor (EGF) which can interact with colony stimulating
factor 1 (CSF-1) secreted by tumor cells, and degrade
proteins in the ECM through proteases such as MMP-2 and
MMP-9, all of which are benefcial to facilitate the invasion
and metastasis of tumors [103, 104].

Arginase 1, TGF-β, and interleukin-10 (IL-10) derived
from TAMs play a signifcant role in tumor immunosup-
pression. Arginase 1 mainly produces arginine metabolites
including polyamine and proline, which results in the
dysregulation of the signals of T-cell receptor (TCR), and
ultimately induces CD8+ Tcell inactivity [105]. TFG-β plays
an immunosuppressive role in multiple ways, which include
promoting the diferentiation of CD4+ Tcells into T2 cells,
promoting the activation of TAMs, reducing the migration
of dendritic cells, inhibiting the efects of natural killer (NK)
cells, and inhibiting the cytotoxicity of CD8+ T cells [106].
With respect to IL-10, on the one hand, it inhibits the

expression of the potential antitumor cytokines such as
interleukin-12 (IL-12); on the other hand, it impedes the
maturation of dendritic cells (DCs) and promotes macro-
phages to diferentiate, and then the antigen presentation
will be inhibited. In addition, IL-10 also blocks the release of
interferon-c (INF-c), thus promoting immune escape
[107, 108]. TAMs can also release a variety of immuno-
suppressive factors, including indoleamine 2, 3-dioxygenase
(IDO), IL-10, and prostaglandin E2 (PGE2), which are
conducive to immunosuppression [109].

A heterogeneous population composed of immature
myeloid cells and myeloid-cell progenitor cells is defned as
myeloid-derived suppressor cells (MDSCs), including im-
mature dendritic cells, immature granulocytes, and imma-
ture macrophages [110]. MDSCs are recruited into the
surrounding environment of the tumor by chemokines (for
example, CCL2, CCL5, CXCL1, CXCL5, CXCL6, CXCL8,
and CXCL12), followed with the activation of MDSCs by the
granulocyte-macrophage colony stimulating factor (GM-
CSF), granulocyte-colony stimulating factor (G-CSF), and
VEGF [111–113]. Arginine is one of the chemicals that is
essential for T-cells to complete the cell cycle. MDSCs de-
grade arginine by secreting arginase-1, thus inhibiting the
activity of CD8+ T-cells by preventing the completion of the
cell cycle [114, 115]. Monocytic-MDSCs (M-MDSCs) can
produce nitric oxide (NO) and reactive oxygen species
(ROS) through inducible nitric oxide synthase (iNOS) and
NADPH oxidase (NOX2), resulting in oxidative stress in the
TME, thus afecting the activity of CD8+ T-cells. Poly-
morphonuclear MDSCs (PMN-MDSCs, also known as
granulocytes) inhibit CD8+ T-cells mainly via releasing ROS
[116]. In addition, MDSCs can promote the transformation
of initial CD4+ T-cells into induced regulatory T-cells (iTreg
cells) which can inhibit the function of NK cells by secreting
IL-10 and TGF-β.

In 1995, a cluster of CD4+ T-cells highly expressing the
IL-2 receptor α-chain (CD25) and under the regulation of
forkhead box protein 3 (Foxp3) was identifed. Moreover,
these cells with high immunosuppressive activity are termed
regulatory T-cells (Treg cells) [117, 118]. Treg cells are
abundant in the tumor microenvironment, in which their
high-density infltration is generally associated with poor
cancer prognosis [119]. Tregs cells are mainly divided into
natural Tregs cells and induced Tregs cells according to their
origin. Treg cells present in the TME are mainly induced
Tregs cells, which are derived from peripheral naive CD4+
T-cell precursors under tolerogenic conditions and can
upregulate the expression of Foxp3 [119, 120]. Treg cells
express CC chemokine receptor 4 (CCR4), the receptors of
CC chemokine ligand 22 (CCL22), and can migrate to
CCL22 derived from tumor cells and tumor associated
macrophages in the TME, thus realizing the recruitment of
Treg cells [121]. In addition, studies have shown that hypoxia
can induce the expression of CC-chemokine ligand 28
(CCL28), which binds to the receptor CC chemokine re-
ceptor 10 (CCR10) on Treg cells to promote the recruitment
of Treg cells [122].

Treg cells regulate the immune system through a number
of mechanisms. For instance, Treg cells impede the efects of
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efector T-cells by secreting cytokines such as TGF-β, IL-10,
and interleukin-35 (IL-35) [119]. Additionally, cytolysis is
induced by granzyme B, the tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) pathway, and galactosis-
1, to induce apoptosis of target efector cells. Notably, Cao
et al. demonstrated that granzyme B and perforin derived
from Treg cells possess the ability of inhibiting NK cells and
the cytotoxic efect of CD8+ cells to eliminate tumors [123].
Treg cells also induce DCs to up-regulate indolylamine 2, 3-
dioxygenase (IDO) through expressing cytotoxic T lym-
phocyte antigen 4 (CTLA-4), thereby inhibiting the function
of efector T-cells by afecting tryptophan metabolism
[124, 125]. Te mechanism by which immune cells play
a role in the tumor microenvironment can be referred to in
Figure 3.

In recent years, immune therapy has been developed as
a powerful weapon against cancer. Anticancer immune
therapy is mainly divided into therapy targeting the TAMs,
adoptive cell therapy (ACT), and targeted therapy.

2.4.1. Antitumor Terapy against TAMs

(1) Inhibit the recruitment of TAMs. Te cytokine CCL2,
which is identifed as highly expressed in diverse tumors,
induces mononuclear cells in the blood to migrate to the
tumor tissue and transform into TAMs [126, 127]. More-
over, the elevated expression of CCL2 is closely associated
with the polarization of M2 macrophages. Bindarit, a small
anti-infammatory molecule that blocks the recruitment of
TAMs by inhibiting the expression of CCL2, can inhibit the
progression of tumors and relieve pain in cancer patients
(Table 3) [128, 146]. Te study of Liu et al. suggested that
bindarit may exert a potential antitumor efect by targeting
IκBα and p65 [128].

Macrophage colony stimulating factor 1 (CSF-1) recruits
TAMs to tumors by binding to the macrophage colony
stimulating factor 1 receptor (CSF1R). Te inhibitors of
CSF-1 or CSF1R can suppress the progression of tumors by
inhibiting the recruitment of TAMs [147]. For example,
CSF1R inhibitors such as GW2850 and PLX3397 are able to
block CSF-1/CSF1R signaling and inhibit the recruitment of
TAMs [148, 149]. Furthermore, GW2850 and PLX339 can
kill tumor cells with high expression of CD206 directly or
reprogram TAMs for antitumor therapy [150].

(2) Reverse the TAMs phenotype. It is widely believed that the
subtype M1 macrophages have antitumor functions, while
M2 macrophages have a protumor efect. Terefore, re-
versing or transforming M2 macrophages to M1 macro-
phages is considered as a method to inhibit the growth,
progression, invasion, and metastasis of tumors. When
TGF-β is inhibited, toll-like receptor 7 (TLR7) can repro-
gram TAMs to promote transformation into M1 macro-
phages, impeding the progression of tumors. Celecoxib, an
inhibitor of cyctoxase II (COX-2), promotes the trans-
formation of TAMs into M1 macrophages via inducing
interferon-C (IFN-C) (Table 3) [151]. Another COX-2 in-
hibitor, etodolac, blocks the diferentiation of monocytes
into M2 macrophages, thereby inhibiting the growth and
metastasis of tumors (Table 3) [152].

(3) Reduce TAMs directly. Tribetidine is an anticancer agent
for the treatment of soft tissue sarcomas and platinum-
sensitive relapsed ovarian cancer (Table 3) [133, 134]. Tri-
betidine can activate caspase-8, a crucial component of the
exogenous apoptosis pathway, thereby activating the ex-
ogenous apoptosis pathway and subsequently inducing
TAMs apoptosis [153]. Zoledronic acid (ZA) is an efective
nitrogen-containing bisphosphonate (NBP), which not only
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Figure 3: Tumor immune microenvironment: the lymphocytes infltrating into the tumor mediated the immunosuppressive tumor
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directly induces the apoptosis of tumor cells but also reduces
the in vivo amount of TAMs and facilitates the trans-
formation of TAMs into M1 macrophages (Table 3)
[154, 155]. LEG-3, a legumain sensitive doxorubicin-based
prodrug, selectively ablates TAMs and has been shown to
inhibit the growth and metastasis of breast cancer (Table 3)
[137, 138]. CD204 and folate receptor β (FRβ) are highly
expressed by TAMs, so immunotoxins targeting CD204 and
FRβ can also eliminate TAMs.

2.4.2. Adoptive Cell Terapy. Adoptive cell therapy (ACT) is
an antitumor therapy in which autologous immune cells are
activated in vitro by interleukin-2 (IL-2) as well as other
cytokines, amplifed to a certain number, and then injected
back into the body of cancer patients where they can kill
tumor cells in vivo [156, 157]. ACTusing autologous tumor-
infltrating lymphocytes (TILs) is currently the most efec-
tive treatment for patients with metastatic melanoma,
contributing to the tumor regression in about 50% of pa-
tients [158]. TILs are composed of a variety of CD3+ CD4+
and CD3+ CD8+ T-cells, B cells, and NK cells, among which
CD8+ T-cells are characterized by the anticancer cytotoxic
efect [159]. TILs are currently the most commonly used
autoimmune cells of ACTaround the world. T-cell receptor-
gene engineered T-cells (TCR-T) and chimeric antigen re-
ceptor T-cell immunotherapy (CAR-T) are mainly used to
improve the function of TIL [156]. Compared with radio-
therapy or chemotherapy, ACT has a longer duration of
efcacy and works safer. However, TIL contains several
components that inhibit the immune response, for instance,
Treg cells [160, 161]. Terefore, it is necessary to consider
how to remove components such as Treg cells in TIL that can
suppress the immune response before immunotherapy is
applied. On the other hand, some studies have found that the
amount of TIL is only 0.01% of the original amount after it is
transferred back into the patients after the blood circulation,
which account for the limited therapy efcacy [162]. In the
future, the combination of ACT with traditional treatment
methods such as surgery, radiotherapy, and chemotherapy
will become the trend of tumor therapy. At the same time, it
is also necessary to research and discover more efective
drugs for combined application.

2.4.3. Targeted Drug Terapy

(1) Immune checkpoint inhibitors. Immune checkpoint
therapy enhances antitumor immune response through
regulating the molecules of signaling pathways in T-cells
rather than tumor cells. Till now, three immune checkpoint
inhibitors have been approved by the FDA for the treatment
of melanoma, including ipilimumab against cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), as well as
pembrolizumab and nivolumab against programmed cell
death protein 1 (PD-1) [158].

CTLA-4 is a transmembrane receptor predominantly
expressed on cytotoxic T-cells which can bind to two ligands
CD80 (B7-1) and CD86 (B7-2) on the surface of antigen-
presenting cells and suppress the production of IL-2 and the

activation of downstream kinase cascade signaling pathways
involved in immune response stimulation, thereby inhib-
iting the activation and anticancer functions of T-cells
[163, 164]. Ipilimumab is a monoclonal antibody against
CTLA-4 that can competitively bind to CTLA-4 to block the
interaction between CTLA-4 and its ligands, thus blocking
the inhibitory signals generated in cytotoxic T-cells and
enhancing their anticancer activities (Table 3) [139]. Te
efcacy of ipilimumab in patients with melanoma has been
confrmed by multiple clinical trials [140, 141], and the
application of ipilimumab in metastatic renal cancer [142],
glioblastoma [139], and many other cancer types is also
under investigation. However, patients treated with ipili-
mumab have been reported to experience a number of
adverse reactions that mainly manifest as gastrointestinal
reactions, including colitis and hepatitis [165].

PD-1 is also a surface receptor expressed on a variety of
immune cells such as T cells, B cells, DCs, and NK cells, and
it can bind two ligands programmed death-1 ligand (PD-L1)
and programmed death-2 ligand (PD-L2) and cause the
dephosphorylation of several key molecules in the TCR
signaling pathway, thus inhibiting the proliferation and
activation of T-cells [49]. Cancer cells have the capability of
impairing the cytotoxicity of efector T-cells by activating the
PD-1/PD-L1 signaling pathway, which is one of the essential
approaches implicated in the immune escape of cancer cells
[166]. Terefore, antibodies against PD-1 can block the
binding of PD-1 to its ligands, promote the proliferation and
activation of Tcells, and as a consequence exert an antitumor
efect. At present, the antibodies against PD-1 approved for
clinical use mainly include nivolumab and pembrolizumab
(Table 3). Various clinical trials have demonstrated the ef-
fcacy and safety of nivolumab and pembrolizumab in the
treatment of melanoma [143, 144]. In addition, nivolumab
and pembrolizumab are also used in the treatment of
metastatic non-small cell carcinoma and renal cell
carcinoma [17].

Compared with traditional chemotherapy, the curative
efect of immune checkpoint inhibitors is better and adverse
reactions during treatment are less, which have dramatically
changed the treatment of malignant tumors. However, more
studies are needed to determine the optimal patients for the
immune checkpoint inhibitor treatment.

(2) Multitarget drugs. Curcumin is a natural compound
derived from the curcuma longa, which has been identifed
to impair multiple signaling pathways and inhibit the
proliferation, invasion, metastasis, and angiogenesis of tu-
mor cells (Table 3) [167]. Curcumin is a multitarget drug,
which not only regulates the proliferation and the activation
of T-cells by inhibiting the expression of IL-2 andNK-κB but
also inhibits the growth of tumors by enhancing the activity
of CD8+ T-cells [168]. In addition, curcumin can inhibit
TGF-β, IDO, and some other immunosuppressive factors
and increase the recruitment of T-cells, which is conducive
to antitumor therapy [169].

Te extra domain B (ED-B) of fbronectin can be
expressed in specifc solid tumor neovascular regions and
extracellular matrix but not in normal tissues [170]. ED-B is
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highly expressed in gliomas [171], and as ED-B is contin-
uously produced during the formation, proliferation, and
migration of glioma cells, it is theorized that the higher the
grade of glioma, the higher the content of ED-B in tumor
neovasculars. Because the physiological function of ED-B is
unclear and it is suitable only as a tumor marker, a small
fraction of the antibody drugs that have been developed are
produced by fusing protein drugs or conjugated with other
drug molecules, known as the armed antibody [172]. L-19
[173] is a full human single-chain antibody to ED-B screened
by phage display technology, which can be genetically
recombined with IL-2, TNF-a, interferon, etc., to form
a fusion protein. It can be used for head and neck cancer,
difuse large B cell lymphoma, non-small cell carcinoma, and
so on.

In the immune therapy of tumors, it is of signifcance to
fnd practical biomarkers to guide the choice of efective
drugs in order to ensure that patients can achieve the
maximal beneft from clinical treatment.

3. Discussion

With the extensive studies on TME, antitumor therapy
targeting TME has emerged as an exciting prospect.
However, there are still some difculties and challenges in
the clinical application of antitumor therapy targeting the
TME. First of all, many drugs are only clinically applied to
target one specifc type of cancer. Moreover, numerous
preclinical and clinical trials are exploring their applica-
tions in many other cancer types, which hopefully would
expand the use of these anticancer therapies. It is also
necessary to further identify the pharmacological mecha-
nisms of these agents, in order to improve the application
of the drugs in the treatment of multiple malignancies.
Although patients indeed receive enormous beneft from
the anticancer therapy, the adverse efects of these agents
and the development of drug resistance remain to be the
obstacles in cancer treatment. A mounting number of
studies are investigating the methods to mitigate the side
efects, and novel therapeutic chemicals have been de-
veloped to overcome the resistance against current agents.
Some treatment methods can signifcantly improve the
antitumor efects through a single immunosuppression
targets; however, the TME exits as a dynamic regulatory
network which is composed of diverse immunosuppression
signals generated by many cell types and molecules. Once
an individual immunosuppressive signal is blocked or
deleted, “smart” tumor cells are capable of evolving other
immunosuppressive mechanisms to attenuate the curative
efect of therapeutics. Terefore, combination therapy is
considered as the trend of future antitumor therapy.
Furthermore, animal models of TME are relatively difcult
to establish compared with the animal models used in other
felds, for example, drug safety evaluation. Terefore, it is
also an important direction for future research to establish

the animal models that are highly similar to TME in vivo,
especially one that can simulate the function of various
components of TME.

Additional Points

Text. As a critical hallmark of cancer, the tumor microen-
vironment (TME) has evolved as an important anticancer
therapeutic target. Many great eforts have been made to
elucidate the roles of TME in tumorigenesis and cancer
progression. Although the complexity of TME remains to be
a conundrum of the efective targeted therapy, scientists
have succeeded in developing a variety of pharmacological
interventions to impede the TME functions implicated in
tumor malignancies.
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