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N6-methyladenosine (m6A) modifcation is a common epigenetic modifcation. It is reported that lncRNA can be regulated by
m6A modifcation. Previous studies have shown that lncRNAs associated with m6A regulation (m6A-lncRNAs) serve as ideal
prognostic biomarkers. However, whether lncRNAs are involved in m6A modifcation in colon adenocarcinoma (COAD) needs
further exploration. Te objective of this study was to construct an m6A-lncRNAs-based signature for patients with COAD. We
obtained the RNA sequencing data and clinical information fromTeCancer Genome Atlas (TCGA). Pearson correlation analysis
was employed to recognize lncRNAs associated with m6A regulation (m6A-lncRNAs). 24 prognostic m6A-lncRNAs was
identifed by univariate Cox regression analysis. Gene set enrichment analysis (GSAE) was used to investigate the potential cellular
pathways and biological processes. We have also explored the relationship between immune infltrate levels and m6A-lncRNAs.
Ten, a predictive signature based on the expression of 13 m6A-lncRNAs was constructed by the Lasso regression algorithm,
including UBA6-AS1, AC139149.1, U91328.1, AC138207.5, AC025171.4, AC008760.1, ITGB1-DT, AP001619.1, AL391422.4,
AC104532.2, ZEB1-AS1, AC156455.1, and AC104819.3. ROC curves and K M survival curves have shown that the risk score has
a well-predictive ability. We also set up a quantitative nomogram on the basis of risk score and prognosis-related clinical
characteristics. In summary, we have identifed some m6A-lncRNAs that correlated with prognosis and tumor immune mi-
croenvironment in COAD. In addition, a potential alternative signature based on the expression of m6A-lncRNAs was provided
for the management of COAD patients.

1. Introduction

Colon adenocarcinoma is a common pathological type of
colon cancer, and its prognosis is poor [1, 2]. Terapies for
colon adenocarcinoma (COAD) include surgery, chemo-
therapy, and radiation therapy [3]. Surgery can cure about
half of the COAD patients, but the recurrence rate stays
high after surgery. Chemotherapy and radiation are not

efective due to their side efects and drug resistance. Be-
sides, the signifcant heterogeneity of COAD limits the
utilization of traditional methods [4]. With the approach of
the era of personalized therapy managements, traditional
diagnosing failed to satisfy advanced diagnoses and ther-
apies. It is expected to build more useful prognostic sig-
natures to help improve personalized treatment
management.
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N6-methyladenosine (m6A) modifcation is one of the
principal internal modifcations of RNA and participates in
many biological processes [5, 6]. m6Amodifcation has been
proven to be a reversible process, which is regulated by
methyltransferase (writer), demethylase (eraser), and signal
sensor (reader) [7]. Studies have reported that m6A mod-
ifcation plays critical roles in the progression of diferent
malignant tumors, including COAD [8–14]. For instance,
METTL3 has been identifed to promote COAD occurrence
and progression by relying on IGF2BP1/IGF2BP2 [15, 16]. It
has been found that METTL14 suppresses COAD occur-
rence and progression by relying on YTHDF2 [17, 18].

lncRNA is a kind of RNA molecule that does not encode
a protein, with a length of more than 200 bp, and plays
important roles in the carcinogenesis and progression of
cancers, including COAD [19, 20]. It has been proven that
m6A modifcation can regulate the physiological functions
of lncRNAs [21, 22]. For example, the structure of lncRNA
can be regulated by binding to m6A readers, allowing m6A
residues to be accessed by specifc RNA-binding proteins
[23, 24]. m6A modifcation modulates the structure of
lncRNA MALAT1 to play the function of the structural
switch, which is related with cancer malignancies [25].
METTL16 (writer) was identifed as an RNA-binding pro-
tein of lncRNA MALAT1 [26]. m6A modifcation can sta-
bilize lncRNA FAM225A that served as a sponge for miR-
1275 and miR-590-3p in nasopharyngeal carcinoma [27].
METTL3 (writer) can stabilize and upregulate LINC00958,
which is involved with the malignancy of liver cancer
progression by sponging miR-3619-5p [28]. Previous studies
have shown that m6A-lncRNAs serve as ideal prognostic
biomarkers. Nevertheless, whether lncRNAs are involved in
the regulation of m6Amodifcation in COAD still need to be
elucidated. Te objective was to identify prognostic m6A-
lncRNAs and construct an m6A-lncRNAs-based prognostic
signature for patients with COAD.

In this study, we obtained the RNA sequencing data in
TCGA and identifed 24 prognostic m6A-lncRNAs and
13 m6A-lncRNAs were selected by the Lasso regression
algorithm to construct prognostic signature. We have also
verifed the reliability of the prognostic signature. In addi-
tion, a quantitative prognostic nomogram was constructed
based on signature and clinical features.

2. Methods

2.1. Data Source and Preparation. RNA sequencing data of
398 COAD patients with clinical information were obtained
from TCGA. 19 COAD patients were excluded due to a lack
of necessary clinical information. Subsequently, RNA se-
quencing data were divided into mRNAs and lncRNAs using
the Ensembl Genome Browser [29]. Te corresponding
clinical data included age, gender, tumor-node-metastasis
(TNM) stage, pathological stage, and survival time. We
randomly divided COAD patients at a ratio of 7 : 3 into the
training cohort (267 patients) and validation cohort (112
patients).

2.2. Identifying Prognosis-Related m6A-lncRNAs. 23 m6A
regulators, based on published articles, including 8 writers,
13 readers, and 2 erasers, were collected in this study (Ta-
ble 1) [30, 31]. Pearson correlation analysis was applied to
the expression of lncRNAs and the 23 m6A regulators to
recognize m6A-associated lncRNAs. Univariate Cox re-
gression analysis was applied to recognize prognostic m6A-
lncRNAs. We used the “limma” R software package to
analyse the diferential expression of prognosis-related m6A
lncRNA.

2.3. Consensus Clustering Analysis. For a better un-
derstanding of the role of m6A-lncRNAs, consensus clus-
tering was performed by the “ConsensusClusterPlus” R
package to divide all samples into diferent clusters based on
the expression of prognosis-relatedm6A-lncRNAs [32].
Subsequently, Kaplan Meier analysis was performed in
diferent clusters. We also applied the CIBERSORT algo-
rithm and theWilcoxon test to analyse diferent immune cell
infltration between clusters. Besides, immune, stromal, and
ESTIMATE scores were calculated by the “ESTIMATE” R
package. GSEA software was applied to investigate the
potential cellular pathways and biological processes in dif-
ferent clusters.

2.4. Development and Evaluation of Prognostic Signature.
After prognosis-related m6A-lncRNAs were identifed,
LASSO regression analysis was applied to setup a risk model
by “glmnet” R package, which could avoid overftting by
disposing of highly correlated lncRNAs [33, 34]. Te sig-
nature was calculated in the following format:

risk score � 
n

i�1
coef(i) ∗ lncRNA(i) expression. (1)

Ten, COAD patients were classifed into high- and low-
risk subgroups. K M survival analysis was employed to
compare whether there were diferences in survival between
the two subgroups using “survival” R packages. To testify the
prediction efcacy of the risk model, we employed ROC
curves and measured the AUC values by R package
“timeROC” [35].

2.5. Establishment of Prognostic Nomogram. To further
evaluate the reliability of the signature, a comprehensive
analysis of risk score and clinical features was performed.
Subsequently, a quantitative nomogram was developed on
the basis of risk score and clinical features using the “rms” R
package [36]. We applied the calibration curves to outline
the accuracy of the nomogram.

2.6. Statistical Analysis. All statistical analysis in this study
was performed using R software (V 4.0.4). Te Wilcoxon’s
test was employed to compare the diference. Kaplan Meier
(K M) survival analysis was performed by using the log-rank
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test. Unless otherwise stated, P< 0.05 was considered
a statistically signifcant diference.

3. Results

3.1. Identifcation of Prognosis-Related m6A-lncRNAs. By
Pearson correlation analysis, a total of 1505 lncRNAs were
identifed as m6A lncRNA, with an absolute correlation
coefcient >0.4 (P< 0.001). Ten, 24 prognostic m6A-
lncRNAs were identifed by univariate Cox regression
analysis. Among them, UBA6-AS1, AC139149.1, NIFK-AS1,
AC245041.1, U91328.1, SFTA1P, AC138207.5, SNHG26,
AC025171.4, AC008760.1, AC026367.1, ITGB1-DT, AP0
01619.1, LINC01138, LINC01545, AL391422.4, AC104532.2,
AC005229.4, ZKSCAN2-DT, ZEB1-AS1, AC107308.1,
AC156455.1, and ATP2B1-AS1 were recognized as risky
lncRNAs for HR> 1 (P < 0.05) and AC104819.3 was rec-
ognized as protective lncRNA with HR< 1 (P< 0.05)

(Figure 1(a)). Te correlation between lncRNAs and m6A
regulators is shown in Figure 1(b). Te expression of 24
prognostic m6A-lncRNAs in normal tissues and tumor
tissues was displayed by the box plot and heatmap.
(Figures 1(c) and 1(d)).

3.2. Consensus Clustering Analysis. For further un-
derstanding the roles of prognostic m6A-lncRNAs, patients
were clustered according to the expression of m6A-lncRNAs
by consensus clustering analysis. As displayed in the con-
sensus matrix map and cumulative distribution function
(CDF) plot for k� 2, the interference was the smallest
(Figures 2(a) and 2(b)). Te overall survival results of pa-
tients in cluster 1 are better than those in cluster 2
(Figure 2(c)). Figure 2(d) displays the correlation between
clinicopathological features and clusters.

3.3. Gene Set Enrichment Analysis (GSAE). To explore the
potential cellular pathways and biological processes of
prognostic m6A-lncRNAs, the GSEAwas employed between
two clusters. As displayed in Figure 3, genes in cluster 2 were
enriched in the p53-signaling-pathway, proteasome, cell
cycle, and peroxisome. Besides, genes in cluster 1 were
enriched in TGF-betasignaling-pathway, ERBB-signaling-
pathway, ECM-receptor interaction, MAPK-signaling-
pathway, and JAK-STAT-signaling-pathway.

3.4. Immune Cell Infltration and Distribution of Immunity.
To explore the roles of m6A-lncRNAs in the tumor immune
microenvironment (TIME), we compared the scores of 22
diferent immune cell types in two clusters. As shown in
Figure 4(a), activated memory CD4 Tcells are rich in cluster
2 (P< 0.05). Figure 4(b) shows the positive correlation

between the m6A-lncRNAs and PD-L1. Furthermore, we
analysed the distribution of immunity in two clusters.
Cluster 1 have a higher stromal score, immune score, and
ESTIMATE score (P< 0.05, Figures 4(c)–4(e)).

3.5. Construction and Validation of m6A-lncRNAs Signature.
Te LASSO regression algorithm was used to avoid over-
ftting and for constructing risk scores. As displayed in
Figures 5(a) and 5(b), at penalty factor (λ) 13, the coefcients
of some variables are near to 0 [37]. Ultimately, 13 m6A-
lncRNAs were identifed as independent prognostic factors.
Te m6A-lncRNAs risk model for predicting prognosis in
COAD was established on the basis of coefcients of
13 m6A-lncRNAs in the following format: risk
score =UBA6-AS1∗∗ 0.7684476 +AC139149.1∗ 0.7685387
+AC104819.3∗ (−1.96469) +U91328.1∗ 0.3846686 +AC13
8207.5∗ 0.1605522 +AC025171.4∗ 0.1220795 +AC008760.1
∗ 0.1164466 + ITGB1-DT∗ 0.5387446 +AP001619.1∗ 0.099
2952 +AL391422.4∗ 0.4690258 +AC104532.2∗ 0.1403134 +
ZEB1-AS1∗ 0.3567363 +AC156455.1∗ 0.1279327 (Figure
5(c)).

Te K M curves showed that the survival outcome of the
low-risk subgroup was better (P< 0.05) (Figures 5(d) and
5(g)). Te time-dependent ROC curves indicated that, in the
training cohort, the AUC value at 1 year was 0.845, 0.797 at
3 years, and 0.813 at 5 years (Figure 5(e)). In the validation
cohort, the AUC value at 1 year was 0.750, 0.821 at 3 years,
and 0.935 at 5 years (Figure 5(h)). Furthermore, the risk
score distribution plot and scatter plot also showed that the
survival outcome of the high-risk subgroup was worse. Te
heatmap illustrated that the expressions of risky lncRNAs
were upregulated in the high-risk group, while protective
lncRNA was downregulated (Figures 5(f ) and 5(i)).

To further validate the risk model, the correlation be-
tween risk score and clinical characteristics was analysed. As
shown in Figure 6(a), the risk score was signifcantly cor-
related with pathological stage and immune score (P< 0.05).
Besides, the scatter plot showed that the risk score was also
signifcantly correlated with PD-L1 expression and immune
score (Figures 6(b) and 6(d)).

3.6. Development of Survival Prognostic Nomogram. We
comprehensively analysed the risk score and clinical char-
acteristics. Risk scores, age, and pathological stage were
identifed as signifcant independent prognostic variables
(P< 0.05, Figures 7(a) and 7(b)), which revealed that the risk
model served as a reliable tool for COAD patients. Sub-
sequently, we constructed a quantitative nomogram on the
basis of risk score and clinical characteristics (Figure 7(c)).
Te calibration curves displayed the concordance between
observed and predicted overall survival (Figures 7(d)–7(f )).

Table 1: N6-methyladenosine (m6A) modifcation regulators.

Eraser FTO; ALKBH5
Writer ZC3H13; METTL16; METTL14; METTL3; VIRMA; RBM15B; RBM15; WTAP

Reader FMR1; YTHDF3; YTHDF2; YTHDF1; YTHDC2; YTHDC1; RBMX; HNRNPC;
HNRNPA2B1; LRPPRC; IGFBP3; IGFBP2; IGFBP1
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4. Discussions

N6-methyladenosine (m6A) modifcation is a common
epigenetic modifcation in eukaryotes, involving many bi-
ological processes, such as RNA splicing, translation, and
expression. M6A modifcation and lncRNAs play critical
roles in the biological processes of COAD. For example,
m6A regulators, such asMETTL3,METTL14, and YTHDF2,
have been proven to be involved in regulating the patho-
logical process of COAD [16, 17]. It is reported that lncRNA
can be regulated by m6A modifcation. However, whether
lncRNAs are involved in the regulation of m6Amodifcation
in the progression of COAD needs further exploration.

With the approach of the era of personalized therapy
managements, traditional diagnosing failed to satisfy ad-
vanced diagnoses and therapies. It is expected to build more
useful prognostic signatures to help improve personalized
treatment management. In this study, we focused on
identifying prognosis-related lncRNAs associated with m6A

modifcation (m6A-lncRNAs) and used bioinformatics
methods to establish a reliable risk model for patients
with COAD.

We downloaded RNA sequencing data in TCGA. M6A-
lncRNAs were recognized by Pearson correlation analysis
according to the expression of lncRNAs and m6A regu-
lators. Tere are 24 prognostic m6A-lncRNAs identifed by
univariate Cox regression analysis. For exploring the bi-
ological features of these 24 prognostic m6A-lncRNAs, we
divided the COAD patients into two clusters. GSAE has
been applied to investigate the potential cellular pathways
and biological processes. Accumulated studies have illus-
trated that tumor immune microenvironment (TIME) is
correlated with tumorigenesis and the development of
COAD [38–41]. In this study, we have explored the re-
lationship between immune infltrate levels and m6A-
lncRNAs. Tere are also signifcant diferences between
the two clusters in ESTIMATE score, stromal score, and
immune Score.
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Figure 1: Identifcation of prognostic m6A-lncRNAs. (a) Forest plots of 24 prognosis-relatedm6A-lncRNAs. (b) Te correlation between
lncRNAs and m6A regulators. (c) Boxplots of 24 prognosis-related m6A-lncRNAs. (d) Heatmap of 24 prognosis-related m6A-lncRNAs.
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Te Lasso regression algorithm is widely used to con-
struct risk models. Te most important diference between
lasso regression analysis and traditional stepwise Cox re-
gression analysis is that it can process all variables simul-
taneously, instead of step by step [34], which greatly
improves the stability of the model. In this study, LASSO
regression analysis was conducted to avoid overftting and to
construct risk scores. Ultimately, 13 m6A-lncRNAs, in-
cluding UBA6-AS1, AC139149.1, U91328.1, AC138207.5,
AC025171.4, AC008760.1, ITGB1-DT, AP001619.1,

AL391422.4, AC104532.2, ZEB1-AS1, AC156455.1, and
AC104819.3 were selected to construct the signature. To
testify the reliability of the signature, COAD patients were
divided, at a ratio of 7 : 3, into a training set and validation
set. K M survival analysis and the ROC curves showed well
discrimination of the signatures. In addition, risk score and
clinicopathological characteristics were integrated into the
analysis. Age, risk score, and pathological stage were rec-
ognized as independent prognostic factors, which also
demonstrated the reliability of the risk model. Ten,
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a quantitative prognostic nomogram was constructed. Te
calibration curves demonstrated the accuracy of the
nomogram.

Tere were also limitations in our study. First, the m6A-
lncRNAs risk model was constructed and validated based on
the TCGA database. We did not verify the prognostic sig-
natures in external independent cohorts. Second, the in-
teraction between prognosis-related m6A-lncRNA and m6A
regulator lacks experimental confrmation.

5. Conclusions

To sum up, we have identifed some m6A-related lncRNAs
which were correlated with prognosis and tumor immune
microenvironment. A reliable alternative prognostic sig-
nature was provided for the management of COAD patients.
We also combined risk scores with clinical characteristics to
establish a quantitative prognostic nomogram.
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