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Gastric cancer (GC) is one of the most lethal cancers in South Korea, and it is a cancer of concern worldwide. 5-fuorouracil (5-Fu)
is commonly used as the frst-line therapy for advanced GC; however, its side efects often limit the dosage range and impair
patients’ quality of life. Due to the limitations of current chemotherapy, new anticancer therapies are urgently needed. 3,3′-
diindolylmethane (DIM) has been reported to have the ability to protect against various types of cancer. Our study aimed to
elucidate the anticancer efect of DIM in GC when treated with the chemotherapeutic agent 5-Fu. In our results, combined
treatment with DIM and 5-Fu resulted in higher apoptosis and lower cell proliferation than treatment with 5-Fu in SNU484 and
SNU638 cell lines. Furthermore, when DIM and 5-Fu were administered together, cell invasion was diminished by mediated E-
cadherin, MMP-9, and uPA; p-Akt and p-GSK-3β levels were reduced more signifcantly than when 5-Fu was administered alone.
Moreover, in the Wnt signaling pathway, combined treatment of DIM and 5-Fu diminished β-catenin levels in the nucleus and
inhibited cyclin D1and c-Myc protein levels. Te Akt inhibitor, wortmannin, further inhibited the levels of β-catenin and c-Myc
that were inhibited by DIM and 5-Fu. Furthermore, an animal xenograft model demonstrated that DIM combined with 5-Fu
considerably reduced tumor growth without any toxic efects by regulating the Akt/GSK-3β and β-catenin levels. Our fndings
suggest that DIM signifcantly potentiates the anticancer efects of 5-Fu by targeting the Akt/GSK-3β andWNT/β-catenin because
the combination therapy is more efective than 5-Fu alone, thereby ofering an innovative potential therapy for patients with GC.

1. Introduction

Gastric cancer (GC) has a high incidence rate and is one of
the most lethal cancers worldwide [1]. Moreover, GC is
a prominent mortality malignant neoplasm in South Korea
[2]. Although the morbidity of GC has recently declined
globally, it remains a major killer worldwide [3]. Due to the
lack of an early GC diagnostic index, only 28% of patients
with GC can be diagnosed in the local stage, and more than
62% of patients were initially discovered to have regional or

distant GC [4]. Tus, the 5-year survival rate of patients with
GC is merely 37.9% [5]. Surgery remains the preferred
method for treating patients with GC because of the limi-
tations of chemotherapy [6]. However, many patients are
diagnosed late with advanced-stage disease because of the
low rate of early diagnosis [7]. Consequently, most patients
with GC miss the surgical time window; the treatment for
late-stage is the combination of neoadjuvant chemotherapy,
radiotherapy, specifc-targeted therapy, and others [7].
Terefore, GC remains a serious burden on global health
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because therapies for this disease are limited, and novel
therapies are desperately needed.

5-fuorouracil (5-Fu) acts by interrupting the action of
DNA replication [8]. Over 50 years, 5-Fu has been exten-
sively used as systemic combination chemotherapy in
treating colorectal [9], gastrointestinal [10], anal [11], breast
[12], head, and neck cancers [13, 14]. Although 5-Fu is
recommended as a principal chemotherapeutic reagent for
GC [15], various acute problems, such as dose-limiting
toxicity, low efcient conversion rate, drug resistance, and
serious side efects, will decrease its efcacy [16, 17]. Tus,
developing natural substances that can alleviate the side
efects of the existing anticancer action and increase the
efciency of 5-Fu are imperative.

3,3′-diindolylmethane (DIM) is found as phytochemicals
in fruits and vegetables [18] and has excellent proven anti-
cancer capabilities [19–24]. DIM prevents cancer growth and
metastasis as well as induces autophagy and cell apoptosis in
colon [25], pancreatic cancer [26], breast cancer [27], en-
dometrial cancer [28], and GC [29, 30]. Furthermore, DIM
plays an essential role in regulating many pathways, including
the Akt [31], Wnt [24, 25], and Hippo [30] signaling path-
ways. In our previous study, we found that DIM potentiated
paclitaxel-induced anticancer efects by inactivating Akt and
FOXM1 in GC cells [29]. Hence, DIM could be used as an
enhancive drug to reduce the limitations of existing anti-
cancer drugs; the addition of DIM may promote the anti-
tumor efcacy of chemotherapeutic agents in GC.

Akt is a serine/threonine kinase and acts as a key player
in the phosphoinositide 3-kinase (PI3K)/Akt signaling
pathway involved in normal cellular processes [32]. Akt is
often highly activated in many cancers [33] and functions as
a central point in various signaling pathways [34]. PI3K/Akt
pathway has been suggested to be associated with cell in-
vasion, autophagy, and apoptosis regulation in GC [35].
Moreover, Yu et al. have demonstrated that Akt is involved
in the chemoresistance that causes drug resistance in GC
[36, 37]. Hence, targeting Akt seems to be an important
approach for preventing and treating GC. Te Wnt pathway
elicits a pivotal role in GC [38]. Approximately 30% of
gastric adenocarcinomas show a direct correlation with
β-catenin nuclear localization through the Wnt signaling
pathway [39]. Although DIM can regulate cell proliferation
via Akt [29] or β-catenin [40], whether DIM can enhance the
efects of chemotherapeutic drugs on GC via the Akt and
Wnt signaling pathways remains uncertain. Terefore, our
study was designed to investigate the efects of DIM com-
bined with 5-Fu and the probable underlying biological
mechanisms in GC. We hypothesize that combination
treatment of DIM and 5-Fu has a strong and safe inhibitory
efect on GC and efectively improves the susceptibility of
GC to DIM by inhibiting Akt/GSK-3β and β-catenin.
Terefore, DIM may be a feasible targeted therapy for GC.

2. Materials and Methods

2.1. Cell Culture and Experimental Reagents. SNU484 and
SNU638were acquired from the KoreanCell Line Bank (Seoul
National University, Korea). RPMI-1640 medium (Gibco,

Grand Island, NY, USA) containing 10% fetal bovine serum
(FBS) (Welgene Gold Serum, Gyeongsan-si, Republic of
Korea) and 1% penicillin (Sigma-Aldrich, St. Louis, USA)
were used for cell culture. Antibodies, such as glyceraldehyde
3-phosphate dehydrogenase (GAPDH), cleaved-PARP,
cleaved-caspase-9, PARP, caspase 9, cyclin D1, Akt, p-Akt,
GSK-3β, β-catenin, p-β-catenin, cyclin D1, and lamin B, and
secondary antibodies against rabbit and mice were acquired
from Cell Signaling Technology, Inc. (Danvers,
Massachusetts, USA); E-cadherin, uPA, MMP-9, and c-Myc
were bought from Santa Cruz Biotechnology, Inc. (Santa
CRUZ, CA, USA). Wortmannin and 5-FU were acquired
from Sigma-Aldrich (St. Louis, MO, USA) and DIM was
acquired from LKT Laboratories (St. Paul, MN, USA).

2.2. Cell Viability Assay. Te cells were seeded in 96-well
plates. Each well contained approximately 104 cells. After
48 h of DIM (30 μM) and 5-Fu (10 μM) treatment, each well
containing 10 μL of EZ-Cytox (DoGenBio, Seoul, South
Korea) was diluted with 100 μL of RPMI-1640. Ten,
a microplate reader was used to determine the data (450 nM,
Bio-Tek, Winooski, VT, USA).

2.3. Soft Agar Colony Formation Assay. Moreover, 1% aga-
rose gel was dissolved and added to a 6-well dish until
solidifcation. Following this, 0.7% agarose gel was gently
mixed with 1× 105 cells in 2×RPMI-1640 media and 20%
FBS plus 2% antibiotics and covered with medium with or
without drug, respectively. Te dishes were incubated for
3weeks and fed fresh medium with or without drug twice or
three times a week. Colonies with more than 30 cells were
counted as one positive colony, and images were taken using
a microscope.

2.4. Annexin V–FITC Analysis. An Annexin V–FITC Assay
Kit (Becton Dickinson Biosciences, CA, USA) was used
according to the manufacturer’s recommended procedure.
After 48 h of DIM and 5-Fu treatment, the cells were washed
twice with ice-cold DPBS and further resuspended in the
annexin-binding bufer containing annexin V-FITC and
propidium iodide (PI) solution. Following the incubation of
stained cells in a CO2 incubator at 37°C for 30min, fow
cytometry analysis was performed immediately (Becton
Dickinson, New York, NY).

2.5. Cell Cycle Analysis. To analyze the efect of drugs on the
cell cycle, SNU484 and SNU638 were cultured in 60mm
dishes and incubated with DIM and 5-Fu for 48 h. After
collecting the cells, they were rinsed twice with ice-cold
DPBS and soaked for 2 h in 75% ethanol. Subsequently, the
cells were washed with DPBS to remove the ethanol. Te cell
cycle counts were estimated by incubating at 37°C in a CO2
incubator for 15min with RNase, which was followed by
nucleus staining with propidium iodide (Sigma Chemical,
St. Louis, MO, USA).Ten, cell counts were further analyzed
using CytExpert analysis software (Beckman Coulter,
Indianapolis, Indiana, USA).
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2.6.Migration Assay. After attaching the cells (6-well plate),
a straight line was scraped on the monolayer cells, and the
foating debris was removed using DPBS. Cells were further
applied with DIM and/or 5-Fu for 48 h with 5% FBS.
Moreover, images were taken from a microscope (IX71;
Olympus, PA, USA), and the vertical distance of each scratch
between two sides was measured after at least fve cells were
randomly selected. Te closure area was measured after 24 h
and 48 h.

2.7. Western Blotting. Proteins were extracted from mouse
tumor tissue or cell lysate after 48 h of treatment with DIM,
5-Fu, or a combination treatment. Wortmannin (5 μM) was
pretreated for 2 h, and samples were collected 48 h after
DIM, 5-Fu, or a combination treatment. Whole proteins
were lysed and separated cytoplasmic and nuclear proteins
using NE-PER™ Nuclear and Cytoplasmic Extraction Re-
agents (Termo, Meridian Rd, Rockford, USA). Extracts
were placed into lyse and then centrifuged (13,200 rpm for
30min). Protein levels were measured by BSA protein assay
kit (Pierce Biotechnology, Inc., Rockford, IL, USA). Proteins
(30 μg) were resolved using SDS-PAGE gels (8% or 12%) and
transferred onto polyvinylidene difuoride membranes (Bio-
Rad, CA, USA). Specifc primary antibodies were incubated
on the membranes overnight at 4°C; afterward, HRP-
conjugated secondary antibodies were incubated for at
least 2 h at 4°C. Te Immobilon Western Chemiluminescent
HRP Substrate (Millipore Corporation, Burlington, MA,
USA) was used to capture chemiluminescent images by the
Amersham Imager 600 (GE Healthcare Bio-Sciences AB,
Uppsala, Sweden). Te primary antibodies included Bax,
Bcl2, cleaved-caspase3, cleaved-PARP, cleaved-caspase-9,
cleaved-caspase-7, caspase-3, PARP, caspase-9, caspase-7,
uPA, MMP-9, E-cadherin, GSK-3β, p-GSK-3β, p-Akt, Akt,
β-catenin, p-β-catenin, cyclin D1, c-Myc, lamin B, and
GAPDH.

2.8. RNA Isolation and RT-PCR. Total RNA was prepared as
previously described [41]. Te E-cadherin primer sequences
used were 5′-GGATTGCAAATTCCTGCCATTC-3′ and its
antisense (5′-AACGTTGTCCCGGGTGTCA-3′); MMP-9
sense (5′-GACCTCAAGTGGCACCACCA-3′) and anti-
sense (5′-GTGGTACTGCACCAGGGCAA-3′); GAPDH
sense (5′-GTCTCCTCTGACTTCAACAGCG-3′) and an-
tisense (5′-ACCACCCTGTTGCTGTAGCCAA-3′).

2.9. In Vivo Studies. In vivo studies were performed
according to the guidelines by the Institutional Animal Care
and Use Committee (IACUC) of the University of Penn-
sylvania (USA) and those authorized by the IACUC of
Jeonbuk National University (#CBNU2017-0001, 3 January
2017). Immunodefcient mice (4 weeks, male, SPF/VAF)
were purchased (Orient Bio, Deajeon, South Korea) and
acclimatized to conditions for 1week before the tumor cells
inoculation. Each mouse was subcutaneously injected with
Matrigel (3.5×106 human GC cell SNU484/0.1mL) into the
one-side fank. Te mice were separated into three groups

(n� 5 in each) as follows: (i) control group (intraperitoneally
injected with 50 μL of DPBS every 2 days); (ii) 5-Fu group
(intraperitoneally injected with 25mg/kg of 5-Fu in 50 μL of
DPBS every 2 days); (iii) DIM and 5-Fu combination group
(intraperitoneally injected with 25mg/kg of 5-Fu + 10mg/kg
of DIM in 50 μL of DPBS every 2 days). Te formula to
calculate the tumor volume was as follows: (width)
2× length/2. When the tumors grew to approximately
4,000mm3, the experiment was terminated, mice were
sacrifced, and samples were collected.

2.10. Histology and Immunohistochemistry. For histology,
tumor tissues were extracted from mice. Ten, the tissues
were embedded in parafn after being fxed in 10% form-
aldehyde solution, sectioned (4 μm), and further stained
with H&E. For immunohistochemistry, deparafnization
and rehydration of the formalin-fxedparafn-embedded
tissue were performed. Next, the slices were incubated
overnight at 4°C with the anti-Ki-67 antibody (Invitrogen,
Waltham, MA, USA). Antirabbit HRP/DAB IHC kit
(Abcam, Cambridge, UK) was used to stop high back-
ground, and all images were captured using a light
microscope.

2.11. Blood Biochemical Assays. After euthanasia, the blood
was placed in an EP tube and the serum was separated into
another EP tube. Aspartate aminotransferase and alanine
aminotransferase levels (AM102-K and AM103-K, Asan
Pharmaceutical, Seoul, Korea) were measured to evaluate the
liver function. Te serum creatinine (Cr) and blood urea
nitrogen (BUN) levels were determined to assess kidney
function (CR, creatinine serum detection Kit and BUN,
ARBOR ASAYS, Michigan, USA).

2.12. Statistical Analysis. GraphPad Prism version 7.00
(GraphPad Software, Inc., La Jolla, CA, USA) was used to
calculate half-maximal inhibitory concentration (IC50), the
drug concentration at which 50% growth inhibition was
achieved. One-way analysis of variance with Tukey’s posthoc
analysis was used as the statistical comparison. Te data are
expressed as the means± standard error (SE). p-values of
<0.05 or <0.01 were used to indicate statistical signifcance.

3. Results

3.1. DIM Enhances 5-Fu-Inhibited Proliferation of GC Cells.
We performed WST-1 and colony formation assays using
SNU-484 and SNU-638 GC cell lines to measure cell via-
bility. To evaluate the combined efects of DIM and 5-Fu on
cell proliferation, SNU484 and SNU638 cells were treated
with DIM (0, 10, 20, 30, 40, 50 μM) and 5-Fu (0, 5, 10, 15,
20 μM) and calculated the IC50 values of each drug. Te IC50
values of DIM were 33.84± 1.41 and 37.40± 0.84 in SNU484
and SNU638 cell lines, while those of 5-Fu were 15.31± 0.67
and 6.51± 0.48, respectively. Based on these IC50 values of
each drug, the cells were treated with DIM (30 μM), 5-Fu
(10 μM), or a combination treatment (DIM+5-Fu) for 48 h.
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Combination treatment of DIM and 5-Fu decreased cell
viability by 70% compared with the control group
(Figure 1(a)), and the percentage of cell viability inhibition
of combination treatment of DIM and 5-Fu was signifcantly
greater than that of the single treatment alone (either DIM
alone or 5-Fu alone) in SNU484 cells (Cont: 100%± 2.18%;
DMSO: 103.23%± 1.23%; DIM: 50.15%± 1.86%; 5-Fu:
71.74%± 2.86%; DIM+5-Fu: 31.70%± 0.32%) (DIM vs.
DIM+ 5-Fu: p< 0.01; 5-Fu vs. DIM+ 5-Fu: p< 0.01) and
SNU638 cells (Cont: 100%± 4.53%; DMSO: 100.29%
± 4.33%; DIM: 55.65%± 2.51%; 5-Fu: 40.61%± 1.08%;
DIM+5-Fu: 25.86%± 0.82%) (DIM vs. DIM+ 5-Fu: p< 0.01
; 5-Fu vs. DIM+ 5-Fu: p< 0.05). Combination treatment of
DIM and 5-Fu signifcantly suppressed colony formation
and decreased colony numbers compared with DIM alone or
5-Fu alone in SNU484 cells (Cont: 223.80± 9.50; DIM:
105± 13.89; 5-Fu: 110± 11.67; DIM+ 5-Fu: 42± 11.09)
(DIM vs. DIM+ 5-Fu: p< 0.01; 5-Fu vs. DIM+ 5-Fu:
p< 0.01) and SNU638 cells (Cont: 254± 16.55; DIM:
124± 6.04; 5-Fu: 123.75± 8.51; DIM+ 5-Fu: 75.75± 5.36)
(DIM vs. DIM+ 5-Fu: p< 0.05; 5-Fu vs. DIM+ 5-Fu:
p< 0.05) (Figure 1(b)). Tese results indicated that com-
bined treatment with DIM and 5-Fu inhibited GC cell
proliferation more signifcantly than DIM or 5-Fu alone.

3.2.DIMEnhances 5-Fu-InducedCellApoptosis andCellCycle
Arrest in GC Cells. Flow cytometry was used to explore the
potential impact of DIM and 5-Fuon cell cycle alterations.
Additionally, SNU484 and SNU638 populations of gastric
cancer cells in the G1 phase were signifcantly increased by
combining DIM and 5-Fu therapy. Researchers posited that
a combination treatment of the two drugs induced G1 phase
arrest in GC cells (Figure 2(a)). Subsequently, we tested the
efects of DIM and 5-Fu on cell apoptosis in GCcells. Since the
sub-G1 phase acts as an apoptotic cell marker, we measured the
distribution of sub-G1 phase. Te percentage of sub-G1 phase
increased in the presence of DIM or 5-Fu in SNU484 cells
(Cont: 2.5%±0.2%; DIM: 4.38%±0.92%; 5-Fu: 8.93%±1.88%;
DIM+5-Fu: 13.65%±3.68%) (DIM vs. DIM+5-Fu: p< 0.05;
5-Fu vs. DIM+5-Fu: p � 0.43) and SNU638 cells (Cont:
1.45%±0.18%; DIM: 3.53%±0.6%; 5-Fu: 6.18%±0.79%;
DIM+5-Fu: 11.65%±1.18%) (DIM vs. DIM+5-Fu: p< 0.01;
5-Fu vs. DIM+5-Fu: p< 0.01) (Figure 2(b)). Combination
treatment of DIM and 5-Fu signifcantly enhanced sub-G1
phase by 4.72%–9.27% compared with DIM or 5-Fu alone.
Simultaneously, we performed annexin V–fuorescein iso-
thiocyanate (FITC) to directly explore the alteration of apoptotic
efect in GCcells. Te number of cells in the Q1-LR region
determines early apoptotic cells, whereas the Q1-UR region
contains late apoptotic and necrotic cells. DIM and 5-Fu no-
ticeably improved the ratio of apoptotic efect compared with
single treatment of DIM or 5-Fu alone in SNU484 cells (Cont:
1.97%±0.03%; DIM: 2.63%±0.80%; 5-Fu: 3.33%±0.42%;
DIM+5-Fu: 5.43%±0.74% of early-stage apoptotic cells; DIM
vs. DIM+5-Fu: p< 0.05, 5-Fu vs. DIM+5-Fu: p � 0.13)
(Cont: 2.57%±0.47%; DIM: 3.5%±0.69%; 5-Fu: 2.57%±0.41%;
DIM+5-Fu: 5.77%±0.84% of late-stage apoptotic/necrotic
cells; DIM vs. DIM+5-Fu: p � 0.12, 5-Fu vs. DIM+5-Fu:

p< 0.05) and SNU638 cells (Cont: 1.73%±0.14%; DIM:
1.1%±0.23%; 5-Fu: 4.83%±1.29%; DIM+5-Fu: 6.45%±2.59%
of early-stage apoptotic cells; DIM vs. DIM+5-Fu: p< 0.05, 5-
Fu vs. DIM+5-Fu: p � 0.84) (Cont: 1.43%±0.62%; DIM:
4.7%±1.9%; 5-Fu: 2.02%±0.93%; DIM+5-Fu: 6.63%±2.05%
of late-stage apoptotic/necrotic cells; DIM vs. DIM+5-Fu: p �

0.78, 5-Fu vs. DIM+5-Fu:p< 0.05) (Figure 2(c)). Furthermore,
we measured apoptosis-related proteins, using western blotting.
Combination treatment of DIM and 5-Fu downregulated Bcl-2,
caspase-3, caspase-7, PARP, and caspase-9 and on the other
hand, upregulated the cleaved form of Bax, caspase-3, caspase-7,
PARP, and caspase-9 compared with DIM or 5-Fu alone
(Figures 2(d) and 2(e)). Our fndings indicated that combined
treatment of DIM and 5-Fu greatly enhances apoptosis in
GCcells.

3.3. DIM Enhances 5-Fu-Inhibited Migration of GC Cells.
Wound-healing assay was performed to test the inhibitory
abilities of DIM and 5-Fu on the metastasis in GC cells. Cell
migration rates were measured at 24 h and 48 h (Figure 3(a)).
While the migration rate in SNU484 and SNU638 cells
declined by approximately 50% 24 h and 48 h after treatment
with DIM or 5-Fu alone, the migration rate reduced by
approximately 70% 24 h and 48 h after DIM and 5-Fu
treatment in GC cells. Tis result indicated that DIM and
5-Fu strongly decreases the migration rate of GC cells.
Subsequently, we examined how the combined therapy of
DIM and 5-Fu afects cell metastasis. Combined treatment of
DIM and 5-Fu signifcantly promoted E-cadherin levels but
suppressed MMP-9 and uPA levels in SNU484 and SNU
638 cells (Figure 3(b)). Moreover, combined treatment of
DIM and 5-Fu considerably upregulated the E-cadherin
mRNA and downregulated the MMP-9 mRNA
(Figure 3(c)). Terefore, these fndings suggested that
combined treatment of DIM and 5-Fu signifcantly di-
minishes the migration ability of GC cells by regulating E-
cadherin, MMP-9, and uPA.

3.4. DIM Enhances 5-Fu-Inhibited Akt Signaling in GC Cells.
Akt kinase is a signal molecule for the typical PI3K efector
in the PI3K/Akt signaling pathway, and its activation is
associated with the pathogenesis of GC [35]. We evaluated
the alterations in the Akt signaling and determined the
suppressive GC cell growth’s efect of DIM and 5-Fu.
Combination treatment of DIM and 5-Fu considerably di-
minished the p-Akt, whereas no signifcant changes were
seen in the Akt in SNU484 and SNU638 cells (Figure 4(a)).
Furthermore, p-GSK-3β (Ser9), a downstream gene of Akt,
greatly decreased after DIM and 5-Fu treatment. We further
investigated whether the combined treatment of DIM and 5-
Fu in the presence of wortmannin, a PI3K/Akt inhibitor,
resulted in a more efective inhibitory efect in SNU484 and
SNU638 cells. Te combined treatment of DIM and 5-Fu
signifcantly suppressed Akt, p-Akt, and p-GSK-3β (Ser9)
levels in SNU484 and SNU638 cells with wortmannin
treatment (Figure 4(b)), suggesting that wortmannin further
accelerated the efcacy of the inhibitory efect of combi-
nation treatment of DIM and 5-Fu on the Akt pathway.
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3.5. DIM Enhances 5-Fu-InhibitedWnt Signaling in GC Cells.
As a downstream signaling pathway of PI3K/Akt signaling,
the Wnt signaling pathway has been considered to play
a critical role in cancer [38]. We further examined whether
combination treatment of DIM and 5-Fu can regulate the
Wnt singling pathway using western blotting. Te main role
of Wnt signaling stimulation is the transfer of β-catenin in
the cytosol to the nucleus [42]. Hence, we separated the
cytoplasm and nuclear protein to measure β-catenin nuclear
translocation after combination treatment of DIM and 5-Fu.
Despite no obvious change in the cytoplasm, the β-catenin
levels in the nucleus signifcantly decreased after the com-
bined treatment of DIM and 5-Fu compared to that after
single treatment (Figure 5(a)). Furthermore, in the presence
of wortmannin, combination treatment of DIM and 5-Fu
dramatically inhibited β-catenin nuclear translocation
(Figure 5(b)). Combined treatment with DIM and 5-Fu
inhibited the β-catenin, cyclin D1, and c-Myc
(Figure 5(c)). Moreover, combined treatment of DIM and

5-Fu signifcantly diminished the c-Myc and cyclin D1 in the
presence of wortmannin (Figure 5(d)). Tese results sug-
gested that combined treatment of DIM and 5-Fu not only
inactivates the Akt signaling pathway through the Akt
phosphorylation with p-GSK-3β but also inhibits the Wnt
signaling through downregulating β-catenin in GC cells.

3.6. DIM Enhances 5-Fu-Inhibited Tumor Growth in Animal
Models. To test the role of DIM and 5-Fu in tumorigenesis in
vivo, xenograft mouse models were established. Referring to
the previous study that revealed that DIM suppressed gastric
tumorigenesis in a xenograft model [30], after subcutaneous
injection with SNU484, the mice were classifed into three
groups, namely, the control, 5-Fu treatment, and DIM and 5-
Fu combination treatment groups. After 2weeks of treatment,
tumor size was measured. In the DIM and 5-Fu combined
group, the tumor weight, volume, and size were substantially
inhibited compared to control or 5-Fu treatment group
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Figure 2: DIM and 5-Fu combination therapy disrupted gastric cancer cell cycle and induced apoptosis. (a) DIM and 5-Fu induced the
expression of G1 phase arrest in SNU484 and 638 cell lines. G1� growth-1 phase; S� synthesis phase; G2/M� growth-2 and mitotic phases.
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Figure 3: Combination treatment of DIM and 5-Fu diminished gastric cancer cell migration. (a) DIM and 5-Fu treatment inhibited cell
metastasis. Cell metastasis was assayed using wound-healing. Cells were placed with 30 μM DIM, 10 μM 5-Fu, or a combination of the two
drugs under 5% FBS. Migration rates were measured 24 h and 48 h (b) & (c) Combination treatment of DIM and 5-Fu regulated migration-
related molecular E-cadherin, MMP-9, and uPA. Internal control was used as GAPDH. CONT, control; D or DIM, 3,3′-diindolylmethane;
5-Fu, 5-fuorouracil. Each point represents the mean± standard error (SE). Te gray value of bands was detected using ImageJ. ∗p< 0.05,
∗∗p< 0.01 compared to control; #p< 0.05, ##p< 0.01 compared to DIM+5-Fu.
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(Figures 6(b)–6(d)). To determine whether there was drug
toxicity in mice, we evaluated the toxic efects of combination
treatment of DIM and 5-Fu in xenograft mice in vivo. No
signifcant diferences in the body weight (Figure 6(a)), heart,
liver, and kidney (Figure 7(a)) functions were observed be-
tween the groups. Serum biochemical analysis with liver
functionmarkers showed no signifcant diferences among the
three groups (Figure 7(b)). Regarding nephrotoxicity, BUN
and creatinine (Cr) levels were examined and exhibited no
diferences among the groups. Overall, these results suggested
that combined treatment of DIM and 5-Fu more efectively
suppressed tumorigenesis without any toxic efects in the
xenografted mouse model in vivo.

3.7. DIM Enhances 5-Fu-Inactivated Akt and Wnt Signaling
Pathways In Vivo. Histological tumor sections revealed
a remarkable amount of necrosis in the tumors after
combination treatment of DIM and 5-Fu (arrow in
Figure 8(a)). In the control group, it was seen that the tumor
was growing vigorously, and it highly expressed Ki-67-
positive cells. However, the 5-Fu and DIM and 5-Fu
combined treatment groups showed a marked elevation in
the quantity of apoptotic and necrotic cells and a decrease in
Ki-67-positive cells. To further test whether combination
treatment of DIM and 5-Fu inhibits the Akt and Wnt sig-
naling pathways in vivo, we performed western blotting to
measure the Akt and β-catenin in tumor tissues.Te changes
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Figure 4: Combination treatment of DIM and 5-Fu inactivated the Akt signaling in gastric cancer cells. (a) Te efect of DIM and 5-Fu
treatment on the Akt signaling pathway. Te Akt, p-Akt, p-GSK-3β (Ser9), and GSK-3β were measured after treatment with DIM (30 μM),
5-Fu (10 μM), or combined treatment for 48 h. (b) Te efect of DIM and 5-Fu combination treatment with the presence of wortmannin on
the Akt signaling pathway. Wortmannin (5 μM) pretreatment for 2 h followed by treatment with DIM, 5-Fu, or combination treatment for
48 h Internal control was used as GAPDH. CONT, control; DIM, 3,3′-diindolylmethane; 5-Fu, 5-Fluorouracil; WM, wortmannin; mix,
DIM+ 5-Fu. Each point represents the mean± standard error (SE).Te gray value of bands was detected using ImageJ. ∗p< 0.05, ∗∗p< 0.01
compared to control; p< 0.05#, ##p< 0.01 compared to DIM+5-Fu.
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Figure 5: Continued.
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Figure 5: Continued.
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in Akt, GSK-3β, and β-catenin protein levels were similar to
the in vitro experiment results. Te p-Akt, p-GSK-3β (Ser9),
c-Myc, and cyclinD1 levels were substantially diminished,
whereas those of p-β-catenin were greatly increased in the
DIM and 5-Fu combined treatment group in vivo
(Figures 8(b) and 8(c)). Tese results indicated that DIM
augments the anticancer efect of 5-Fuin vivo via the Akt/
GSK-3β and β-catenin signaling pathways.

4. Discussion

GC is a common malignant neoplasm with a prominent
mortality rate in South Korea [2]. Poor diagnosis and the
limitations of therapy lead to high mortality of GC world-
wide [3]. Terefore, GC remains a serious burden on global
health due to the limitations of therapy, and the discovery of
new chemotherapy strategies is urgently needed.
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Figure 5: Combination treatment of DIM and 5-Fu inactivated the Wnt signaling in gastric cancer cells. (a) DIM and 5-Fu treatment
decreased the nuclear β-catenin levels in GC cells. (b) DIM and 5-Fu treatment with or without wortmannin further decreased the nuclear
β-catenin levels in GC cells. (c) & (d) Combination treatment of DIM and 5-Fu signifcantly inactivated theWnt signaling. β-catenin, cyclin
D1, and c-myc were detected after DIM (30 μM), 5-Fu (10 μM), or combination treatment for 48 h (d) combination treatment of DIM and
5-Fu with or without wortmannin signifcantly inactivated the Wnt signaling pathway. Lamin B and GAPDH was used as internal nuclear
and cytoplasmic controls, respectively. CONT, control; D or DIM, 3,3′-diindolylmethane; 5-Fu, 5-Fluorouracil. Each point represents the
mean± standard error (SE). Te gray value of bands was detected using ImageJ. ∗p< 0.05, ∗∗p< 0.01 compared with control; #p< 0.05,
##p< 0.01 compared with DIM+5-Fu.
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5-Fu has been difusely used for more than 50 years as an
antitumor drug in various tumors, especially in GC [43].
Presently, 5-Fu remains the clinically recommended treat-
ment for GC [4, 44]. However, drug resistance, toxicity, and
low-level response hampered the application of 5-Fu in
clinical settings [13]. DIMwas a natural compound extracted
from cruciferous vegetables [45]. DIM has several benefcial
biological activities against numerous cancers [20, 46]. In
our previous experiments, DIM arrested the progression of
GC in terms of cell apoptosis, migration, and metastasis
[29, 30]. Additionally, recent studies revealed that DIM and
5-Fu have a synergistic efect on colon and cervical cancer
[47, 48]. However, the antitumor efects of DIM with classic
chemotherapeutics 5-Fu in GC are still indistinct. In this
study, we selected two gastric cancer cell lines, SNU484 and

SNU638. SNU484 and SNU638 have been established and
reported as poorly diferentiated adenocarcinomas [49].
Gastric adenocarcinoma is a malignant epithelial tumor that
originates from the glandular epithelium of the gastric
mucosa. Approximately 90% of gastric cancers are adeno-
carcinomas [50]. Poorly diagnosed gastric adenocarcinomas
are susceptible to metastasis and can grow in lymph nodes
even in the early stages [51]. According to NCCN treatment
guidelines, systemic chemotherapy should be administered
after partial surgical resection for patients with a high re-
currence and metastasis risk [52]. Terefore, we have chosen
SNU484 and SNU638 cells as poor adenocarcinomamarkers
to examine the therapeutic efects of an anticancer herbal
component-based drug with chemotherapy for treating
gastric cancers. We found that DIM greatly augments the
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Figure 6: Combination treatment of DIM and 5-Fu diminished tumorigenesis in a xenograft model. (a) Mouse body weight. (b) Tumor
weight. (c) Tumor volume curve. (d) Image of tumors. CONT, control; D or DIM, 3,3′-diindolylmethane; 5-Fu, 5-Fluorouracil. All therapies
were intraperitoneally injected once every 2 days. All data were shown as the mean± standard error (SE). ∗, the DIM+ 5-Fu treatment group
compared to the control group; #, the 5-Fu treatment group compared to the control group. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001; #p< 0.05,
##p< 0.01, ###p< 0.001.
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anticancer efects of 5-Fu by suppressing proliferation and
metastasis of GC cells. Te combined treatment of DIM and
5-Fu more signifcantly inhibited cell viability than single-
drug treatment. Similar results were observed in the cell
colony formation growth. Moreover, we found that in cell
cycle analysis, the sub-G1 phase, a maker of apoptosis, was

signifcantly induced after DIM and 5-Fu cotreatment
compared with that after single-drug treatment. Further-
more, annexin V–FITC staining data showed that the
combination treatment induced apoptosis and necrosis
compared to the single-drug treatment in GC cells. Members
of the Bcl-2 family include Bax and Bcl-2. Furthermore, it is
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Figure 7: Toxic efects of DIM and 5-Fu treatment on a xenograft model. (a) Organ weight (i.e., heart, kidney, and liver). (b) Diference
between the control and experimental groups in the serum levels aspartate transaminase and alanine aminotransferase (ALT), and
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Figure 8: Combination treatment of DIM and 5-Fu inactivated the Akt and WNT/β-catenin signaling pathways in vivo. (a) Histological
tumor sections and Ki67; arrow: necrosis (b) & (c) Akt, p-Akt, p-GSK-3β (Ser9), β-catenin, p-β-catenin, c-Myc, and cyclin D1 protein levels
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with control; #p< 0.05, ##p< 0.01, ###p< 0.001 compared with DIM+ 5-Fu.
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widely known that Bax’s antiapoptotic function can compete
with Bcl-2 [53]. Subsequently, essential proteins for apo-
ptosis can be further activated by caspase-3 after Bcl-2 has
been activated to trigger apoptosis [54]. Tese results are
connected to the regulated expression of PARP and caspase-
3, -7, -9. Combined treatment of DIM and 5-Fu improved
the cleaved-forms and activated proteins that increase
during apoptosis compared with single-drug treatment. Te
inhibitory efects of DIM on cell proliferation in breast [27]
and colon cancers [25] were similar to those of our fndings.
Trough this study, we found that the efcacy of 5-Fu further
increased after DIMwas added; combined treatment of DIM
and 5-Fu signifcantly inhibited the cancer cell growth and
induced apoptosis. Tis synergistic efect of 5-Fu and DIM
was also shown in cancer metastasis and migration. In the
wound-healing assay, combined treatment with DIM and 5-
Fu notably inhibited cell migration after 24 h and 48 h,
indicating that DIM substantially augmented inhibitory
function of 5-Fu in GC migration. Moreover, combined
treatment of DIM and 5-Fu signifcantly increased the levels
of E-cadherin, which is referred to as the “suppressor of
invasion” [55] and downregulated the protein levels of
MMP-9 and uPA compared with DIM or 5-Fu single
treatment. Moreover, combined treatment of DIM and 5-Fu
suppressed the migration ability of GC cells through E-
cadherin, MMP-9, and uPA, suggesting that DIM in-
creases the anticancer activity of 5-Fu in GC cells. Terefore,
these results ofer substantial evidence that simultaneous
treatment of DIM and 5-Fu synergistically suppresses
GC cell growth and metastasis.

Akt, a PI3K downstream molecule, causes conforma-
tional changes through a series of actions, exposing the
phosphorylation sites of Tr308 and Ser473 in the kinase
domain and C-terminal domain, respectively [56], which
promotes the cancer cell growth and provides resistance to
cell apoptosis [34]. Te phosphorylated Akt protein regu-
lates a diversity of cell death pathways and cell-cycle tran-
sition [33]. Several studies have shown that chemotherapy
reagents, such as 5-Fu and cisplatin, induce drug resistance
by activating p-Akt and decreasing chemotherapy sensitivity
in GC [57–59]. Less than 25% of patients with GC respond
after 5-Fu treatment, and 5-Fu combined with other anti-
cancer drugs only increased the response rate to 30%–50%
[60, 61], suggesting that patients with advanced GC dem-
onstrate resistance to 5-Fu-based chemotherapies. Tere-
fore, the reduction of p-Akt expression appears to stimulate
apoptosis and reduce the cell growth and chemotherapeutic
resistance in GC [62, 63]. Furthermore, it has been reported
that DIM inhibits Akt activity in many cancers, including
GC [64]. In this study, we found that DIM and 5-Fu de-
creased the protein expression of p-Akt and p-GSK-3β
(Ser9), and the combined treatment of the two further
decreased the expression of p-Akt and p-GSK-3β (Ser9). In
the presence of wortmannin, a nonspecifc covalent PI3K
inhibitor [65], combined treatment of DIM and 5-Fu
markedly suppressed p-Akt and p-GSK-3β in GC cells.
Terefore, these data suggested that DIM and 5-Fu inacti-
vated Akt by dephosphorylation and may cause activation of
GSK-3β via phosphorylation.

Te Wnt signaling pathway, a downstream pathway of
Akt, seems to be involved in breast carcinoma [66], lung
cancer [67], colorectal cancer [68], and GC [69, 70].
β-catenin is working as a main mediator of the canonical
Wnt pathway [71]. When the Wnt signaling pathway is
activated, β-catenin accumulates and translocates into the
nucleus to bind with T cell factor, acting as a transcriptional
activator to trigger downstream target genes [42]. Numerous
studies have shown that Akt activation caused the in-
activation of GSK-3β, which repressed the degradation of
β-catenin [72–75]. In this study, combined treatment with
DIM and 5-Fu decreased β-catenin levels in the nuclei of
GC cells. Our fndings are consistent with those of previous
studies, which reported that the activation of GSK-3β via the
inactivation of Akt inhibits the translocation of β-catenin
from the cytoplasm to the nucleus, suggesting that combi-
nation treatment of DIM and 5-Fu inhibits Akt activity,
which activates GSK-3β and thereby induces the degradation
of β-catenin in GC cells. Furthermore, the decreased amount
of β-catenin caused by DIM and 5-Fu was further
accelerated by adding wortmannin. Te PI3K inhibitor,
wortmannin, considerably prevented the phosphorylation of
Akt and GSK-3β, which subsequently diminished the nu-
clear localization of β-catenin and therefore accelerated the
tumor-inhibiting efect of DIM and 5-Fu. Cyclin D1 and c-
Myc, as downstreams of Wnt, are the main participants of
cell-cycle progression [76], in which aberrance has been
associated with cell proliferation and apoptosis [77, 78].
DIM and 5-Fu treatment considerably diminished cyclin D1
and c-Myc compared to single treatment alone, and wort-
mannin further strengthened this decrease in GC cells.Tese
similar fndings were also observed in animal in vivo ex-
periments. Combination treatment of DIM and 5-Fu sig-
nifcantly reduced tumor size/weight and volume compared
with single treatment alone in xenograft animal models.
Additionally, histological examination of tumor sections
showed that a signifcant amount of necrosis in the tumors of
mice treated with combined DIM and 5-Fu treatment sig-
nifcantly decreased the protein expression of p-Akt and p-
GSK-3β (Ser9) in xenograft tumor tissue. Furthermore,
combination treatment of DIM and 5-Fu induced β-catenin
degradation and signifcantly reduced c-Myc and cyclin D1
levels compared with 5-Fu treatment alone in xenograft
tumor tissues. Terefore, combination treatment of DIM
and 5-Fu inhibited tumorigenesis more efectively without
any toxic efects in vivo through the Akt and Wnt signing
pathways. Our results suggested that combined treatment
with DIM and 5-Fu not only inactivated the Akt signaling
pathway through the dephosphorylation of Akt and its
downstream protein p-GSK-3β but also inhibited the Wnt
signaling through inactivation of β-catenin in GC.

In conclusion, our study revealed that DIM enhances the
5-Fu-inhibited cell growth and induced apoptosis by tar-
geting the Akt/GSK-3β and Wnt/β-catenin signaling path-
ways; moreover, DIM suppressed cell migration by
regulating E-cadherin, MMP-9, and uPA in GC. Tese
anticancer efects were verifed in cell lines and animal
experiments, thereby indicating that DIM contributes to
enhance the efcacy of 5-Fu, which is a widely used as
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anticancer drug. Terefore, our results provide convincing
evidence that simultaneous treatment with DIM and 5-Fu
synergistically suppresses the GC cell growth and tumori-
genesis and could be a new potential therapy for treating GC.
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