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Background. Aging is recognized as a main tumor risk factor, and thus aging has become a feld of interest in the tumor research
feld. Glioblastoma multiforme represents the most typical primary malignant intracranial tumor, particularly in the elderly.
However, the association between aging-related genes (AGs) and GBM prognosis remains unknown. As a result, the primary goal
of this study was to determine the association among AGs and the prognosis of GBM. Methods. A total of 307 human AGs were
downloaded from the HAGR database, while the expression profles of GSE4290 and GSE4412 were obtained from the GEO
database. Furthermore, data on GBM expression profles were obtained from the Chinese Glioma Genome Atlas (CGGA)
database. Te DEAGs that were diferentially expressed among the AG and GBM gene expression profles derived from GSE4290
were then identifed, followed by functional analysis of the DEAGs. Te survival-related AGs were then screened using univariate
Cox regression analysis , which was used to build and validate a prognostic risk model. Furthermore, the ESTIMATE and
CIBERSORT algorithms were utilized to explore the association between the survival-related AGs and the tumor immune
microenvironment. Results. In entire, 29 DEAGs were identifed in the GSE4290. Tis was monitored by the construction of the
prognosis risk model using four DEAGs from the CGGA training set, including C1QA, CDK1, EFEMP1, and IGFBP2. Next, the
risk model was confrmed in the CGGA experiment set and the GSE 4412 dataset. Results showed that C1QA, CDK1, EFEMP1,
and IGFBP2 levels were remarkably higher in the high-risk score groups, and they had a good association with immune and
stromal scores. Conclusion. A robust prognostic risk model was constructed and validated using four AGs, including C1QA,
CDK1, EFEMP1, and IGFBP2, which had a close relationship with the immune microenvironment of GBM. Tis study ofers
a new reference to further explore the pathogenesis of GBM and recognize new and more efective GBM treatments.

1. Introduction

Glioblastomamultiforme (GBM) represents the most typical
primary malignant intracranial tumor, particularly in the
elderly [1]. Te standard frst-line treatment for GBM at this
time involves the most extensive surgical resection along
with radiotherapy and adjuvant chemotherapy [1–3]. Al-
though considerable eforts have been made in the dealing of
GBM in current years, the prognosis is still poor [4]. A

previous study reported that the median survival time is only
about one year, and about 5% of people survive for fve years
overall [5]. Te patients’ age has been measured as a major
prognostic factor for clinical outcomes [6]. Recent statistics
indicate that the percentage of elderly patients with GBM is
up to 25%, which can be attributed to the gradual expansion
of the digits in advanced aging patients [6]. However, the
exact molecular pathogenesis of GBM in elderly patients has
not yet been fully elucidated. As a result, more research on
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this disease is needed to predict therapeutic efcacy and
guide clinical treatment decisions.

Notably, ageing is recognized as a major tumor risk
factor, and thus ageing has become a focus in tumor research
[7]. Many studies indicate that aging and aging-related
diseases are mainly regulated by AGs which can suppress
tumors through modulation of tumor cell senescence but
may also enhance tumor enlargement, invasion, and me-
tastasis [7]. However, the association between AGs and
GBM prognosis has received little attention. Furthermore,
there is no clear relationship between infammation and
tumor immunity in GBM. To address the essential issue of
genomic erosion, a sophisticated network of DNA damage
response (DDR) systems has been developed.

Cell-cycle checkpoint pathways, damage tolerance
mechanisms, and DNA repair mechanisms are a few of
them [8].

Te HAGR is an important database for human aging-
related gene expression studies. Te value of AGs as
prognostic factors for GBM patients was assessed in this
research. Te aging-related gene expression profles were
obtained from HAGR, while the GBM expression profles
were derived from the CGGA database.Te main aim of this
study was to elucidate the association between AGs and the
prognosis of GBM by constructing a prognostic risk model.
Meanwhile, the study also investigated the efects of AGs on
GBM-related infammation and immunity.

2. Methods

2.1. Acquisition of Data. All gene expression profles were
obtained from three public databases: the HAGR (HAGR,
https://genomics.senescence.info/genes/), the GEO S (GEO,
https://www.ncbi.nlm.nih.gov/gds), and the (CGGA) data-
base (CGGA, https://www.cgga.org.cn/). A total of 307
human AGs was downloaded from the HAGR, and the
GEOquery package was used to access the expression
profles of GSE4290 and GSE4412 from the GEO database.
Te GSE4290 dataset contained 81GBM samples, while the
GSE4412 dataset contained 85GBM samples and was used as
an independent verifcation group. Moreover, the GBM
appearance profle statistics were downloaded from the
CGGA database. An entire set of 406GBM samples with
continuation information were acquired from the CGGA
database and randomly allocated into two groups using a 7 :
3 ratio: the GBM training set (n� 284) and the GBM test set
(n� 122). R software (version 3.6.3, https://www.r-project.
org/) was utilized to analyze the data.

2.2. Analysis of Diferentially Expressed AGs (DEAGs).
TeR package limma was used to identify the DEAGs between
the AGs and the GBM gene expression profles derived from
GSE4290. |LogFC|> 1.5 and false fnding rate (FDR< 0.05)
were set as the cut-of value. Finally, theDEAGswere visualized
by a volcano plot using the ggpolt2 R package.

2.3. GO and KEGG Pathway Analyses. Pathway enrichment
analyses using the gene ontology (GO) and KEGG databases

were conducted using the cluster Profler R package with
a cut-of criterion of p value and FDR value <0.05 to in-
vestigate the gene function of the DEAGs. Biological pro-
cesses (BP), cellular components (CC), and molecular
functions make up the three categories that make up
GO (MF).

2.4. Construction of a Prognostic Gene Signature. To further
screen DEAGs related to survival, univariate cox regression
evaluation was used. Notably, the candidate prognostic
genes were chosen using the 0.05 p value threshold. Next, in
the CGGA training set, LASSO regression analysis was used.
Te risk score was designed using the regression coefcient
of each gene according to the following formula:

Risk score � 
n

k�1
coeff icient genek( ∗ Expk. (1)

In the above formula, “n” indicates the number of the
selected prognostic genes, “genek” is the kth selected genes,
“coefcient” represents the estimated regression coefcient
of genes from the multivariate Cox regression analysis, and
“Expk” indicates the expression value of the kth selected
genes. Te GBM training set retrieved from the CGGA
database was then dichotomized into a high-risk and low-
risk groups according to the median risk score. A heatmap
was used to show the relationship between candidate genes
and risk scores, and Kaplan–Meier (KM) survival analysis
and receiver operating characteristic (ROC) curve analysis
were used to evaluate the risk score model’s
predictive power.

2.5. Gene Set Variation Analysis. Te nonparametric, un-
supervised technique for enriching gene sets is called gene
set variation analysis (GSVA). Te CGGA dataset was
subjected to GSVA using the GSVA R package to score the
high-risk and low-risk groups in order to compare the
signaling pathway activity between the two groups. In ad-
dition, gene-set enrichment analysis was used to pinpoint
changes in gene expression at the pathway level in order to
evaluate the biological utility of the risk model. Te Mo-
lecular Signatures Database v7.0 was used for running GSVA
within the hallmark gene sets.

2.6. Evaluation of Immune Scores and Immune Cell
Infltration. Te ESTIMATE algorithm and the estimate R
package were used to determine the immune and stromal
scores for GBM samples. In addition, we imputed the
composition of immune cell infltration in GBM through the
CIBERSORTalgorithm. It is worth noting that CIBERSORT
provides a tool that is able to quantify the abundance of cell
types in complex tissues using gene expression data [9].

2.7. Statistical Analysis. R version 3.6.3 was utilized to
conduct the statistical investigation. While survival statistics
were conducted using the Kaplan–Meier curve and log-rank
test, diferences in the distribution of the Chi-square test or
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Fisher’s exact tests were used to compare categorical data.
Te association between prognostic AGs and survival in
GBM patients was also examined using univariate and
multivariate Cox regression analysis. ROC curves were
applied to validate the diagnostic value of the risk model, and
the correlation between variables was determined using
Spearman’s rank correlation test. p< 0.05 was recognized to
be statistically signifcant.

3. Results

3.1. Analysis of DEAGs in GBM Samples. In entire, 307
human AGs were downloaded from the HAGR, and the AGs
were recognized using the gene expression profle of
GSE4290. Te GSE4290 contained 29 DEAGs, of which 22
were upregulated and 7 were downregulated, according to
the results. In order to see the DEAGs, a volcano plot was
used (Figure 1(a)).

3.2. Functional Analysis of DEAGs. Te biological functions
and association of DEAGs in GSE4290 were explored using
GO and KEGG pathway analysis. Figure 2(b) shows the top

30 KEGG enrichment terms. Functional analysis indicated
that the DEAGs were enriched in cellular senescence,
microRNAs in cancer, cell cycle, and other diverse tumor-
associated pathways. Figure 2(a) shows the top 10 improved
GO terms, including BP, CC, and MF. Notably, aging and
cell aging were signifcantly developed in the GO BP terms.
Tese results suggest that the DEAGs are intimately related
with aging and tumor.

3.3. Identifcation of a Prognostic Risk Model in the CGGA
Training Set. Te univariate Cox regression analysis method
was used to analyze the expression of the 29 DEAGs
identifed from the CGGA training set to assess the prog-
nostic value of DEAGs in GBM (Figures 1(c) and 1(d)).
Results represented in the forest plot showed that four
DEAGs were signifcantly associated with the survival time,
including C1QA, CDK1, EFEMP1, and IGFBP2
(Figure 1(b)). Regarding that, LASSO regression was utilized
to develop a prognostic risk technique for the four survival-
associated DEAGs. Te resulting formula was used to an-
alyze the prognostic risk score:

Risk  score � 0.143∗C1QA + 0.223∗CDK1 + 0.118∗EFEMP1 + 0.152∗ IGFBP2. (2)

Based on their median risk scores, the patients in the
CGGA training set were then categorised as high-risk or
low-risk. Patients in the low-risk group had better overall
survival (OS) than those in the high-risk group, according to
the results of the survival analysis (p< 0.001, Figure 3(a)).
Te AUC (area under the ROC curve) of the prognostic
model was 0.747, 0.843, and 0.837 for the 1-, 3-, and 5-year
OS, respectively, indicating a robust performance for sur-
vival prediction (Figure 3(b)). Figure 4(a) shows the risk plot
for both high- and low-risk score groups, patient survival
data, and gene expression information for the risk genes.

3.4. Verifcation of the Prognostic RiskModel in theValidation
Datasets. Te prognostic risk method was tested using
CGGA test data to further validate its stability and reliability.
Similarly, the GBM test set of the CGGA database was
specifed into either high-risk (n� 61) or low-risk (n� 61)
groups. Te K-M survival curve suggested that the overall
survival (OS) of patients in the low-risk set was superior
compared to those in the high-risk group (p< 0.001,
Figure 3(c)). Te AUC for the GBM test set was 0.681, 0.785,
and 0.738 for the 1-, 3-, and 5-year OS, respectively, in-
dicating great performance for survival prediction
(Figure 3(d)). Figure 4(b) shows the risk distribution, patient
survival status, and gene expression data of the risk genes in
the CGGA test. Furthermore, the stability and reliability of
the prognostic risk model were validated using an in-
dependent dataset, the GSE4412 dataset retrieved from the
GEO database. Te same risk model was applied, and the
GBM test set obtained from the GEO was split into two

groups: high-risk (n� 43) and low-risk (n� 42). Results
showed signifcant diferences in the overall survival (OS) of
patients between the low-risk group and the high-risk group
(p< 0.001, Figure 3(e)). Moreover, the AUC was 0.725,
0.808, and 0.793 for the 1-, 3-, and 5-year OS, respectively
(Figure 3(f )). Te corresponding risk distribution, patient
survival status, and gene expression data of the risk genes in
the GSE4412 test set are displayed in Figure 4(c).

3.5. GSVA of Risk Score-Related Signaling Pathways.
GSVA was conducted to assess potential functional en-
richment in the high-risk and low-risk groups in the CGGA
dataset. Figure 5 shows the top 10 signaling pathways de-
veloped in the high-risk group, including angiogenesis,
coagulation, epithelial-mesenchymal transition, hypoxia, IL-
6/JAK/STAT3 signaling, provocative response, interferon-
gamma response, and beta signaling. Most of them are
common signaling pathways in the tumor immune mi-
croenvironment, metabolism, and progression.

3.6. Association between the Risk Score and Tumor Immunity.
Te immune and stromal scores in the CGGA and GSE4412
datasets, respectively, were computed using the ESTIMATE
algorithm to clarify the association between the risk score
and the immune/stromal score. Te low-risk group had
better immune scores than the high-risk group, according to
the fndings (Figures 6(a) and 7(a)). Moreover, Spearman’s
rank test results showed signifcant positive correlations
among the risk score and immune score in CGGA and
GSE4412 samples (Figures 6(b) and 7(b)). Meanwhile, the
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risk score also had a signifcantly positive association with
the stromal score and ESTIMATE score in CGGA and
GSE4412 samples (Figures 6(c), 6(d), 7(c), and 7(d)).
Considering that immune cells include many diferent
subtypes, CIBERSORT was used to deconvolute the

composition fraction of immune cells in the CGGA dataset.
In order to evaluate the relevance, the proportions of im-
mune cells in the low-risk and high-risk groups were
compared. According to the fndings, the low-risk group had
a higher percentage of naive CD4+ T cells, regulatory T cells
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Figure 1: Identifcation of DEAGs related to GBM and 4 AGs of prognostic risk models in GBM patients. (a) 22 upregulated and 7
downregulated DEAGs in volcano plot (FDR< 0.05 and |logFC|> 1). (b) Forest plot for the characteristics of 4 risk DEAGs in the prognostic
risk models. (c) LASSO coefcient profles of candidate prognostic-related AGs.Te coefcient profle plot was generated versus the log (λ).
(d) Partial likelihood deviance map for the LASSO coefcient profles.
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(Tregs), gamma delta T cell monocytes, and activated mast
cells than the high-risk group did (Figure 7(e)). Instead,
fewer neutrophils, follicular helper T cells, M0 and M1
macrophages, and stimulated NK cells were present in the
low-risk group compared to the high-risk group.

4. Discussion

Aging is a complex natural procedure, which involves aging-
related immune remodeling and dysfunction [10]. It is worth
noting that the incidence of tumors increases signifcantly
with age, which can be attributed to a decline in immune
function [11]. To date, the technique of aging in GBM has
not yet been fully illuminated, and there are no corre-
sponding studies in such patients [7]. Terefore, studies
should be conducted to determine the role of AGs in GBM
and explore the association of AGs with the prognosis
of GBM.

Tis study identifed the relationship between 29 DEAGs
(Figures 1(a) and 1(b)) and GBM prognosis, and assembled
a risk model with four DEAGs, including C1QA, CDK1,
EFEMP1, and IGFBP2 to predict GBM prognosis. Following
that, the model’s prognostic value was determined using
training and independent validation cohorts, with the results
demonstrating a valid and robust performance for survival
prediction. C1QA, CDK1, EFEMP1, and IGFBP2 were all
signifcantly upregulated in high-risk score groups, which
means that these patients have a worse prognosis.

Te C1QA gene, which encodes the C1q protein in
macrophages, dendritic cells, and THP1 cells, has been
implicated in the aging response and is involved in some
neurodegenerative diseases [12]. Interestingly, increased
gene expression of C1QA has been proven to cause a high
infammatory state in the brain of people with psychosis
[13]. In addition, a previous study concluded that increased
C1QA expression may facilitate tumor progression and
contribute towards an adverse outcome [8]. CDK1

participates in the regulation of the G2/M phase of the cell
cycle [14]. Furthermore, CDK1 is frequently overexpressed
in many human malignant tumor tissues, and it has been
investigated as a PB for a variety of tumors. Over-expression
of CDK1 in glioma and GBM cells contributes to glioma cell
senescence escape and growth [15]. As a result, CDK1 has
been proposed as a promising therapeutic target. Previous
research has found that EFEMP1, also known as fbulin-3, is
involved in ageing, age-related diseases, and tumor for-
mation [16, 17]. EFEMP1 knockout mice aged faster and
lived shorter lives. However, previous research on the role of
EFEMP1 in GBM has been inconsistent. On the one hand,
some studies have shown that it has an antitumor efect by
inhibiting glioma growth [18]. On the other hand, some
studies found that over-expression of EFEMP1 may enhance
glioma growth and contribute to resistance through the
infuence of multiple oncogenic waving pathways, such as
Notch, AKT, and EGFR waving pathways [19, 20]. Results
obtained in this study are consistent with the latter con-
clusion. However, this shows that more studies are essential
to clarify the function of EFEMP1 in the pathogenesis of
GBM. It has been informed that IGFBP-2 appearance is
expressively increased after 50 years of age [21]. Moreover,
several studies have indicated that there is an expressively
positive correlation between IGFBP-2 concentrations and
mortality in healthy elderly populations [22, 23]. Over-
expression of IGFBP-2 has also been found in GBM and
many other types of human tumors [24–26]. Unfortunately,
the high expression of IGFBP-2 was strongly associated with
a signifcant shortening of survival, which is consistent with
the results of this study [27, 28]. Terefore, most of the
existing studies propose using IGFBP-2 as a biomarker or
potential novel target for GBM treatment [29, 30].

For the frst time, a GBM prognostic risk model based on
four AGs was developed in this study. Subsequent GSVA
analysis disclosed that the risk genes’ signaling pathways are
elaborated in immunomodulatory and infammatory
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Figure 2: Functional enrichment analysis of DEAGs of the GSE4290 dataset. (a) Te top 10 enrichment GO terms of BP, CC, and MF for
DEAGs. (b) Te top 30 enrichment pathways from KEGG pathway analysis for DEAGs.
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Figure 3: Identifcation and verifcation of the prognostic risk model in GBM. (a) Kaplan–Meier survival analysis of high-risk and low-risk
groups in the CGGA training set. (b) Time-dependent ROC curves for 1-, 3-, and 5-y OS in the CGGA training set. (c, e) Kaplan–Meier
survival analysis of high-risk and low-risk groups in the CGGA test set and GEO test set, respectively. (d, f ) Time-dependent ROC curves for
1-, 3-, and 5-y OS in the CGGA test set and GEO test set, respectively.
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responses. Te results strongly suggested a relationship
between the risk genes and the GBM immune microenvi-
ronment. Based on the above fndings, we further explored

the relationship among the risk score and immune score and
deconvoluted the conformation fraction of immune cells in
the CGGA data set and GSE4412 data set. Te immune and
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stromal scores were found to be positively associated with
the risk score. Tis implies that the higher the immune and
stromal scores, the greater the immune cell infltration and
the worse the prognosis. Recent studies have proposed that
the immune score serves as an important prognostic factor
of GBM. Furthermore, this study analyzed the GBM data
using the CIBERSORT algorithm in order to investigate the
compositional diferences of 22 immune cell types based on
the risk model. Te fndings showed that the high-risk
group’s NK cells, M0 macrophages, M1 macrophages, and

neutrophils were activated by the infltration of follicular
helper T cells and suggested a poor prognosis. On the other
hand, the infltration of naive CD4+ Tcells, regulatory Tcells
(Tregs), gamma-delta T cells, monocytes, and activated mast
cells in the low-risk group suggested a relatively good
prognosis in GBM patients.

Notably, macrophages are the most abundant tumor
immune infltration cell types in human GBM.Macrophages
have two main phenotypes, M1 and M2, which are difer-
entiated from untreated macrophages (M0). Several
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previous studies indicate that M1 macrophages can perform
antitumorigenic functions, whereas M0 and M2 macro-
phages can perform protumorigenic functions [12, 31, 32].
Despite the fact that M1 macrophages have proin-
fammatory and antitumor efects, a previous study found
that they were inversely related to survival in GBM patients
[33]. Tis study has shown that the proportion of M0 and
M1 macrophages was signifcantly higher in the high-risk
group than in the low-risk group. Terefore, more com-
prehensive and in-depth studies should be conducted to
elucidate the mechanism of action of macrophages in GBM.

Te role of monocytes and mast cells in tumor devel-
opment and progression has previously been established.
Nonetheless, the interactions of monocytes and mast cells in
the tumor microenvironment are complex and contradic-
tory [34, 35]. Tis study has shown that monocytes and
activated mast cells were signifcantly lower in the high-risk
group. NK cells are capable of directly killing tumor cells
[36]. Although it has great cytotoxicity, the proportion of
NK cells was low in the GBM immune microenvironment
[37]. Interestingly, a previous study found that NK cell

defciency in GBM improves prognosis, which is in line with
our results [38]. With regard to Tcells, CD4+ Tcells seem to
play a dual role in tumor immunity, while follicular helper
T cells and gamma-delta T cells are relatively good prog-
nostic signatures. Te results obtained in this study are in
accordance with the above-mentioned conclusions, with the
exception of follicular helper T cells [39–42]. Accumulating
evidence suggests that regulatory T cells are involved in
immunosuppression and are associated with tumor escape
and tumor progression, which is unfavorable for the out-
come [43, 44]. Terefore, this discrepancy with our results
should be explored more intensively. Overall, the occurrence
and development of GBM involve a complex immune mi-
croenvironment [45], and thus more research is needed to
explore the complex tumor immune relationships.

Tis study had some limitations as well. Although there
was a correlation among the four AGs and the tumor im-
mune microenvironment, further experimental verifcation
is needed to assess the robustness of the prognostic risk
model. Future studies should investigate how the four genes
are elaborated in the regulation of tumor immunity.
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Figure 7: Correlation between the risk score and tumor immunity in the GSE4412 data set. (a) Comparisons of the immune scores in high-
risk and low-risk GBM patients. (b) Association among the risk score and the immune score in GBM samples. (c) In GBM samples, there is
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Journal of Oncology 11



In conclusion, a robust prognostic risk model was
constructed and validated using four AGs, including C1QA,
CDK1, EFEMP1, and IGFBP2, which had a close relation-
ship with the immune microenvironment of GBM. Tis
study ofers a new reference to further explore the patho-
genesis and identify new and more efective GBM
treatments.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon reasonable
request.

Additional Points

Reporting Checklist. Te authors have completed the TRI-
POD reporting checklist.

Ethical Approval

Te authors are accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity of
any part of the work are appropriately investigated and
resolved.

Conflicts of Interest

All authors have completed the ICMJE uniform disclosure
form. Te authors declare that they have no conficts of
interest.

Authors’ Contributions

XZ and XC completed the drawing of the picture and the
writing part of the content. XZ and XC contributed equally
to this work. ZL, BY, YZ, SP, YH, and DH provided support
for content writing and data analysis. YZ and CL conceived
and supervised the writing of this article.

Acknowledgments

Tis work was supported by the Scientifc Research Project
(2019) of Health Commission of Hunan (B2019200), Natural
Science Foundation of Hunan Province (2022JJ31024), and
Science and Technology Project of Zhuzhou (2020-006).

References

[1] A. P. Becker, B. E. Sells, S. J. Haque, and A. Chakravarti,
“Tumor heterogeneity in glioblastomas: from light micros-
copy to molecular pathology,” Cancers, vol. 13, 2021.

[2] R. Chen, M. Smith-Cohn, A. L. Cohen, and H. Colman,
“Glioma subclassifcations and their clinical signifcance,”
Neurotherapeutics, vol. 14, no. 2, pp. 284–297, 2017.

[3] C. Hanna, T. A. Lawrie, E. Rogozińska et al., “Treatment of
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