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An abnormality in the regulation of adenosine deaminase acting on RNA (ADAR) enzymes, which catalyzed adenosine-to-inosine
(A-to-I) RNA editing, was closely associated with the highly aggressive biologic behavior and poor prognosis in many ma-
lignancies. In the present study, we aimed to investigate the relationship among transcript factors-microRNAs regulatory
network, immune environment, and ADAR gene in colorectal carcinoma (CRC). Te association among the expression levels of
ADAR mRNA and copy number variation, methylation, and mutation status were comprehensively analyzed using cBioPortal,
Wanderer, and UALCAN databases in CRC datasets. ADAR-transcript factors (TFs) and ADAR-miRNA regulation networks
were constructed by Cistrome Cancer and miRWalk2.0, respectively. Te full network and subnetworks for ADAR coexpression
genes were constructed using the STRING database and visualized by the MCODEmodule of the Cytoscape app.Te relationship
between ADAR mRNA expression and the abundance of infltrating immune cells in CRC patients was explored by the Tumor
Immune Estimation Resource, CIBERSORT, and single-gene gene set enrichment analysis (GSEA). ADAR mRNA was elevated
and was a cancer essential gene in CRC. ADAR mRNA and transcripts P110 were signifcantly elevated in CRC compared to
normal controls. Low-level methylation in the promoter region and high copy number amplifcation of ADAR were responsible
for high levels of ADAR mRNA expression. ADAR coexpression genes were mainly involved in immunoregulation, especially T-
lymphocyte activation. Hub genes, including CD2, CD274, and FASLG, were also signifcantly upregulated in the ADAR-high
group compared to the control group. Besides, M1 macrophages were enriched in the ADAR-high group compared to the control
group.Tis study demonstrated that ADAR, a new essential gene, was involved in the immune regulator and was a novel immune
treatment target in CRC.

1. Introduction

Colorectal carcinoma (CRC) was a highly prevalent malignant
cancer of the lower digestive tract and was the third leading
cause of cancer-related death worldwide [1]. According to the
National Comprehensive Cancer Network (NCCN), the in-
cidence and mortality of malignant tumors have been signif-
icantly increasing in China [2] but gradually decreasing in the
United States [3], especially CRC. Despite the development of
diagnostic and therapeutic modalities, CRC remained ex-
tremely difcult to efcient treatment and was poor survival,

mainly due to high genetic heterogeneity [4, 5]. Terefore,
elucidating the mechanisms underlying heterogeneity was very
important for CRC diagnosis and therapy.

Adenosine-to-inosine (A-to-I) RNA editing [6] was an
important form of posttranscriptional processing, which
alters RNA molecule modifcation by adenosine deaminases
acting on RNA (ADARs) in double-stranded RNA (dsRNA).
Of them, ADAR (also known as ADAR1) was a member of
the adenosine deaminase family [7], which also includes
three ADAR proteins (ADAR, ADARB1, and ADARB2) and
two ADAR-related proteins (ADAD1 and ADAD2)
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according to the HUGO Gene Nomenclature Committee.
Among them, ADAR [8] has higher editing efciency than
ADARB1, which only edits one particular nucleotide po-
sition in the precursor, whereas ADARB2 has not been
shown to be an active enzyme due to the lack of a catalytic
domain. Both ADAR1 and ADAR2 were ubiquitously
expressed (ADAR2 is most abundant in the brain), whereas
ADAR3 expression was restrictively expressed in brain
tissue [9].

Te dysregulation of RNA editing regulator ADARs has
been frequently linked to human cancers including hepa-
tocellular carcinoma [10, 11], esophageal squamous cell
carcinoma [12], gastric cancer [13], and breast cancer
[14, 15]. Unlike other cancer types, the relationship between
RNA editing and CRC mostly focuses on the downstream
gene AZIN1 [16–18]. Besides, ADAR was alternatively
spliced to generate two isoforms [19], commonly known as
the constitutive 110 kDa isoform ADAR1 (P110) and
interferon-inducible isoform ADAR (P150), suggesting the
close association of catalytic activity of ADAR with immune
and infammatory responses. Te gene annotation portal
BioGPS [20] has shown high expression of ADAR tran-
scripts in T lymphocytes and other immune cells. Tese
observations suggest the important roles of the regulation of
RNA editing in CRC progression and prognosis. However,
the abnormal alterations of ADAR, corresponding driving
forces, and immune association have not been clearly elu-
cidated in CRC.

Notably, we also constructed ADAR-transcript factors
and ADAR-miRNA regulation networks to explore the
upstream regulator of ADAR. Many studies showed that the
TF and miRNA network might be the potential target of
therapy for disease [21–23]. Te emergence of high-
throughput technologies in recent years has provided
a powerful tool to detect an increasing number of genetic
and epigenetic alterations in CRC, resulting in break-
throughs in the understanding of the biological character-
istics of CRC for preventing, diagnosing, and treating.
Driven by the massive accumulated high-throughput
dataset, we have investigated the interplay between RNA
editing regulator ADAR1 and the immune environment
in CRC.

In this study, we systematically analyzed ADAR mRNA
expression across multiple CRC datasets to uncover the
multiple roles of ADAR in CRC progression and prognosis.
Our study showed the steadily elevated expression of the
RNA editing regulator ADAR in CRC compared with the
normal control. Functional analysis revealed signifcant
involvement of ADAR coexpression genes in tumor immune
checkpoints in CRC, thereby inducing a proimmunomo-
dulatory efect. Together, the results of this study demon-
strate that ADAR likely has immune regulatory roles and
may serve as a novel potential biomarker and target im-
munotherapy for CRC.

2. Materials and Methods

2.1. Expression Profle of A to I RNA Editing Regulator ADAR
in CRC. Te UCSC Xena browser database (Te University

of California Santa Cruz, https://xena.ucsc.edu/), UALCAN
database [24], andHuman Protein Atlas (HPA, https://www.
proteinatlas.org/) were employed to explore the expression
profle (mRNA and protein) of A to I RNA editing regulator
ADAR in CRC datasets. Essential gene screening from gene
efect scores derived from CRISPR knockout screens pub-
lished by Broad’s Achilles and Sanger’s SCORE projects was
analyzed by the UALCAN database. Negative scores imply
cell growth inhibition and/or death following gene
knockout.

2.2. Expression Pattern of Typical ADAR Transcripts in CRC.
ADAR encodes two distinct splicing isoforms: a constitutive
110 kDa isoform ADAR (p110) and an interferon-inducible
isoform ADAR (p150). UCSC Xena browser (Te University
of California Santa Cruz, https://xena.ucsc.edu/), a bio-
informatics tool used to visualize functional genomics data
from multiple sources simultaneously, was applied to assess
the expression levels of ADAR transcripts (p110 and p150)
mRNA in TCGA colorectal cancer based on UCSC Toil RNA
seq Recompute Compendium (31) (TCGA and GTEx
datasets). ADAR transcript RNA sequencing (RSEM TPM,
n= 19,131) data were downloaded as log2 (TPM+0.001)
values. Te Wilcoxon signed-rank test was performed to
determine the diference in the expression of ADAR-p150
and ADAR-p110 isoform between CRC and para-cancerous
with the help of GraphPad Prism software 7 (San Diego, CA,
USA), and P< 0.05 was considered statistically signifcant.

2.3. Exploring the Association between Genetic Alteration and
mRNA Expression of ADAR Gene in CRC. Te mutation
status, methylation status, and copy number variation
(CNV) of ADAR genes were analyzed with Wanderer [25],
UALCAN [24], and cBioPortal databases [26] to elucidate
the molecular mechanism of upregulated ADAR at the DNA
level. Wanderer [25], an interactive viewer to explore DNA
methylation and gene expression data, was frst used to
explore the diferences in ADAR gene-wide methylation
status in CRC based on TCGA cancer dataset. Te corre-
lation between ADAR gene amplifcation, methylation, and
gene expression data in TCGACRC datasets was determined
by the cBioPortal for Cancer Genomics Portal (https://
cbioportal.org).

2.4. Construction of ADAR-Transcript Factors and ADAR-
miRNA Regulation Networks. ADAR-related transcription
factors (TFs) and miRNA networks were developed to
identify upregulated ADAR at both the transcriptional and
posttranscriptional levels. ADAR-related TFs were retrieved
from Cistrome Cancer [27] (https://cistrome.org/
CistromeCancer/), a comprehensive resource for predict-
ing TF targets in cancers based on ChIP-seq data. Te
correlation between TFs and the ADAR mRNA expression
level was subsequently estimated with gene expression
profling interactive analysis [28] (https://gepia.cancer-pku.
cn; Pearson’s r> 0.40 and P< 0.01). Furthermore, ADAR-
related miRNAs were downloaded from the miRWalk2.0
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[29] database (https://zmf.umm.uni-heidelberg.de/apps/
zmf/mirwalk2/). ADAR-TFs and ADAR-miRNA pairs
were visualized using Cytoscape V3.6.1 software [30].

2.5. Construction of ADAR mRNA Coexpression Network in
CRC. Genes coexpressed with ADAR were identifed using
the cBioPortal for Cancer Genomics (https://www.
cbioportal.org/) with multidimensional cancer genomics
datasets. Spearman’s correlation coefcient >0.4 and P

< 0.01 were set as the cut-of criteria. Te protein-protein
interaction (PPI) network was constructed with the Search
Tool for the Retrieval of Interacting Genes Database
(STRING) [31](https://www.string-db.org/), and a conf-
dence score >0.4 was considered signifcant. Te hub
modules of the PPI network were determined using the
molecular complex detection (MCODE) module in Cyto-
scape with cut-of criteria: degree� 15, node score� 0.2, k-
core� 2, and max depth� 100. ADAR mRNA coexpression
network and subnetwork were visualized by Cytoscape
software.

2.6. Identifying Association between Hub Gene Expression
PatternandADAR in thePPI Subnetwork. Most connectivity
modules with ADAR were selected as the hub subnetwork to
analyze the expression profle under ADAR high and low
expression. ADAR genes were then split in TCGA dataset
into low and high expression using the median value of
expression profles in the genome-wide scale as a cut-of
value. P< 0.05 was considered statistically signifcant.

2.7. GO/KEGG Functional Annotation and Transcript Factor
Enrichment Analysis. Te genes participating in the coex-
pression network were uploaded to the Metascape platform
[32] (https://metascape.org/) for Gene Ontology (GO)
(https://www.geneontology.org/) enrichment analysis, in-
cluding the cellular component (CC), molecular function
(MF), and biological process (BP), the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (https://www.genome.jp/
kegg/) pathway, and TRRUST transcript factor enrichment
analysis. Adjusted P< 0.05 using the Benjamini–Hochberg
procedure (false discovery rate (FDR)) was considered
statistically signifcant.

2.8. Correlation between ADAR Expression and Infltrating
Immune Cells. Te correlations between ADAR expression
and the abundance of six types of infltrating immune cells
(B cells, CD4+ T cells, CD8+ T cells, neutrophils, macro-
phages, and dendritic cells) in CRC were estimated with the
partial correlation coefcient (tumor purity) by Tumor
IMmune Estimation Resource [33] (TIMER, https://
cistrome.shinyapps.io/timer/). Furthermore, we used the
CIBERSORT deconvolution algorithm [34] (https://
cibersort.stanford.edu/) to estimate the abundance of 22
immune cell types under ADAR high and low expression
and to evaluate the corresponding intratumoral immune cell
composition. Besides, the single-gene GSEA strategy was

utilized to detect the ADAR-related biological pathways (50
cancer hallmark pathways) [35] in the pan-cancer dataset.

3. Results

3.1. Te ADAR mRNA Was Elevated and Was a Cancer Es-
sential Gene in CRC. Te fnding from the expression levels
of ADARmRNA showed statistically signifcant upregulated
expressions in pan-cancer databases compared with control
(P< 0.0001; Figure 1(a)), especially CRC (Figures 1(b), 1(c),
and 1(e)), which was extracted from TCGA CRC dataset,
CPTAC protein, andHuman Protein Atlas (HPA) databases.
Interestingly, we found that ADAR was a cancer essential
gene in CRC, according to gene efect scores derived from
CRISPR knockout screens published by Broad’s Achilles and
Sanger’s SCORE projects (Figure 1(d)). Tis fnding inspires
us to further study the ADAR.

3.2.TeADARTranscript p110Was theMainRegulator ofA to
IRNAEditingEvents inCRC. As shown in Figures 2(a), 2(b),
2(d), and 2(e), ADAR and ADAR-p110 mRNA were highly
expressed in CRC tissues compared with paracancerous
tissues. However, ADAR-p150 mRNA transcript was
downregulated in CRC tissues in contrast to normal co-
lorectal tissues (Figures 2(c) and 2(f)). Tese results suggest
that the ADAR transcript p110 was the main regulator of A
to I RNA editing events in CRC and was involved in multiple
biological functions rather than p150.

3.3. Te Association between ADAR Genetic Alterations and
ADARmRNA in CRC. As was illustrated in Figure 3(a), the
ADAR high copy number was the most signifcant genomic
hallmark. As was shown in Supplementary Figure 1, higher
DNA methylation in the ADAR gene and 3′-UTR was
observed in both CRC and normal controls. Statistically
signifcant diferences in ADAR gene promoter regions were
observed, and the ADAR gene was found to be methylated at
very low levels in both CRC and normal control tissues
(Figures 3(b) and 3(c)). DNA methylation was negatively
correlated with the expression level of ADAR (Figure 3(c)).
Te results suggest that the elevated ADAR gene tran-
scription did not result from methylation, at least not
methylation of the promoter region. In addition, the ADAR
gene copy number was signifcantly higher in CRC tissues
compared with normal control tissues (Figures 3(d) and
3(e)), suggesting the association of the ADAR mRNA level
with the copy number of deep deletions, shallow deletion,
diploid, gain, and amplifcation. Tere was a signifcant
positive correlation between the DNA copy number and the
expression level (Figure 3(e)). In conclusion, high copy
number amplifcation of DNA was the driving force for the
increase in the expression level of ADAR.

3.4.MultidimensionalRegulatoryNetworkAnalysis of ADAR-
TFsandADAR-miRNA. In total, 44 ADAR-related TFs were
generated based on the Cistrome Cancer web resource at the
transcriptional and posttranscriptional regulation levels
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Figure 2: Te ADAR transcript p110 was the main regulator of A to I RNA editing events in CRC. (a–c) Te levels of ADAR and its classic
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ADAR-p150 and ADAR-p110 expression with GraphPad Prism software 7. P< 0.05 was considered statistically signifcant.
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including IRF8, STAT6, IRF1, EGR1, MYC, MYCN,
KDM2B, EZH2, IKZF1, E2F7, DROSHA, VDR, SPI1,
STAT3, MAF, DNAJC2, TP63, MYB, TFAP2C, KLF6,
GATA1, ELK3, KLF4, CDKN2AIP, NFE2L2, ELF3,
GATA3, NCOR1, CLOCK, TFAP2A, SMC4, FOXM1,
CIITA, ESR2, AR, TFEB, CTNNB1, NR1H3, RELA,
RUNX1, GATA2, ELF1, WT1, and CTCF (Figure 4(a)).
Furthermore, 53 ADAR mRNA-related miRNAs were
generated from the miRWalk2.0 database (Figure 4(b)).
Of them, ADAR was positively correlated with CTCF
(0.60), STAT3 (0.61), ELK3 (0.50), and IKZF1 (0.46)
(Figures 4(c)–4(f )). Tese fndings suggested that ADAR
gene transcription regulation was signifcantly regulated
by many transcription factors and microRNAs.

3.5. ADAR Coexpression Network, Hub-Network, and Func-
tional Enrichment. In total, 1153 positive genes associated
with ADAR mRNA expression were obtained through
cBioPortal for Cancer Genomics to construct an ADAR-
related coexpression gene network. As shown in Figure 5(a),
961 proteins with 8543 nodes were involved in the ADAR-
related coexpression network based on the STRING data-
base. A set of 32 proteins that interacted with at least 15 other

proteins (P< 0.05, FDR <0.05) were selected in the hub
network of the PPI network (Figure 5(b)).

Functional enrichment analysis showed that the genes
were mainly enriched in BP of lymphocyte activation, cy-
tokine production, infammatory response, adaptive im-
mune response, leukocyte migration, response to interferon-
gamma, and positive regulation of immune response
(Figure 5(c)). As shown in Figure 5(d), the results from the
transcript factor analysis suggested that ADAR coexpression
genes were signifcantly regulated by STAT1, IRF1, IRF9,
and NFKB1. As we know, these transcription factors were
closely related to immune regulation, which further suggests
that ADAR was signifcantly involved in the immune reg-
ulation process of CRC.

3.6. Hub-Subnetwork Derived from the ADAR Coexpression
Network and Expression Profle under the ADAR High/Low
Group. Finding from single-gene GSEA of ADAR in pan-
cancer further confrmed that ADAR participates in the
immune signal pathway, especially the interferon pathway
(Figure 6(a)). CD2, CD274, and FASLG mRNA levels were
signifcantly higher expressed in the ADAR high group than
in the low group (Figure 6(b)). Terefore, ADAR may exert
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immune regulation function through these immune-related
proteins.

3.7. Te Association between ADAR Gene Expression and
Immune Cell Infltration. Te correlations of ADAR with
infltrating immune cells (tumor purity) including B cells,
CD4+ Tcells, CD8+ Tcells, neutrophils, macrophages, and
dendritic cells in the gastrointestinal tumors were ana-
lyzed by TIMER. As shown in Figure 7(a), ADAR gene
expression was closely correlated with dendritic cells,
neutrophils, CD4+ T cells, macrophages, and CD8+ T cells
in CRC, especially macrophages. Similar to the previous
results (Figure 7(b)), M1 macrophages were enriched in
the ADAR high group more than the low group. Te
abovementioned results in the article suggest that ADAR
signifcantly afects the immune regulation of M1
macrophages.

4. Discussion

Immune therapy has been increasingly applied in many
cancers that are now characterized by their unique genomic
alterations with new diagnostics. Understanding the

immune environment in CRC would not only increase the
therapeutic efcacy but would also provide a better treat-
ment strategy.

Previous studies have shown a signifcant correlation
between increased ADAR expression and poorer survival
outcomes in esophageal squamous cell carcinoma [12, 36]
and human hepatocellular carcinoma [10]. In this study, we
demonstrated that total ADAR mRNAs and typical tran-
scripts (p110) were highly expressed in CRC compared with
adjacent paracancerous tissues. However, the p150 mRNA
expression level was downregulated between CRC and
normal control tissues; ADAR1-p150 was induced by in-
terferon, whereas ADAR1-p110 was constitutively and
ubiquitously expressed.

Finding from genetic alteration, the TF-ADAR-
microRNA network showed that high expression of ADAR
in CRC might be caused by hypermethylation of the ADAR
gene body region, copy number amplifcation, positive
transcription factor, and negative miRNA.

Tere are few studies on the transcriptional regulation of
the RNA editing enzyme ADAR itself, most of which focus
on the activity of the ADAR editing enzyme and down-
stream molecules. From the perspective of transcriptional
regulation, our study explored the functional regulation of
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editing enzymes ADAR with the help of two networks
(ADAR-TFs and ADAR-miRNA network’s roles). A classic
example of transcription factors regulating ADAR, AR
served as a transcriptional activator of the ADAR1 promoter
to promote HCC tumor growth both in vitro and
in vivo [37].

Te infltrated immune cells in the tumor microenvi-
ronment played a crucial function in the occurrence and
development of tumors. ADAR-related coexpression net-
work and functional enrichment analysis showed that the
ADAR coexpressed proteins were mainly enriched in im-
munoregulation, especially T-lymphocyte activation and
cytokine production. Te evaluation of immune cell in-
fltration in CRC using the TIMER database revealed strong
correlations between ADAR and tumor purity in CRC. Te
expression level of ADAR was closely associated with levels
of CD8+ cell, CD4+ cell, neutrophil, and dendritic cell in-
fltration in CRC.Te correlation between ADRA expression
and immune cell marker genes suggests that ADRA regulates
CRC immunity through multiple immune cell populations
by A-to-I dsRNA editing enzyme activity. Studies have
shown the involvement of ADAR in inducing an immu-
nomodulatory efect [38]. Our results are consistent with
such reports, and these discoveries suggest that ADAR plays
an important role in recruiting and governing immune
responses in CRC.

Studies have revealed that CRC is diferent clinically,
pathologically, and genetically and could predispose to
diferent clinical assumptions regarding tumorigenesis as
well as survival. Resistance to targeted drugs has become an
indisputable fact, thereby resulting inefectiveness of the
drug treatment. However, the precise mechanism medi-
ating drug resistance has not been fully understood. Te
understanding of the molecular and biochemical mecha-
nisms of drug resistance will facilitate the discovery of
alternative target drugs. Our study revealed several key
genes with high degrees involved in the subnetwork, in-
cluding CD274, CD20, and FASLG that have been widely
used in clinical tumor treatment, and they were positively
associated with poor prognosis in CRC. Loss of ADAR1
was demonstrated to defeat resistance to PD-1 checkpoint
blockade caused by inactivation of antigen presentation by
tumor cells [39], thereby limiting the efective antitumor
immunity. Te fndings provide a new direction for
overcoming immunotherapy resistance by regulating
ADAR expression.

Although our results are encouraging, there are some
limitations to the study: (1) our study was a pure bio-
informatics analysis based on TCGA database and online
dataset, and further biological experiments were needed
to validate our results. (2) It seems to be a contradictory
phenomenon that ADAR is both an oncogene and
immune-active gene from the perspective of the expres-
sion level and immune association, and the follow-up
experiments will focus on the role and function of
ADAR in CRC.

In conclusion, ADAR expression was closely corre-
lated with multiple immune markers in CRC. Te cor-
relations between ADAR and the prognosis and immune

cell infltration provide a foundation for further research
on its immunomodulatory role in CRC diagnosis and
treatment.
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