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Background. Hypoxia contributes to tumor progression and confers drug resistance. We attempted to microdissect the hypoxia
landscape in colon cancer (CC) and explore its correlation with immunotherapy response. Materials and Methods. Te hypoxia
landscape in CC patients was microdissected through unsupervised clustering. Te “xCell” algorithms were applied to decipher
the tumor immune infltration characteristics. A hypoxia-related index signature was developed via the LASSO (least absolute
shrinkage and selection operator) Cox regression in Te Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD) cohort
and validated in an independent dataset from the Gene Expression Omnibus (GEO) database. Te tumor immune dysfunction
and exclusion (TIDE) algorithm was utilized to evaluate the correlation between the hypoxia-related index (HRI) signature and
immunotherapy response. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were
performed to verify themRNA expression levels of fve key genes.Te Cell Counting Kit-8 (CCK-8) assay and fow cytometry were
performed to examine the cell viability and cell apoptosis. Results. Patients were classifed into hypoxia-high, hypoxia-median, and
hypoxia-low clusters in TCGA-COAD and verifed in the GSE 17538 dataset. Compared with the hypoxia-low cluster, the
hypoxia-high cluster consistently presented an unfavorable prognosis, higher immune scores, and stromal scores and elevated
infltration levels of several critical immune and stromal cells. Otherwise, we also found 600 hypoxia-related diferentially
expressed genes (HRDEGs) between the hypoxia-high cluster and the hypoxia-low cluster. Based on the 600 HRDEGs, we
constructed the HRI signature which consists of 11 genes and shows a good prognostic value in both TCGA-COAD and GSE
17538 (AUC of 6-year survival prediction >0.75). Patients with low HRI scores were consistently predicted to be more responsive
to immunotherapy. Of the 11 HRI signature genes, RGS16, SNAI1, CDR2L, FRMD5, and FSTL3 were diferently expressed
between tumors and adjacent tissues. Low expression of SNAI1, CDR2L, FRMD5, and FSTL3 could induce cell viability and
promote tumor cell apoptosis. Conclusion. In our study, we discovered three hypoxia clusters which correlate with the clinical
outcome and the tumor immune microenvironment in CC. Based on the hypoxia cluster and HRDEGs, we constructed a reliable
HRI signature that could accurately predict the prognosis and immunotherapeutic responsiveness in CC patients and discovered
four key genes that could afect tumor cell viability and apoptosis.

1. Introduction

Colon cancer (CC) is the ffth most frequent malignant
disease with 1,148,515 new cases diagnosed in 2020 and
accounting for 576,858 cancer-associated deaths around the
world [1]. Te 5-year survival probability for colorectal
cancer ranges from 90% in early-stage patients to 14% in

distant-stage patients [2].Te American Joint Committee on
Cancer (AJCC) staging is a critical assessment system for the
treatment management of CC [3], and patients with stage III
or high-risk stage II may need to undergo a combination
treatment of curative resection and adjuvant therapy [4].
However, most of the distant-stage patients miss the radical
surgical opportunity and die due to metastasis or recurrence.
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Owing to the tumor heterogeneity and diverse molecular
pattern, patients with the same AJCC stage exhibit tre-
mendous survival diferences. Tus, it is imperative to
conduct in-depth microdissection and develop new prog-
nostic biomarkers for patients with CC.

Hypoxia is a specifc hallmark of solid tumors, owing to
the unrestricted growth and abnormal vascularization
during the tumor progression [5]. Hypoxia promotes the
tumor metastatic cascade, including invasion, migration,
and distant metastasis [6]. Te hypoxia-inducible factor
(HIF)-1α pathway contributes greatly to the modulation of
hypoxia-related downstream gene expression and pathway
activity in cancer cells under hypoxic conditions [7].
Hypoxia also promotes the epithelial-to-mesenchymal
transition (EMT) process and facilitates the invasion of
CC cells by activation of HIF1A, whereas treatment with
HIF1A-specifc small interfering RNAs (siRNAs) suppresses
these processes [8]. Our previous study [9] has constructed
a hypoxia-related long noncoding RNAs signature that is
tightly associated with the prognosis and drug sensitivity in
patients with hepatocellular carcinoma. Te HIF-1α sig-
naling pathway also confers drug resistance under hypoxic
stress in colorectal carcinoma [10, 11]. Hence, we speculate
that the hypoxic exposure level in tumor tissues probably has
a critical impact on the prognosis and treatment efective-
ness of CC.

Over the past decade, immunotherapeutic treatment
based on immune checkpoint inhibitors (ICIs) has resulted
in revolutionary long-term benefts in the therapy of several
cancer types [12]. ICIs such as anti-PD-1 (programmed cell
death 1) and anti-PD-L1 (programmed cell death 1 ligand
1) have achieved a durable response in a subset of
microsatellite instability-high (MSI-H) patients [12],
whereas the MSI-L/MSS (MSI-low/microsatellite stability)
patients who constitute the majority of CC patients have
not obtained satisfactory benefts from ICI treatment. In-
terestingly, hypoxia has been reported to afect tumor
plasticity, heterogeneity, and the immune resistance phe-
notype [13]. Hypoxia not only recruits myeloid-derived
suppressive cells (MDSCs), cancer-associated fbroblasts
(CAFs), and regulatory T cells (Tregs) to induce tumor
immunosuppression [14] but also augments the expression
level of immune checkpoints such as PD-L1 to promote
tumor immune evasion [15]. Hence, targeting the hypoxic
microenvironment may improve the efcacy of cancer
immunotherapy [16]. Nevertheless, there is still a defciency
in comprehensive delineation of the interplay among
hypoxia, tumor immune infltrating patterns, and immu-
notherapy response in patients with CC.

In the current study, we discovered the hypoxia cluster in
CC patients using unsupervised clustering based on two
publicly available datasets (TCGA-COAD and GSE17538)
and investigated the intrinsic correlation between hypoxia
and the tumor immune microenvironment by the xCell
algorithm and TIDE. Additionally, we developed a reliable
hypoxia-related index (HRI) prognostic signature that
exhibited good performance in predicting clinical prognosis
and immunotherapy response in two independent datasets
by the LASSO cox regression model. Finally, in vitro

experiments were supplied to explore the results at the cell
level. Our fndings may deepen the understanding of the
hypoxia role in the tumor microenvironment and provide
benefcial information for immunotherapy in CC.

2. Materials and Methods

2.1. Data Preprocessing. Te fragments per kilobase per
million mapped reads (FPKM) profles of the level-3 se-
quencing transcriptomic data in TCGA-COAD cohort were
obtained from TCGA database (https://portal.gdc.cancer.
gov/). We subsequently converted the FPKM values into
the log2-transformed TPM (transcripts per million) values
for further analysis. Te corresponding detailed clinical
parameters were publicly acquired from the cBioPortal
database [17] (https://cbioportal.org).

Another publicly available, independent microarray
dataset, GSE17538, was downloaded from the Gene Ex-
pression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo/). Te TCGA-COAD cohort consisted of 402
primary CC samples and 39 adjacent normal tissues. Only
348 patients with complete clinical data and overall
survival (OS) time of ≥1month and 39 normal samples
were used as the discovery cohort. Te GSE17538 dataset
was composed of two subsets, GSE17536 (177 CC patients)
and GSE17537 (55 CC patients), and the nonbiological
batch was corrected using the “ComBat” function via the R
“sva” package. In total, 210 patients with CC in GSE17538
with complete clinical and histopathological grade in-
formation were enrolled as the independent validation
cohort. Detailed information on all enrolled patients in
the previous two datasets is listed in Supplemental Table 1
(Table S1).

2.2. Microdissecting the Hypoxia-Specifc Cluster of CC.
Te “HALLMARK_HYPOXIA” gene set (“h.all.v7.2.sym-
bols.gmt”) includes 200 hypoxia-specifc genes (Table S2),
which have been demonstrated to typically represent the
biological process under hypoxia conditions and was
gathered from the molecular signatures database (MsigDB)
[18]. TCGA-COAD cohort (348 patients) and GSE17538
dataset (210 patients) were assigned into diferent groups by
the unsupervised clustering method according to the ex-
pression of the previous 200 hypoxia-specifc genes, re-
spectively, via the “km” method in the R
“ConsensusClusterPlus” package. Survival analysis for
hypoxia-specifc clusters was performed by the R “survival”
package, and the survival diference among these clusters
was determined by the log-rank test.

2.3. Gene Set Variation Analysis (GSVA). Overall, 50 hall-
mark gene sets (h.all.v7.2.symbols.gmt) were downloaded
from the MSigDB database [18]. In addition, 13 typical
metabolic pathways (Table S3) associated with “GLYCOL-
YSIS,” “OXIDATIVE_PHOSPHORYLATION,” and “CIT-
RATE_CYCLE_TCA_CYCLE” were curated from the
MSigDB database. Te activity diferences of these hallmark
pathways and metabolic pathways among diferent hypoxia-
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specifc clusters were explored by GSVA [19], which can
calculate a specifc pathway score for each sample using an
unsupervised nonparametric algorithm.

2.4. Identifying Hypoxia-Related Diferentially Expressed
Genes (HRDEGs). Analysis of diferentially expressed genes
(DEGs) between the 348 COAD cancer samples and 39
adjacent normal samples in TCGA-COAD cohort was
carried out by the “limma” package, according to the
standard of the absolute value of log2 (fold change) greater
than 1 and an adjusted p value less than 0.05. With the same
method and criteria, DEGs between the hypoxia-high and
hypoxia-low clusters were further examined. HRDEGs were
defned as the intersection of the previous two gene lists.

2.5. Development of the HRI Signature. A univariable Cox
regression model was applied to screen the prognostic
HRDEGs in TCGA-COAD cohort. Te LASSO penalty Cox
regression model, which can avoid overftting and select the
most contributive variables through tuning the penalty
parameter, was employed to develop the optimal HRI sig-
nature using the “glmnet” package [20]. Te fnal HRI score
formula is defned as follows: risk score � 

n
k�1

expk∗ coefk, where k is the sequence number of the
prognostic gene in the HRI signature, expk represents the
corresponding gene expression of each patient, and coefk
represents the corresponding LASSO coefcient.

2.6. Evaluation and Validation of the Prognostic Capability of
the HRI Signature. HRI scores of CC patients in TCGA--
COAD cohort (discovery dataset) and GSE17538 (validation
dataset) were calculated using the previous formula. Patients
in each dataset were assigned to the HRI high- or low-risk
group according to their respective median HRI scores.
Survival analysis for each dataset was carried out by the
“survival” package, and the survival diferences were de-
termined by the log-rank test. Time-dependent receiver
operating characteristic (ROC) curves were drawn to eval-
uate the performance for prognosis prediction using the
“timeROC” package. Multivariable Cox regression was
conducted to determine whether the HRI signature was
independent of other clinical parameters (age, sex, AJCC
stage, and histopathological grade) in prognostic prediction.

2.7. Single Sample Gene Set Enrichment Analysis (GSEA).
Te gene list of critical immune function pathways
(Table S4) was collected from the previous studies [21].
Single-sample GSEA (ssGSEA) [22], a particular kind of
GSEA that can calculate the relative score for a predefned
gene list at a single sample level, was utilized to calculate the
relative scores of the previous immune function pathways
using the “GSVA” package in R.

2.8. Analyzing the Immune Landscape of Hypoxia-Specifc
Clusters. Te “xCell” algorithm, which can efectively infer
immune and stromal cell abundance from the mixture

transcriptomic profles [23], was applied to comprehen-
sively delineate the tumor immune microenvironment
(TIME).

2.9. Evaluating the HRI Predictive Ability of Immunotherapy
Response. Te tumor immune dysfunction and exclusion
(TIDE) algorithm, which can calculate the TIDE scores
representing the dysregulation of tumor immune escape for
tumor samples and function as a representative biomarker to
predict responsiveness to immune checkpoint blockade [24],
was employed to examine the HRI predictive capability of
immunotherapy response in CC patients.

2.10. Quantitative Reverse Transcription Polymerase Chain
Reaction (qRT-PCR). Tirty pairs of clinical samples (in-
cluding tumors and corresponding adjacent normal sam-
ples) of patients diagnosed with CC were gathered at
Nanfang Hospital of Southern Medical University. Te
samples were immediately preserved at −80°C postcollection
after surgical resection until RNA extraction. All patients
gave informed consent for sample collection and usage. Te
present research was supported by the Institutional Ethical
Committee Board of Nanfang Hospital (NFEC-201809-K3).
Total RNA from 30 pairs of clinical tissues was isolated using
an RNAex Pro Reagent (Accurate Biology, China). qRT-
PCR reactions were performed using the Evo M-MLV RT
Premix for qPCR (Accurate Biology, China) and SYBR®Green Premix Pro Taq HS qPCR Kit (Accurate Biology,
China). GAPDH was utilized as the internal standard, and
each sample was analyzed in triplicate. All PCR primer
sequences are presented in Table S5. Relative quantifcation
of mRNA expression levels of RGS16, SNAI1, CDR2L,
FRMD5, and FSTL3 was analyzed via the 2−ΔΔCt method.

2.11. Cell Culture and Cell Transfection. Human colon cell
line HCT116 was obtained from ATCC. Ten, the cells were
cultured in DMEM with 10% FBS at 37°C in 5% CO2.

Te plasmid and scramble were purchased from Bio-
systems (General Biosystems, Anhui, China). siRNA and
siRNA scramble were obtained from the GenePharma
Corporation (Shanghai, China). According to the in-
troduction, all siRNA and vectors were transfected using
a lipofectamine 3000 transfection kit (Invitrogen, USA).
qRT-PCR was performed to test the transfection efciency.

2.12. Western Blot. Proteins were extracted using RIPA
(CWBIO, China), subjected to SDS-PAGE gel electropho-
resis, and then transferred to a nitrocellulose membrane,
incubated with primary antibodies, and incubated overnight
at 4°C. Te secondary antibody was then incubated for 1 h at
room temperature. Immobilon ECL substrate was used for
signal detection and image acquisition.

2.13. CCK-8 Assay. Te Cell Counting Kit-8 (CCK-8,
ImmunoWay Biotechnology Company, Plano, TX, USA)
assay was used to monitor cell proliferation. In brief, the cells
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transfected with siRNA or plasmid were placed on 96-well
plates and cultured for 24 h, 48 h, 72 h, and 96 h. Ten, the
OD450 value was detected using the Termo Scientifc
Varioskan Flash spectrophotometer (Termo Scientifc,
Finland).

2.14. Flow Cytometry. Stably transfected tumor cells were
placed in 6-well plates, 3×105 cells per well. Te purifed
tumor cells were adjusted to 1× 106/L. Te apoptosis rate of
tumor cells was evaluated by fow cytometry (FACScan, BD
Bioscience) with an Annexin-V-FITC/PI apoptosis kit
(ads5001; Absin, Shanghai, China).

2.15. Statistical Analysis. Numerical variable diferences
with normal distribution were determined using Student’s t-
test or analysis of variance for two or more groups, re-
spectively. Te Wilcoxon rank-sum test or Kruskal–Wallis
test were performed to determine the numerical variable
diferences with nonnormal distribution for two or more
groups, respectively. Categorical variable diferences were
examined via the chi-square test. Spearman correlation
analysis was conducted to investigate the correlation be-
tween the continual variables. Univariate Cox and LASSO
penalty Cox regression analyses were utilized to perform
survival analyses. Survival diferences were examined by the
Kaplan–Meier curve and log-rank test. A two-tailed p value
of <0.05 was set to indicate statistical signifcance. For
multiple testing, the p value was corrected by the Benja-
mini–Hochberg method. We utilized R software (version
3.6.3) to perform all the statistical analyses.

3. Results

3.1. Te Discovery of Hypoxia-Related Cluster Using Un-
supervised Clustering. In total, 348 patients with complete
clinical information in TCGA-COAD cohort were catego-
rized into three diferent clusters by unsupervised clustering
(Figure 1(a) and Figures S1A-S1B). Clusters 1, 2, and 3
consisted of 82, 182, and 84 patients, respectively. Te de-
tailed lists are shown in Table S6. Te principal component
analysis confrmed a clear distinction among the three
clusters (Figure 1(c)). To clarify the relationship between the
clusters and hypoxia, the HIF1A messenger RNA (mRNA)
expression, which represents the mRNA level of the master
regulator HIF-1α under hypoxic conditions, was compared
among the three clusters. Notably, cluster 3 possessed the
highest HIF1A mRNA level, while cluster 1 exhibited the
lowest HIF1A mRNA level (Figure 1(d)). GSVA further
showed that cluster 3 had the highest activity in the
“HALLMARK_HYPOXIA” pathway, whereas cluster 1
displayed the lowest pathway activity (Figure 1(e)). Tese
results demonstrated that the previous three clusters were
strongly correlated with hypoxia exposure in CC tissues.
Henceforth, we defned clusters 3, 2, and 1 as the hypoxia-
high, hypoxia-median, and hypoxia-low subtypes, re-
spectively. Survival analysis revealed a signifcant OS dif-
ference among the three hypoxia-specifc clusters (global p

value� 0.045, Figure 1(f )). Te hypoxia-high subtype had

the poorest OS outcome compared with the hypoxia-low (p
� 0.031) and hypoxia-median (p � 0.046) subtypes.

To further verify the hypoxic landscape in CC, the in-
dependent microarray dataset GSE17538 was explored using
the same unsupervised clustering method. Notably, 210
patients with complete clinical characteristics in GSE17538
were likewise classifed into three diferent clusters
(Figures 1(b), S1C-S1D, and 1(g)), with detailed lists shown
in Table S7), namely, cluster 1 (77 patients), cluster 2 (68
patients), and cluster 3 (65 patients). Similarly, cluster 3 had
the highest level of HIF1A mRNA expression and the ac-
tivity of the “HALLMARK_HYPOXIA” pathway, while
cluster 1 exhibited the lowest level for the previous two
indices (Figures 1(h) and 1(i)). Tus, we also defned clusters
3, 2, and 1 in GSE17538 as the hypoxia-high, hypoxia-
median, and hypoxia-low subtypes, respectively. In addi-
tion, there was a signifcant OS diference among the three
clusters (global p value� 1.35e− 04, Figure 1(j)). Te
hypoxia-high cluster showed the poorest OS outcome
compared with the hypoxia-low (p value 3.22e− 05) and
hypoxia-median (p value 0.019) clusters. Te previous re-
sults confrmed that the hypoxia exposure landscape is
closely correlated with the clinical outcomes in patients
with CC.

3.2. Distinct Molecular Patterns among the Hypoxia-Specifc
Clusters. Owing to the close relationship between hypoxia-
specifc clusters and clinical outcomes, we continued to
explore the underlying molecular mechanisms. GSVA re-
sults for the hallmark gene sets showed that the relative
activities of several tumor aggression-associated pathways,
including “EPITHELIAL_MESENCHYMAL_TRANSITI
ON,” “ANGIOGENESIS,” “MYOGENESIS,” “API-
CAL_JUNCTION,” “APICAL_SURFACE,” “HYPOXIA,”
and “IL6_JAK_STAT3_SIGNALING,” were elevated in the
hypoxia-high group compared with those in the hypoxia-
low group in both TCGA-COAD and GSE17538 datasets
(Figures 2(a) and 2(b)).

3.3. Identifcation of HRDEGs. In total, 1756 DEGs (1748
upregulated and 8 downregulated genes, Figure 3(a)) be-
tween the hypoxia-high and hypoxia-low clusters (|log2FC|
greater than 1 and adjusted p value less than 0.05) were
identifed. Using the same criteria, we acquired 2745 DEGs
(1442 upregulated and 1303 downregulated genes,
Figure 3(b)) between the tumor tissues and adjacent normal
samples. Furthermore, 600 overlapping genes for the pre-
vious two gene lists (Figure 3(c), detailed lists shown in
Table S8) were categorized as HRDEGs. Gene Ontology
(GO) function enrichment analysis demonstrated that these
HRDEGs were predominantly enriched in several biological
process (BP) terms, including “extracellular matrix orga-
nization,” “positive regulation of cell adhesion,” and “cell-
substrate adhesion” (Figure 3(d)). KEGG pathway analysis
further showed a strong linkage between the HRDEGs and
the following pathways: “cytokine-cytokine receptor in-
teraction,” “PI3K−Akt signaling pathway,” and “focal ad-
hesion” (Figure 3(e)). Tese enriched terms were closely
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Figure 1: Continued.
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Figure 1: Microdissection of the hypoxia landscape in TCGA-COAD cohort and GSE17538 cohort. Consensus matrix plot of unsupervised
clustering in TCGA-COAD cohort (a) and GSE17538 cohort (b), when k� 3 representing the optimal cluster number. (c) and (g) PCA plot
of hypoxia-specifc clusters. Comparison of HIF1A expression (d) and (h), HALLMARK_HYPOXIA pathway score (e) and (i), and the
survival diference (f ) and (j) among hypoxia-specifc clusters. COAD: colon adenocarcinoma. PCA: principal component analysis.
Hypoxia-L: hypoxia-low; hypoxia-M: hypoxia-median; hypoxia-H: hypoxia-high. OS: overall survival.
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associated with extracellular signal communication and
cancer cell invasion, indicating that our defned HRDEGs
probably participated in the tumor progression.

3.4. Development of HRI Signature. TCGA-COAD cohort
with 348 patients was utilized as the discovery cohort to
construct an HRI signature. Te univariate Cox regression
model yielded 22 prognostic genes out of the aforemen-
tioned 600 HRDEGs (Figure 4(a)). LASSO penalty Cox
regression selected the optimal HRI signature according to
the “lambda. min” standard, which represents the lambda
(tuning parameter) with minimal cross-validation error.
Ultimately, 11 selected optimal prognostic HRDEGs were
incorporated to develop the HRI score signature
(Figures S2A-S2B, detailed gene list shown in Table S9). Te
fnal HRI calculation formula was as follows (detailed for-
mula development is described in the “Methods” section):
HRI = (−0.140) ∗ CD177 expression + 0.045 ∗ CP expres-
sion + 0.006 ∗ RGS16 expression + 0.013 ∗ PGM5
expression + 0.206 ∗ SNAI1 expression + 0.010 ∗ CALB2
expression + 0.041 ∗ OSBPL1A expression + 0.043 ∗
CDR2L expression + 0.012 ∗ FRMD5 expression + 0.096 ∗
FSTL3 expression + 0.069 ∗ TUBB2B expression. Te HRI
scores for CC patients in TCGA-COAD cohort were cal-
culated using the previous HRI calculation formula
(Table S10). Patients were assigned into the HRI high- or
low-risk groups based on the median HRI score. Survival
analysis uncovered that the HRI high-risk group exhibited
a signifcantly poorer OS outcome than the low-risk group

(p= 6.321e− 06, Figure 4(b)). Time-dependent ROC curves
showed that the areas under the curve (AUCs) of 1-, 3-, 5-,
and 6-year survival predictions were 0.682, 0.699, 0.768, and
0.753, respectively (Figure 4(c)), indicating good prognostic
prediction. To further validate the reliability of the signature,
the HRI scores for 210 patients in the validation cohort
GSE17538 were calculated using the same formula
(Table S11). Because the data type of dataset GSE17538
(microarray data) was diferent from that of the TCGA-
COAD cohort (sequencing data), we classifed all patients in
GSE17538 into HRI high-risk or low-risk groups according
to the median HRI score of the dataset GSE17538. Similarly,
the HRI high-risk group possessed a poorer OS prognosis
than the low-risk counterpart (p= 7.956e− 06, Figure 4(d)).
Te AUCs for 1-, 3-, 5-, and 6-year survival predictions were
0.647, 0.645, 0.716, and 0.754, respectively (Figure 4(e)).
Tese results verifed the robustness and reliability of the
HRI signature in diferent platform datasets.

Subsequently, we investigated the relationship between
HRI scores and HIF1A mRNA expression. Notably, the HRI
high-risk group consistently showed higher HIF1A ex-
pression than the low-risk counterpart in both TCGA--
COAD (Figure 4(f )) and GSE17538 (Figure 4(g)),
demonstrating that the HRI scores indeed refected the
hypoxic exposure level in CC tissues.

3.5. Correlation between the HRI Signature and Clinical
Parameters. Owing to the remarkable impact of the HRI
scores on the patient’s clinical outcomes, we investigated the
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correlation between HRI scores and several critical clinical
parameters. Results for TCGA-COAD cohort indicated that
patients with T3-4, M1, N2, stage III-IV, and “Vascular
Invasion” possessed higher HRI scores than patients with
T1-2, M0, N0, stage I-II, and “nonvascular invasion,” re-
spectively (Figures 5(a)–5(e)). Furthermore, patients with
stage III-IV, histopathological grade 3, and recurrence in
GSE17538 had elevated HRI scores compared with patients
with stage I-II, grade 1 or 2, and nonrecurrence, respectively
(Figures S3A–S3C). Additionally, patients with high HRI
scores had poorer disease-free survival outcomes in
TCGA-COAD (p= 9.12e− 05, Figure 5(f)) and poorer
recurrence-free survival outcomes in GSE17538 (p= 0.006,
Figure S3D) than patients with low HRI scores.

To identify the independent predictive ability of the HRI
signature, a multivariable Cox regression model was further
performed on the TCGA-COAD and GSE17538 datasets.
Te results indicated that age, AJCC stage, and HRI scores
were independent prognostic predictors after adjusting for
other clinical parameters such as sex in TCGA-COAD co-
hort (Figure 5(g)). Similarly, stage and HRI risk scores were
consistently independent of age, sex, and histopathological
grade in GSE17538 (Figure S3E). Te previous evidence
demonstrated that the HRI signature can act as an in-
dependent indicator of prognosis in CC.

3.6. DiferentMolecular Patterns, TIME, and Immunotherapy
Response between theHigh- andLow-RiskGroups. To further
explore the underlying molecular mechanism, we in-
vestigated the diferent molecular patterns and TIME be-
tween the two HRI risk groups. GSEA results displayed that
several critical hallmark pathways, including “API-
CAL_JUNCTION,” “APICAL_SURFACE,” “ANGIOGEN-
ESIS,” “HYPOXIA,” “EPITHELIAL_MESENCHYMAL_
TRANSITION,” and “P53_PATHWAY,” were substantially
enriched in the high-risk group in both TCGA-COAD
(Figure S4A) and GSE17538 (Figure S4C) datasets. Fur-
thermore, KEGG pathways such as

“ADHERENS_JUNCTION,” “FOCAL_ADHESION,” and
“PATHWAYS_IN_CANCER” were signifcantly enriched in
the group with high HRI scores in both TCGA-COAD
(Figure S4B) and GSE17538 (Figure S4D) datasets. Tese
results suggest that hypoxia contributes to tumor aggression
through the abovementioned oncogenic pathways. Te
“xCell” algorithm revealed that the high-risk group holds
a higher abundance of macrophages, fbroblasts, and en-
dothelial cells and higher stroma scores and microenvi-
ronment scores than the low-risk group in TCGA-COAD
(Figure 6(a)). Te high-risk group in GSE17538 possessed
a higher infltrating level of macrophages and higher im-
mune scores andmicroenvironment scores than the low-risk
counterpart (Figure S5A). Te ssGSEA results displayed that
the high-risk group consistently possessed higher scores in
several critical immune pathways such as “check−point” and
“T_cell_co−inhibition” than the low-risk group in both
TCGA-COAD (Figure 6(b)) and GSE17538 (Figure S5B)
cohorts. Moreover, the mRNA expression level of PD-L1
(CD274) was signifcantly elevated in the HRI high-risk
group compared with the low counterpart in both
TCGA-COAD (Figure 6(c)) and GSE17538 (Figure S5C)
cohorts, suggesting distinct immune infltration character-
istics between the two groups.In addition, compared with
the hypoxia-low cluster, the hypoxia-high clusterconsis-
tently presented higher immune scores, stromal scores, and
elevatedinfltration levels of several critical immune and
stromal cells (endothelialcells, fbroblasts, macrophages,
dendritic cells, CD8+ T cells, CD4+ memory Tcells, B cells,
and monocytes) in both TCGA-COAD and GSE17538
(Figure S7A-B). Teabove evidence demonstrated that ele-
vated hypoxia exposure levels in CC tissuescorrelated with
higher stromal and immune cell infltration.

Using the TIDE algorithm, we estimated the TIDE scores
for CC patients in the TCGA-COAD (Table S12) and
GSE17538 (Table S13), respectively. Patients in the HRI
high-risk group possessed higher TIDE scores than the
corresponding low-risk patients in both TCGA-COAD
(Figure 6(d)) and GSE17538 (Figure S5D). Moreover, HRI
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Figure 4: Development of the HRI signature. (a) Forest plot of twenty-two prognostic genes obtained by univariate Cox regression.
Kaplan–Meier curves and the log-rank test p value for TCGA-COAD (b) and GSE17538 (d) datasets.Te AUCs of the time-dependent ROC
curves for TCGA-COAD (c) and GSE17538 (e) datasets. Comparison of HIF1A mRNA expression between HRI high-risk and low-risk
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scores consistently displayed a positive correlation with the
TIDE scores in TCGA-COAD (Figure 6(e)) and GSE17538
(Figure S5E), indicating that higher HRI scores represent
greater immune evasion and immunotherapeutic resistance.
Accordingly, the low-risk group was predicted to have
a signifcantly higher ratio of immunotherapeutic re-
sponders than the high-risk group in both TCGA-COAD
(Figure 6(f )) and GSE17538 (Figure S5F). Te previous
results demonstrated that HRI scores representing hypoxia
levels in CC tissues have the potential to predict the im-
munotherapy response.

3.7. Correlation Analysis of MSI Status with HRI Signature.
Te MSI status information for CC patients in the
TCGA-COAD cohort was curated from TCIA (Te Cancer
Immunome Atlas) database (https://tcia.at/home) [25].
Tere were 335 CC patients with complete MSI status in
our TCGA-COAD dataset, including 46 MSI-H, 64 MSI-L,
and 210 MSS (microsatellite stability), and 15 in-
determinate cases, respectively.Te chi-square test revealed
a statistically signifcant diference in the constitutive
proportion of MSI status between the two HRI risk groups
(p � 0.019, Figure S6A). Te HRI high-risk group presented
an elevated ratio of MSI-H (17%) and MSI-L (25%) cases
compared with the low-risk counterpart (11% and 15% of
MSI-H and MSI-L cases, respectively). Subsequently, we
stratifed CC patients into diferent subgroups according to
their MSI status and performed a subgroup survival
analysis. Notably, patients with high HRI scores consis-
tently exhibited poorer OS prognosis than those in the HRI
low-risk group, irrespective of MSI status
(Figures S6B–S6D).

3.8. Validating the mRNA Expression of Five Key Genes by
qRT-PCR. Te HRI signature consisted of 11 HRDEGs,
namely, CD177, CP, RGS16, PGM5, SNAI1, CALB2,
OSBPL1A, CDR2L, FRMD5, FSTL3, and TUBB2B. Among
the HRI prognostic signatures, CD177 was the only pro-
tective factor, and the other 10 genes were all risk factors for
prognostic prediction in CC.TemRNA expression levels of
RGS16, SNAI1, CDR2L, FRMD5, and FSTL3 were higher in
tumor samples than that in adjacent normal tissues in
TCGA-COAD cohort (Figure 7(a)), suggesting that these
fve key genes participate in the progression of CC. Tus, we
experimentally investigated their mRNA expression levels in
30 pairs of clinical samples by qRT-PCR. Te results
demonstrated that RGS16 (Figure 7(b)), SNAI1
(Figure 7(c)), CDR2L (Figure 7(d)), FRMD5 (Figure 7(e)),
and FSTL3 (Figure 7(f )) consistently exhibited signifcantly
higher relative mRNA expression levels in CC tumor
samples than in paired adjacent normal tissues.

3.9. Te Validation Experiment In Vitro. To further de-
termine the infuence of the previously selected diferentially
expressed genes (RGS16, SNAI1, CDR2L, FRMD5, and
FSTL3) on cell proliferation and apoptosis, we interfered
with the expression of fve diferential genes and detected the

cell proliferation and apoptosis levels. First, we tested the
transfection level of the disruptor or plasmid. Te results
showed that the expression of mRNA (Figure 8(a)) and
protein levels (Figure 8(b)) in the siRNA group was induced,
while the pLenti group could signifcantly upregulate the
expression of mRNA and protein levels of genes. Sub-
sequently, we detected the cell activity by CCK-8 experi-
ment. Te results showed that the expression of RGS16 had
no signifcant efect on cell proliferation and apoptosis
(Figures 9(a) and 10(a)), while the high expression of SNAI1,
CDR2L, FRMD5, and FSTL3 could promote the pro-
liferation of cancer cells and inhibit the apoptosis of cancer
cells, but inhibiting their expression could inhibit the pro-
liferation of cancer cells and promote the apoptosis of cancer
cells (Figures 9(b)–9(e) and 10(b)–10(e)).

4. Discussion

CC ranks the ffth most frequent malignant disease
worldwide, and advanced-stage cases are associated with
high mortality [2]. Tus, it is urgent to identify novel
prognostic predictors and targeted biomarkers. Hypoxia
in the tumor microenvironment is a specifc hallmark of
solid tumors [5] and contributes to the tumor metastatic
cascade [6]. Several studies have constructed diferent
hypoxia-related gene signatures for predicting the clinical
outcomes of colorectal cancer [26–28]. However, these
studies mainly aimed to establish a prognostic signature
for CC patients and lacked comprehensive microdissec-
tion of the hypoxia landscape and its correlation with
immunotherapy in CC. Compared with the previously
published literature, we identifed three hypoxia-specifc
clusters and developed a novel HRI prognostic signature.
As far as we know, this is the frst comprehensive in-
vestigation of the correlation of the hypoxia landscape
with metabolic reprogramming, TIME, and immuno-
therapeutic response prediction in CC.

Te hypoxic tumor microenvironment in solid tumors
maintains a selective pressure for tumor cells to adapt to the
hypoxia response and promotes their invasion, migration,
and dissemination [6]. Moreover, the HIF-1α pathway plays
a pivotal role in the modulation of hypoxia-related down-
stream gene expression and biological processes in cancer
cells under hypoxic conditions [7]. Hence, we classifed the
CC patients into three diferent clusters based on the ex-
pression levels of the 200 genes in the “HALLMAR-
K_HYPOXIA” gene set and verifed the relationship
between the clusters and the HIF1A mRNA expression level.
Hypoxia stress can decrease the expression of DUSP2 and
increase cancer stemness and tumor growth in CC cells [29].
Hypoxia may promote EMT, invasion, and migration of CC
cells by activation of HIF1A, whereas treatment with
HIF1A-specifc siRNAs suppresses these processes [8]. In
agreement with the fndings of the abovementioned studies,
the hypoxia-high cluster in our study possessed a higher
HIF1A mRNA expression and elevated relative scores in
tumor aggression-associated pathways including “EPI-
THELIAL_MESENCHYMAL_TRANSITION” and “AN-
GIOGENESIS.” Accordingly, the hypoxia-high cluster had
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more CC patients with “Vascular_Invasion” and “Recurred/
Progressed.”

Cancer cells undergo metabolic reprogramming to
reconcile themselves to hypoxic stress [30]. Te HIF-1α
pathway contributes greatly to metabolism alteration via
glycolysis stimulation and oxidative phosphorylation
(OXPHOS) suppression under hypoxic conditions during
tumor development [14]. Upon hypoxic conditions, pan-
creatic ductal adenocarcinoma cells exhibited elevated
HIF1A and HIF2A expression levels, increased expression of
carbonic anhydrase 9, and activated glycolysis [31]. Our
study also showed similar results in both TCGA-COAD and
GSE17538 datasets.Tis phenomenonmay be because of the
cancer cells’ metabolic plasticity and metabolic

heterogeneity, depending on the complex tumor
microenvironment [32].

Hypoxia stress also impacts TIME by inducing an im-
mune suppression or immune evasion phenotype [33]. Te
local hypoxic microenvironment recruits immunosuppres-
sive cells, such as MDSCs, tumor-associated macrophages,
and CAFs, and upregulates immune checkpoint expression
to induce antitumor resistance [15]. CAFs at the invasive
front of tumor tissues boost tumor progression and me-
tastasis in CC [34]. In our study, the hypoxia-high cluster
consistently had a higher immune score, stromal score, and
estimate score than the hypoxia-low cluster. Furthermore,
macrophages and fbroblasts showed elevated infltrating
levels in the hypoxia-high group, supporting a positive

Type
FRMD5

RGS16

SNAI1

CDR2L

FSTL3

PGM5

TUBB2B

CD177

OSBPL1A

CP

CALB2

Type
N
T

4

2

0

–2

–4

(a)

RGS16 (p=2.195e–07)

Re
lat

iv
e e

xp
re

ss
io

n 15

10

5

0
tumor normal

(b)

SNAI1 (p=1.286e–04)

Re
lat

iv
e e

xp
re

ss
io

n 15

10

5

0
tumor normal

(c)

CDR2L (p=4.584e–04)

Re
lat

iv
e e

xp
re

ss
io

n
tumor normal

14
12
10

8
6
4
2
0

(d)

FREMD5 (p=0.004)

Re
lat

iv
e e

xp
re

ss
io

n

20

15

10

5

0
tumor normal

(e)

FSTL3 (p=4.003e–04)

Re
lat

iv
e e

xp
re

ss
io

n

20

15

10

5

0
tumor normal

(f )
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correlation between hypoxia and tumor immune dysfunc-
tion. Accordingly, we speculate that the poor clinical out-
comes of the patients in the hypoxia-high group partly
depend on the immune suppression or evasion mechanism.

To further examine the clinical applicability, we de-
veloped a reliable HRI prognostic signature that is strongly
correlated with critical clinical characteristics (T, N, M,
AJCC stage, and tumor histological grade). Hypoxia-treated
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Figure 9: Te CCK-8 assay. Te efect of expression of RGS16 (a), SNAI1 (b), CDR2L (c), FRMD5 (d), and FSTL3 (e) on cell viability was
examined using the CCK-8 assay. ∗∗∗p< 0.001; ∗∗p< 0.01; ∗p< 0.05.
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CC cells have been reported to strengthen the metastatic
ability of normoxic cancer cells [35]. HIF-1α is a master
regulator of the hypoxia-response process of tumor cells
under hypoxic conditions [7]. Hypoxia can promote EMT,
invasion, and migration of CC cells by the activation of
HIF1A [8]. In our study, the high HRI score group

consistently possessed a higher HIF1A expression level than
the low-risk counterpart, indicating the efectiveness of the
HRI score to refect hypoxia exposure in CC tumor tissues.
Additionally, patients with M1, N2, T3–4, stage 3–4, and
tumor grade 3 had higher HRI risk scores than those with
M0, N0, T1–2, stage 1–2, and grade 1, respectively. Tis
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Figure 10: Te fow cytometry assay. Te efect of expression of RGS16 (a), SNAI1 (b), CDR2L (c), FRMD5 (d), and FSTL3 (e) on cell
viability was examined using the fow cytometry assay.
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further demonstrated that the HRI signature was strongly
related to tumor progression and metastasis in CC.

Immunotherapy involving anti-PD-1/PD-L1 has resul-
ted in revolutionary therapeutic benefts for various cancer
types, and MSI-H status has proven to be an efective
predictor of immunotherapeutic efcacy [36]. However,
MSI-L/MSS patients, who represent most CC patients, have
not acquired a satisfactory response from immunotherapy.
High tumor mutational burden (TMB) in tumors is linked to
favorable clinical outcomes; however, the TMB varies
markedly among diferent cancer types, and there is a lack of
a well-defned standard of high TMB [37]. Our study
demonstrated that the HRI signature is positively correlated
with the TIDE score, which represents the immune dys-
function and exclusion of tumor samples, and patients with
a low HRI score are predicted to be more responsive to
immunotherapy. Te previous evidence suggests that the
HRI score has the potential to be a complementary measure
to MSI-H status and TMB in the personalized management
of immunotherapy. Hypoxia gene sets were reported to be
enriched in nonresponding pre-anti-PD-1 tumor samples
with melanoma [38]. In agreement with these studies, CC
patients with a high HRI score representing severe hypoxia
exposure are predicted to have a lower response to im-
munotherapy. As targeting the hypoxic microenvironment
may ameliorate the efects of cancer immunotherapy [16],
we speculate that these patients with high HRI scores may
acquire greater efcacy of immunotherapy in combination
with antihypoxia drugs.

Te HRI signature consists of 11 HRDEGs, and we
focused on the 5 key genes (RGS16, SNAI1, CDR2L,
FRMD5, and FSTL3), which exhibited elevated expression
levels in tumor tissues and are prognostic risk factors for CC.
RGS16 has already been reported to possess a higher ex-
pression level in colorectal cancer tissue than in the cor-
responding normal tissue and serves as an unfavorable
prognostic marker [39]. Overexpression of SNAI1 (also
known as SNAIL) is linked to increased stemness and de-
creased radiation sensitivity in CC cells [40]. A previously
published study [41] reported the FRMD5 is a novel
downstream gene targeted by the β-catenin/TCF7L2 com-
plex in CC cells. CDR2L is widely present in ovarian cancer
tissues and is abundantly expressed in testicular and prostate
cancer tissues [42]. Knockdown of FSTL3 remarkably
inhibited the aggression phenotype of lung cancer cells [43].
In the subsequent cell activity and apoptosis experiments, we
found that the low expression of SNAI1, CDR2L, FRMD5,
and FSTL3 could reduce the activity of cancer cells and
increase the apoptosis rate of cancer cells. But RGS16 does
not exhibit similar functions. According to previous liter-
ature reports, high expression of SNAI1 can promote the
invasion ability of cancer cells [44], low expression of
FRMD5 can weaken the metastatic ability of cancer cells
[45, 46], and low expression of FSTL3 also has similar
functions [47, 48]. Te reason why RGS16 has no similar
function may be that its mechanism of afecting prognosis is
diferent from other genes. According to previous reports,

the population with low expression of RGS16 presents
a better prognosis than the population with high expression
[39]. Terefore, RGS16 may afect the prognosis of patients
by regulating the activity of immune cells and has no direct
impact on the activity and apoptosis rate of cancer cells [49].
Collectively, these fve key genes may act as oncogenic genes
that contribute to the progression of CC, and their molecular
mechanism is worth further studying to explore new ther-
apeutic targets.

Nevertheless, there are still several limitations to our
study. Te HRI signature was identifed in TCGA-COAD
cohort and validated in another independent dataset, but
these public datasets are mostly attributed to retrospective
studies and may induce indispensable biases to some extent.
Tus, prospective research will be required at a future date.
Furthermore, although the HRI score is demonstrated to
have a reliable predictive capability of immunotherapy re-
sponse in CC by bioinformatical analysis, well-designed
clinical trials should be performed to further prove its
clinical efectiveness.

5. Conclusion

In conclusion, we discover three hypoxia clusters (hypoxia-
H, hypoxia-L, and hypoxia-M) which correlate with the
clinical outcome and the tumor immune microenvironment
in CC. Furthermore, we found 600 HRDEs. Based on the 600
HRDEGs, we constructed a reliable HRI signature that could
accurately predict the prognosis and immunotherapeutic
responsiveness in CC patients. Finally, we discover fve key
genes which are diferently expressed between tumors and
adjacent tissues. Of them, four genes could afect tumor cell
viability and apoptosis.
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implications for Immunotherapy,” Physiological Reviews,
vol. 100, no. 1, pp. 1–102, 2020.

[15] A. Lequeux, M. Z. Noman, M. Xiao et al., “Impact of hypoxic
tumor microenvironment and tumor cell plasticity on the
expression of immune checkpoints,” Cancer Letters, vol. 458,
pp. 13–20, 2019.

[16] B. Wang, Q. Zhao, Y. Zhang et al., “Targeting hypoxia in the
tumor microenvironment: a potential strategy to improve
cancer immunotherapy,” Journal of Experimental and Clinical
Cancer Research, vol. 40, no. 1, p. 24, 2021.

[17] E. Cerami, J. Gao, U. Dogrusoz et al., “Te cBio cancer ge-
nomics portal: an open platform for exploring multidimen-
sional cancer genomics data,” Cancer Discovery, vol. 2, no. 5,
pp. 401–404, 2012.

[18] A. Liberzon, C. Birger, H. Torvaldsdóttir, M. Ghandi,
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