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Background. Hepatocellular carcinoma (HCC), ranking as one of the most commonmalignant tumors, is one of the leading causes
of cancer death, with a poor prognosis. Cuproptosis, a novel programmed cell death modality that has just been confrmed
recently, may play an important role in HCC prognosis. Long noncoding RNA (LncRNA) is a key participant in tumorigenesis
and immune responses. It may be of great signifcance to predict HCC based on cuproptosis genes and their related LncRNA.
Methods. Te sample data on HCC patients were obtained from Te Cancer Genome Atlas (TCGA) database. Combined with
cuproptosis-related genes collected from the literature search, expression analysis was carried out to fnd cuproptosis genes and
their related LncRNAs signifcantly expressed in HCC. Te prognostic model was constructed by least absolute shrinkage and
selection operator (LASSO) regression and multivariate Cox regression. Te feasibility of these signature LncRNAs used for the
evaluation of the overall survival rate in HCC patients as independent factors was investigated. Te expression profle of
cuproptosis, immune cell infltration, and the status of somatic mutation were analyzed and compared. Results. A prognostic
model of HCC consisting of seven cuproptosis gene-related LncRNA signatures was constructed. Multiple verifcation methods
have showed that this model can accurately predict the prognosis of HCC patients. It was showed that the classifed high-risk
group under the risk score of this model had worse survival status, more signifcant expression of the immune function, and higher
mutation frequency. During the analysis, the cuproptosis gene CDKN2Awas found to bemost closely related to LncRNADDX11-
AS1 in the expression profle of HCC patients. Conclusion. Te cuproptosis-related signature LncRNA in HCC was identifed, on
the basis of which a model was constructed, and it was verifed that it can be used to predict the prognosis of HCC patients. Te
potential role of these cuproptosis-related signature LncRNAs as new targets for disease therapy in antagonizing HCC de-
velopment was discussed.

1. Introduction

Te incidence of liver cancer is increasing year by year [1].
About 1 million people sufer from this disease every year
worldwide [2, 3]. Among them, hepatocellular carcinoma
(HCC), accounting for 75% to 90%, is the tumor ranking the
third in mortality globally [4, 5]. Currently, radiotherapy,

chemotherapy, and surgery are often adopted for early HCC,
and systemic treatment is used for advanced HCC in clinical
practice [6, 7]. However, the early diagnosis of HCC is
difcult. Most HCC patients are diagnosed in the late stage,
and it is difcult to cure them [8, 9]. Terefore, fnding new
targets for diagnosis and treatment is crucial for the efective
management of HCC.
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Cuproptosis is a recently confrmed cell death modality.
Copper is one of the essential trace elements for living
organisms. It is mainly absorbed through the small intestine
and metabolized in the liver and in turn transported to
various tissues and organs with the blood for use by cells.
Generally, cuproptosis exists widely in body cells in the form
of reduced cuprous ions (Cu+) and oxidized cupric ions
(Cu2+), and also it is ingested by the copper transporter
(hCtrl) and efuxed by adenosine triphosphatase (ATPase)
to its intracellular levels in the body [10, 11]. Te homeo-
stasis of copper in the body is associated with many diseases.
Existing studies have shown that the destruction of copper
homeostasis can lead to the occurrence of multisystem
diseases such as anemia [11], Wilson’s disease [12], Menkes
disease [13, 14], brain disease [15–17], immune system
disease [18, 19], and tumors [20, 21]. When the copper ion
concentration in the body cells exceeds the threshold of
maintaining the homeostasis mechanism, it can directly
combine with the fatty acylation components of the tri-
carboxylic acid cycle, which results in the aggregation of
fatty acylated proteins and the loss of iron-sulfur cluster
protein, and in turn trigger protein toxic stress and also
ultimately cause cell death [22–24].

Te long noncoding RNA(LncRNA) is a noncoding
RNA with a length of N200 nucleotides. Recent studies have
shown that LncRNA plays an important role in the oc-
currence and development of cancer, and the abnormal
expression of LncRNA is associated with malignant tumors,
tumor autophagy, tumor resistance, and tumor immunity
[25, 26]. So far, it has been found that LncRNA is abnormally
expressed in HCC [27], which can play a role in the for-
mation of HCC and themigration of cancer cells, and in turn
afect the occurrence, metastasis, and prognosis of HCC.
Terefore, many scholars have focused on the value of
lncRNA in tumor prognosis, building prognosis models, and
developing new diagnostic targets based on the unique
expression profle of lncRNA [28, 29]. Te development and
progression of HCC is a cumulative efect of genetic changes
that afect the expression of tumor-related genes [30].
However, as a new mechanism involved in tumor cell death,
it is worth paying attention to and discussing whether the
infuence of the changes of related genes on HCC has far-
reaching signifcance and value.

Terefore, in this study, we used bioinformatics
methods, sample data from TCGA public database, com-
bined with cuproptosis-related genes collected by the lit-
erature search, to construct a unique expression profle of
cuproptosis-related lncRNA, and usedmachine learning and
other methods to screen out lncRNA which is of the great
value to the prognosis of HCC and construct a prognosis
model. Te purpose of this study is to provide more pre-
dictive methods for diagnosing and evaluating the prognosis
of patients with HCC, and to provide new ideas and support
for the development of cuproptosis in HCC.

2. Materials and Methods

2.1. Te Collection of Samples and CRGs. Te public data on
HCC came from Te Cancer Genome Atlas (TCGA)

database, including the RNA sequence data, clinical in-
formation, and tumor mutation data on 424 patients (50
normal and 374 tumor patients). Te R language was used to
classify protein-coding genes and lncRNAs in RNA se-
quences. Te clinical information collection included gen-
der, age, stage, grade, TNM, survival time, and status. For the
accuracy of the study, the unknown part of clinical in-
formation was marked uniformly. A total of 19 CRGs were
collected through the literature search. Te research process
is shown in Figure 1.

2.2. Coexpression Analysis of Cuproptosis-Related LncRNAs.
Te “limma” package in R language was used to extract the
expression levels of CRGs and LncRNA from HCC samples.
Te LncRNAs associated with these CRGs were obtained by
coexpression analysis, and also their relationship with HCC
was tested by correlation analysis. Te absolute value of the
correlation coefcient was set to >0.5 and p value
<0.001(p< 0.001). Te Sankey diagram is a diagram used to
describe the fow direction of values from one group to
another. In order to more intuitively show the relationship
between CRGs and its related lncRNA, we used dplyr,
ggalluvial, and ggplot2 packages in R language to draw the
Sankey diagram to visualize the coexpression results.

2.3. Screening and Construction of a Prognostic Cuproptosis-
Related lncRNAs Signature. Te expression of lncRNA re-
lated to cuproptosis in the same sample of patients with
HCC was combined with their survival status and survival
time data.Te lncRNAs related to cuproptosis was randomly
divided into a training set (the train group) and a testing set
(the test group) (n� 1) by the random forest algorithm, and
the ratio of the training set to testing set was set to 1 :1. Te
cuproptosis-related lncRNAs were fltered using univariate
Cox regression analysis for genes that signifcantly afected
the overall survival of patients with HCC (p-value <0.05).
Te univariate COX results were screened using a least
absolute shrinkage and selection operators (LASSO) re-
gression analysis. Te multivariate COX regression analysis
can detect whether multiple features are related to survival at
the same time. In order to make the screened prognosis
lncRNAs results more accurate, we further screened it by
using multivariate COX regression based on the results of
LASSO regression analysis. Te screening result was
a prognostic lncRNA associated with cuproptosis in HCC.
We also constructed a prognostic model based on these key
lncRNAs for evaluating the prognostic survival of patients
with HCC. Te model calculation formula is as follows:

risk score � 􏽘
n

i�1
βi × xi. (1)

βi represents the regression coefcient of each LncRNA,
and Xi the expression level of each LncRNA.

Te risk scores of the train and test groups were pre-
dicted according to the model, and the samples were divided
into the high- and low-risk groups according to the median
value of the risk scores.
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2.4. Survival and Independent Prognostic Analyses. Te
survival analysis of patients in high- and low-risk groups was
performed by models. Progression-free-survival (PFS) is an
important index commonly used in clinical practice to judge
the survival of malignant tumor patients in addition to OS. It
represents the time period from the initial treatment of
cancer patients to disease progression or death. Te longer
the PFS time is, the longer the survival cycle of this patient
will be. In this study, the survival analysis was separately
performed from two aspects of OS and PFS to evaluate the
value of these cuproptosis-related LncRNAmarkers in HCC
survival and prognosis.

Trough independent prognostic analysis, it is possible to
observe whether the prediction model constructed by us can
be used as an independent prognostic factor independently of
other clinical traits. Te unifactor analysis was adopted to
compare each clinical factor with survival time and status, and
also the multifactor analysis of the efect on the survival status
was analyzed under the interaction of multiple factors. Te
correlation between CRGs and prognosis-related LncRNA
was verifed, with the correlation heat map.

In order to verify the accuracy of the prediction model
constructed by us, the receiver operating characteristic
(ROC) curve of 1-, 3-, and 5-year survival in HCC patients
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Figure 1: Process fow diagram.
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under the prediction of this model and that under the
prediction of it combined with other clinical traits were
plotted, respectively. Te prediction accuracy of this model
was confrmed by interpreting the area under the curve
(AUC). Additionally, the concordance index (C-index)
curve was plotted to evaluate the probability of consistency
between the predicted and actual results. Principal com-
ponent analysis (PCA) is a multivariate statistical method
that can help us to evaluate the expression diferences of four
variables: whole genes, CRGS, CRGs-related lncRNAs, and
characteristic lncRNAs for constructing models.

2.5. Te Construction of a Prediction Nomogram. Based on
the multifactor regression analysis, scores were assigned to
each clinical factor according to the efect of various clinical
traits in the prediction model on OS. Te 1-, 3-, and 5-year
OS of HCC patients was estimated through the relationship
between the total score and the probability of outcome event
occurrence and displayed in the form of a nomogram.

2.6. Model Validation for Clinical Grouping. By grouping
clinical information, it was verifed whether our prediction
model is suitable for patients with diferent clinical straits from
three aspects of tumor: grade, stage and age. According to the
degree of tumor diferentiation, G1-G2 patients with a relatively
lowmalignant degree ofHCCwere grouped into one group, and
G3-G4 patients with a highmalignant degree were grouped into
one group; the early patients in stages I and II were grouped into
a group, and the late patients in stage III and IV were grouped
one group; they were divided into two groups according to the
age of <65 and ≥65, and the survival curve was plotted.

2.7. Risk Diferentially Expressed Genes and Teir Functional
Enrichment Analysis. Trough the “limma” package, the gene
expression levels of high- and low-risk groups from the sample
data were extracted and compared to fnd the genes with the
diferential expression between high- and low-risk groups
(logFC >1, FDR >0.05). Tese risks diferentially expressed
genes may provide new ideas for explaining the HCC pro-
gression. Trough gene ontology (GO) analysis, these risk
diferentially expressed genes that are involved in the biological
processes of the body could be enriched and found. Te bi-
ological processes included three aspects, the biological function
(BP), cell component (CC), and molecular function (MF).
Trough the analysis of the Kyoto Encyclopedia of Genes and
Genomes (KEGG), the signal pathways related to these dif-
ferentially expressed genes could be enriched and found.

2.8. Tumor Mutation Analysis. By sorting and analyzing
the mutation information in high- and low-risk groups,
the genes mutated in the two groups of samples and their
mutation frequency could be obtained. Also, the difer-
ential analysis of tumor mutation burden between the two
groups of HCC patients was performed. It was observed
whether the tumor mutations between the two groups
were signifcantly diferent, and the 15 genes with the

highest mutation frequency in HCC were further found
for visualization, observation, and interpretation.

2.9. Analysis of the Immune-Related Function. Trough gene
set variation analysis (GSVA), the immune-related function
gene set enriched by a single gene can be used as a signature
expression matrix. Also, the diference in the immune function
between the two groups by comparing the diference in the gene
set expression between high- and low-risk groups was inferred.
Te diference analysis of immune checkpoint genes can help us
observe which immune checkpoint genes are diferent in high-
and low-risk patients to further fnd the relationship between
cuproptosis genes and immune checkpoints.

3. Research Results

3.1.Te Consistency Test of Clinical Traits in Patients between
the Train and Test Group Cohorts. According to the clinical
information, the consistency test on the clinical traits of
patients in the train and test groups was carried out. Te
missing unknown parts of the clinical information were
uniformly marked with “unknown.” A total of 370 HCC
patients were included. Te test results are shown in Table 1.
It was seen that after the included sample data were ran-
domly assigned to two groups of cohorts, there was no
signifcant diference in clinical traits between the two
groups (p> 0.05), with the better-randomized grouping.

3.2. Te Screening of Cuproptosis-Related LncRNAs and
Prognosis-Related LncRNAs in HCC Patients. Te bio-
markers play an important role in tumor detection and
treatment.Te risk stratifcation for screening can be increased
by fnding new biomarkers that may identify susceptibility or
early stages of the disease, either alone or as a complement to
existing tests. [15, 30] Te cuproptosis-related LncRNAs
predicted by coexpression were screened according to the
correlation coefcient (>0.5), and fnally, 15 CRGs and 336
LncRNAs related to them were obtained (Table S1 and
Figure 2(a)). After merging the survival information, 50
lncRNAs with the signifcant correlation and the overall
survival rate of patients were obtained by univariate Cox
regression analysis H, and the forest plot of survival results was
drawn thereby (Figure 2(b)). Te 12 features with the smallest
error from the 50 signifcant lncRNs were screened out by
LASSO regression analysis as key lncRNAs (see Figures 2(c)
and 2(d)). Finally, further screening by multivariate Cox re-
gression identifed seven cuproptosis-related prognostic
lncRNAs (lncRNA AC026412.3, PICSAR, AC021188.1,
LINC00702, LINC00426, AL031985.3, and DDX11-AS1). Te
risk score was calculated for the prognostic model construc-
tion according to the formula in the Section 2. According to
the median value of the risk score, the samples were divided
into 191 cases in the high-risk group (92 cases in the train
group and 99 cases in the test group) and 179 cases in the low-
risk group (93 cases in the train group and 86 cases in the test
group). Te correlation analysis between CRGs and their
related signature LncRNAs showed that there was a signifcant
positive correlation between cyclin-dependent kinase inhibitor
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2A (CDKN2A) and LncRNADDX11-AS1, and a close positive
correlation between NACHT, LRR, and PYD domains-
containing protein 3 (NLRP3) and the LncRNA-
s(AC02118.1, LINC00426, LINC00702, and PICSAR), while
there was a close negative correlation between FDX1 and
LncRNA DDX11-AS1 (Figure 3).

3.3. Te Survival Outcome and Multifactor Test. Te survival
curve can show the diference inmodel prediction of patient OS
between the high- and low-risk groups.TeOS ofHCCpatients
in the high-risk group was generally lower within ten years, but
after ten years, the OS was more stable than that in the low-risk
group (Figure 4(a)). PFS analysis shows that the signifcant
expression of prognosis-related lncRNA in the high-risk group
is related to the poor survival of patients (P< 0.001), as shown
in Figure 4(b). Additionally, by the risk distribution of HCC
patients and the corresponding survival status chart, it was
found that the survival status of patients in the high-risk group
was worse and their survival time was shorter than that in the
low-risk group (Figures 4(c) and 4(d)). By the heat map of the
prognostic LncRNA expression in high- and low-risk groups, it
was found that the LncRNAs(AC026412.3, AL031985.3, and
DDX11-AS1) were positively correlated with the risk score,
while the LncRNAs (AC021188.1, LINC00702, and
LINC00426) were negatively correlated with the risk score
(Figure 4(e)).

Te forest diagram of unifactor and multifactor analyses
of independent prognosis showed that the prediction model
constructed by us could be used as an independent factor to

evaluate the HCC prognosis just like the tumor grade
(Figures 5(a) and 5(b); p< 0.001). Both the ROC curve and
the area under curve (AUC) showed that this prediction
model had relatively high accuracy in predicting the
prognosis and survival of patients, which is signifcantly
better than the prediction ability of other clinical traits
(Figure 5(d)). Te time-dependent receiver operating
characteristic (ROC) and C-index curves also showed that
this model had a good prediction efect, with more sensi-
tivity in the prediction of early HCC patients (Figures 5(c)
and 5(e)).

Trough principal component analysis (PCA), the
ability of cuproptosis genes, cuproptosis-related
LncRNAs, and the signature LncRNAs used for model
construction in classifying high- and low-risk patients
could be judged. Te results showed that the classifcation
ability of signature LncRNAs was much better
(Figure 6(d)), which demonstrated that it has a good
value in prognostic risk prediction of hepatocellular
carcinoma(HCC) patients.

3.4. Te Nomogram of Prognostic Models. Based on the
constructed prediction model based on the cuproptosis-related
signature LncRNA and the efects of each clinical trait in the
model on HCC, a nomogram was made to evaluate the
prognosis of HCC patients for clinical management of HCC
patients.Te ordinate of the nomogram represents the variables
in the prediction model and the abscissa represents the range of
values that can be taken for each variable. According to the

Table 1: Te consistency test results of HCC clinical traits.

Covariates Types Total Test group Train group p value

Age ≤65 232 (62.7%) 107 (57.84%) 125 (67.57%) 0.0676>65 138 (37.3%) 78 (42.16%) 60 (32.43%)

Gender Female 121 (32.7%) 60 (32.43%) 61 (32.97%) 1Male 249 (67.3%) 125 (67.57%) 124 (67.03%)

Grades

G1 55 (14.86%) 24 (12.97%) 31 (16.76%)

0.7163
G2 177 (47.84%) 93 (50.27%) 84 (45.41%)
G3 121 (32.7%) 60 (32.43%) 61 (32.97%)
G4 12 (3.24%) 6 (3.24%) 6 (3.24%)

Unknow 5 (1.35%) 2 (1.08%) 3 (1.62%)

Stages

Stage I 171 (46.22%) 87 (47.03%) 84 (45.41%)

0.7738
Stage II 85 (22.97%) 42 (22.7%) 43 (23.24%)
Stage III 85 (22.97%) 38 (20.54%) 47 (25.41%)
Stage IV 5 (1.35%) 3 (1.62%) 2 (1.08%)
Unknow 24 (6.49%) 15 (8.11%) 9 (4.86%)

T

T1 181 (48.92%) 93 (50.27%) 88 (47.57%)

0.7336
T2 93 (25.14%) 49 (26.49%) 44 (23.78%)
T3 80 (21.62%) 36 (19.46%) 44 (23.78%)
T4 13 (3.51%) 6 (3.24%) 7 (3.78%)

Unknow 3 (0.81%) 1 (0.54%) 2 (1.08%)

M
M0 266 (71.89%) 137 (74.05%) 129 (69.73%)

1M1 4 (1.08%) 2 (1.08%) 2 (1.08%)
Unknow 100 (27.03%) 46 (24.86%) 54 (29.19%)

N
N0 252 (68.11%) 120 (64.86%) 132 (71.35%)

0.5598N1 4 (1.08%) 3 (1.62%) 1 (0.54%)
Unknow 114 (30.81%) 62 (33.51%) 52 (28.11%)
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Figure 5: Te group diagram for testing prognostic models. (a) Te forest diagram of unifactor analysis of independent prognosis; (b) the
forest diagram of multifactor analysis of independent prognosis; (c) the time-dependent receiver operating characteristic (ROC) curve
diagram for validation of prognostic model risk scores; (d) the receiver operating characteristic (ROC) curve diagram of the accuracy of
prediction ability of each clinical trait; and (e) the C-index curve diagram of the accuracy of prediction ability of each clinical trait.
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number of the sample data above the vertical corresponding
scale point on the horizontal axis of the variable, the score of the
single variable of the sample can be obtained. Te vertically
correspond survival probability value can be found by calcu-
lating that total score of variable, thereby judging the survival
condition of the patient. One patient sample was randomly
selected from the samples for prediction, and its 1-, 3-and 5-year
prediction scores are shown in Figure 7.Temodel showed that
the total score of the patient was 391, and the survival prob-
ability was 93.6% after one year, 89.6% after three years, and
82.0% after fve years after the diagnosis of HCC.

3.5. Clinical Grouping for Model Verifcation. As shown in
Figure 5, this prediction model can be used as an independent
factor to evaluate the prognosis of HCC and has better

prediction ability compared with tumor staging. Te samples
were grouped according to the clinical information, and the
performance of the prognostic model was verifed by grouping
in terms of stage, age, and grade. According to the clinical
information, the samples were separately grouped from three
aspects of grade, stage, and age to verify the accuracy of the
model in predicting the prognosis of patients. In the survival
curve drawn according to tumor stage factors, it can be seen that
the patients in the high-risk group divided by themodel showed
worse survival status in both early and late stages of the tumor
(Figures 8(a) and 8(b)).Te same situation also appeared in the
survival curves obtained by age grouping (Figures 8(c) and
8(d)). However, the results of grouping verifcation according to
tumor diferentiation levels were slightly diferent. According to
the results of the C-index curve, we can fnd that the tumor
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Figure 6: Te group diagram of principal component analysis (PCA). (a) Te whole gene expression in hepatocellular carcinoma (HCC)
patients in two high- and low-risk groups; (b) the expression of cuproptosis genes; (c) the expression of cuproptosis-related long noncoding
RNAs (LncRNAs); and (d) the expression of signature long noncoding RNAs(LncRNAs) for model construction.
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grade (grade) has poor ability to judge the prognosis and
survival of patients with HCC. Patients with high- and low-risk
scores showed signifcant diferences between the G1-G2
groups (P < 0.001), as shown in Figure 8(e). However, among
the more diferentiated G3-G4 groups, there was no signifcant
diference in survival condition between the high- and low-risk
groups (P > 0.05). Te Kaplan–Meier curve shows that our
model still has good discrimination ability in the early stage of
the disease in patients with poorly diferentiatedHCC, as shown
in Figure 8(f). However, it lacks sensitivity in the long-term
prediction in patients with poorly diferentiated HCC. We
believe that although the public database contains data on all
stages of the tumor, the prognosis of HCC patients with low
diferentiation and high malignancy is often worse, and their
long-term survival performance is unoptimistic. Terefore,
there is a lack of long-term survival data from poorly difer-
entiated patients, resulting in a mediocre performance of the
model in patients during this period.Tis suggests that in order
to increase the credibility of the model, more sample data
should be included in future research.

3.6. Analysis of Risk-Diferential Genes and Teir Functional
Enrichment. Trough risk diferential analysis, a total of
598 genes with the diferential expression were screened in

high- and low-risk groups. Te top ten with the highest
signifcance among the gene ontology (GO) enrichment
analysis results were selected and sorted according to the
number of target genes enriched in them, and they were
integrated into a classifcation histogram (Figure 9(a)). As
can be seen in the fgures, in BP, these diferential genes
were mainly involved in these biological functions such as
lymphocyte-mediated immunity, B cell-mediated im-
munity, immunoglobulin-mediated immune responses,
regulation of B cell activation, the B cell receptor signaling
pathway, complement activation, humoral immune re-
sponse mediated by circulating immunoglobulin,
phagocytosis recognition, and complement activation of
the classical pathways; in CC, cell components such as the
immunoglobulin complex, external side of the plasma
membrane and the plasma membrane signaling receptor
complex, and blood microparticles were involved; in MF,
these risk diferentially expressed genes were mainly in-
volved in molecular functions such as antigen binding,
immunoglobulin receptor binding, glycosaminoglycan
binding, heparin-binding, immune receptor activity,
chemokine receptor binding, chemokine activity, CCR
chemokine receptor binding, chemokine binding, and
C–C chemokine binding.
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Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis showed that the pathways
closely related to these risk diferentially expressed genes
included those such as hsa04060 cytokine-cytokine receptor
interaction, hsa04640 hematopoietic cell lineage, hsa04061
viral protein interaction with cytokine, and cytokine and
hsa05340 primary immunodefciency (Figure 9(b); supple-
mentary Table S2).

3.7. Mutation Gene Analysis. After analyzing mutation in-
formation between the high-risk group and the low-risk
group, we found that there was no signifcant diference in
the tumor mutation load between these two groups, which
meant that the diference in the number of gene mutation
sites in HCC cells between these two groups was insignifcant,
as shown in Figure 10(a).Te survival analysis was performed
according to the mutation burden, and it can be seen from
Figure 10(b) that the survival status of patients in the high
burden group was worse (P < 0.05). From the survival
analysis results based on tumor mutation burden combined
with the patient risk, it can be seen that there were signifcant
diferences between all the four groups (P < 0.001), and the
patients in the high-risk group all showed a poor survival
status regardless of the high or low level of the tumor mu-
tation burden.Tis indicates from the side that the prediction
model we constructed has a certain value in the analysis of
patient survival prognosis (Figure 10(c)).

Te waterfall plot of the two groups of mutated genes
shows that they had a higher mutation frequency in the
high-risk group. Among them, the genes such as TP53
(cellular tumor antigen p53), CTNNB1 (catenin beta-1),

TTN (titin), and MUC16 (mucin-16) had a very high
mutation rate in HCC, with their mutation methods all
mainly missense mutation, and some genes were also
mutated by such methods as frame shift mutation and
nonsense mutation. Among them, the variation frequency
of GTNNB1, TTN, and MUC16 in the low-risk group was
higher than that in the high-risk group, and on the con-
trary, TP53 is more prone to mutation in the high-risk
group (Figures 10(d) and 10(e)).

3.8. Te Analysis of Immune-Related Functions. Tumor
immunotherapy is considered as a promising method for
tumor treatment, and it has become an important method
and research focus of tumor treatment [31, 32]. Trough
the analysis of immune-related functions, it could be
found that the expression of these 13 immune-related
functions was all signifcantly diferent between high- and
low-risk groups (P < 0.01), and they consistently showed
a negative correlation in the high-risk groups (Fig-
ure 11(a)). Due to the importance of checkpoint
inhibitor-based immunotherapy, the diferences in the
immune checkpoint gene expression in high- and low-
risk groups of HCC patients were investigated
(Figure 11(b)). Te 25 immune checkpoint genes such as
CD276, CD44, PDCD1, and TNFSF4 were closely related
to HCC (P < 0.001). Combined with the expression of
cuproptosis genes in HCC (Figure 12), CDKN2A, the
most signifcantly expressed cuproptosis gene, taken as an
example, the correlation between it and 8 immune
checkpoint genes was explored and also a scatter plot was
drawn (Figure 11). Te blue line in the fgure represents
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Figure 8: Te Kaplan–Meier curve of verifcation of model-predicted overall survival by grouping according to clinical trait. (a, b) the
survival analysis curve of high- and low-risk groups grouped according to the tumor stage, I-II (early stage) and III-IV (latestage). (c, d) the
survival analysis curve of high- and low-risk groups grouped according to age. (e, f ) the survival analysis curve of high- and low-risk groups
grouped according to tumor diferentiation levels. G1-G2 represent medium and high diferentiation levels, with low malignancy, and G3-
G4 represent low or undiferentiated levels, with high malignancy.
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the trend of the correlation between CDKN2A and the
corresponding immune checkpoint genes, indicating that
all eight immune checkpoint genes were positively cor-
related with CDKN2A.

4. Discussion

Although cuproptosis was formally put forward as a newly
defned programmed cell death [24], the role of copper in body
cells has long been mentioned in studies by many scholars.
Copper can induce various forms of cell death through various
mechanisms, including apoptosis and autophagy [33] and can
play a role of interfering with the progression of tumors and
improving the therapeutic efect in tumors [20, 21, 34–36].
Studies have showed that tumor cells have a higher demand for
copper than normal cells [37]. Tis phenomenon has been
confrmed at the sites of many tumors, including breast cancer
[38, 39], lung cancer [40], gastrointestinal tumors [41, 42], and
oral cancer [43, 44]. Copper can afect the vascular endothelial
growth factor [45, 46], fbroblast growth factor [47], and tumor
necrosis factor [48] and also promote angiogenesis, which is
conducive to the occurrence, development, and metastasis of

tumors. However, when the concentration of copper at the
tumor site is abnormal, copper can regulate autophagy
through ULK1 and ULK2 [49], and control protein quality
through UBE2D2, which in turn afects the growth and
progression of the tumor [49–51].

Terefore, in this study, bioinformatic methods were
used to explore the potential role of copper and its CRGs in
HCC from the perspective of cuproptosis. Te expression of
CRGs in HCC was determined, and 15 target genes with the
signifcant correlation were obtained by screening. Te
expression levels of all LncRNAs in HCC samples were
extracted, and 336 LncRNAs related to these CRGs were
found through coexpression analysis. Univariate Cox re-
gression, LASSO regression analyses, and multivariate Cox
regression analysis were used to further screen out the
LncRNAs (AC026412.3, AL031985.3, DDX11-AS1,
AC021188.1, LINC00702, and LINC00426) with the signa-
ture expression. A prognostic model consisting of these
signature LncRNAs was further constructed.

In order to verify the applicability and accuracy of this
prognostic model, the sample patients were divided into high-
and low-risk groups according to the risk score. By evaluating
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Figure 9: Te enrichment analysis diagram of diferential genes in high- and low-risk groups. (a) Te color bar diagram of gene ontology
(GO) analysis of risk diferential genes, with colors representing biological function (BP, in BLUE), cell component (CC, in RED), and
molecular function (MF, in GREEN), respectively (b) the circle diagram of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
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Figure 10: Te group diagram of analysis of immune-related functions and mutated genes. (a) Te violin diagram of mutation burden
comparison in the high- and low-risk groups of hepatocellular carcinoma (HCC) patients; (b) the Kaplan–Meier curve for survival analysis
of high and low mutation burden groups; (c) the Kaplan–Meier curve for survival analysis of high and low mutation burden groups
combined with high- and low-risk groups; (d, e) the waterfall diagram of the mutation frequency of HCC tumors in both low- and high-risk
groups, which shows the 15 genes with the highest mutation frequency in HCC patients, with diferent colors representing the mutation
method of this gene.
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the survival status of patients in the high and low risk groups
divided by the model, we can verify the clinical predictive
ability of the model and compare the diferences in immune
function and tumor mutations between the two groups of
patients. In the analysis of survival results of the high-risk
group and the low-risk group, OS shows that the low-risk
group performs better in the early years, andwe think that this
result is related to the insufcient sample size. HCC, as
a malignant tumor with high mortality, is often found to be
advanced, and because of the difculty in treatment, the
prognosis of patients is often unsatisfactory. It is found that
the average life span of patients with HCC after diagnosis is
only 4.9 years [52]. In order to verify the value of the prog-
nostic model in survival, we supplemented PFS analysis. It
was confrmed that this model with a good predicative ability
can not only accurately predict the survival status of HCC
patients, but also is more sensitive in the prediction of early
HCC patients. Liu et al. have also paid attention to the sig-
nifcance of cuproptosis-related genes in the prognosis of liver
cancer in their research, and their research samples are the
same as ours. However, their research pays more attention to
the analysis of cuproptosis-related immune functions,
hypoxia-related genes, and tumor mutation load and drug
sensitivity. Nevertheless, their research results are consistent
with ours, which can prove the reliability of our conclusion to
a certain extent [28].

During the analysis, it was found that the expression of the
cuproptosis gene CDKN2A was the most signifcant in HCC
and that it was closely and positively correlated with LncRNA
DDX11-AS1. Studies have showed that CDKN2A is signif-
cantly expressed in multiple cancer tissues, thus afecting the
prognosis of a variety of cancers. CDKN2A is negatively
correlated with serosal invasion in the cervical cancer tissue
[53]. Also, it can promote the angiogenic phenotype of
esophageal squamous cell carcinoma and predict a poor
prognosis [54]. Luo et al. reported that there is a certain
correlation between the CDKN2A expression as well as im-
mune invasion and the risk of HCC occurrence and that the

high expression of CDKN2A is negatively correlated with the
overall survival rate and prognosis of patients [55], which may
be related to the participation of CDKN2A in the MAPK
signaling pathway and the diversity of liver cancer [56]. Ad-
ditionally, Luo et al. believed that the expression of CDKN2A
may help to regulate tumor-related macrophages, dendritic
cells, and Tcells and that CDKN2Amay play an important role
in immune infltrating cells and also can be used as one of the
prognostic biomarkers of HCC patients [55].

DDX11-AS1 is a newly discovered LncRNA, which is ab-
normally highly expressed in multiple malignant tumors [57],
such asHCC, colorectal cancer, and gastric cancer. DDX11-AS1
plays its carcinogenic role by regulating the expression of related
genes directly or indirectly, with the following examples given:
DDX11-AS1 can bind to HNRNPC to promote the pro-
liferation and migration of glioma cells [58] and silencing
DDX11-AS1 can inhibit the growth of HCC cells by upregu-
lating TRAF5 [59]. Tese results have suggested that DDX11-
AS1 may play a signifcant regulatory role in tumors. So far,
there has been no research on the relationship between
CDKN2A and DDX11-AS1. We boldly inferred that there may
be a positive regulatory relationship between CDKN2A and
DDX11-AS1, and that silencing DDX11-AS1 can indirectly
inhibit the CDKN2A expression, thereby increasing the role of
copper loading in tumor cells, promoting cuproptosis, and
increasing tumor cell apoptosis. However, more in-depth re-
search and practices are still required for proving whether the
fact is as we speculated.

In conclusion, a cuproptosis-related LncRNA model
was constructed, which can be used for the prediction of
HCC prognosis. However, there are also some limitations
of this study. First, due to the currently incomplete
understanding of cuproptosis, in this study, there was no
guarantee that all landmark components were only re-
lated to cuproptosis, and the specifc role of cuproptosis
in HCC could not be independently assessed. Addi-
tionally, the prognostic ability of cuproptosis-related
LncRNA in HCC was made statistically and analyzed
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Figure 12: Te scatter plot of correlation between the key cuproptosis gene CDKN2A and immune checkpoint genes with signifcant
expression diferences.
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only through the samples in the database, but it still needs
the support of massive clinical data and the verifcation of
basic research. Nevertheless, we believe that this study
may provide more ideas for improving the prognosis
prediction of HCC patients.

Data Availability

Te public data on HCC came from Te Cancer Genome
Atlas (TCGA) database, and data are available upon request
to the authors.

Disclosure

Li is a master graduate student of Shandong University of
Traditional Chinese Medicine, Grade 2021; Kaichao Song is
a doctoral graduate student of Chinese Academy of Medical
Sciences & Peking Union Medical College, Grade 2020;
Wensheng Zheng is a doctor, professor.

Conflicts of Interest

Te authors declare that they have no conficts of interest
regarding the publication of this article.

Authors’ Contributions

All authors contributed toward data analysis, drafting, and
revising the article and agreed to be accountable for all
aspects of the work. Ying Li and Kaichao Song have equal
contribution to this article.

Acknowledgments

Tis research was supported by the CAMS Innovation Fund
for Medical Sciences (CIFMS) (2021-I2M-1-026).

Supplementary Materials

Table S1. Table of 15 CRGs and their cuproptosis death-
related LncRNAs. Table S2. Table of KEGG pathway en-
richment analysis of risk diferential genes. (Supplementary
Materials)

References

[1] F. Sun, Y. Liu, T. Gong et al., “Inhibition of DTYMK sig-
nifcantly restrains the growth of HCC and increases sensi-
tivity to oxaliplatin,” Cell Death & Disease, vol. 12, p. 1093,
2021.

[2] M. Wang, M. Wu, and T. Yang, “Te synergistic efect of
sorafenib and TNF-alpha inhibitor on hepatocellular carci-
noma,” EBioMedicine, vol. 40, pp. 11-12, 2019.

[3] J. A. Silva-Gomez, M. Galicia-Moreno, A. Sandoval-Rodri-
guez et al., “Hepatocarcinogenesis prevention by pirfenidone
is PPARc mediated and involves modifcation of nuclear NF-
kB p65/p50 ratio,” International Journal of Molecular Sciences,
vol. 22, no. 21, p. 11360, 2021.

[4] Y. Lu, Y. T. Chan, H. Y. Tan et al., “Epigenetic regulation of
ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sor-
afenib resistance in human hepatocellular carcinoma,”

Journal of Experimental & Clinical Cancer Research, vol. 41,
no. 1, p. 3, 2022.

[5] X. Ren, X.Wang, Y. Yan et al., “Integrative bioinformatics and
experimental analysis revealed TEAD as novel prognostic
target for hepatocellular carcinoma and its roles in ferroptosis
regulation,” Aging (Albany NY), vol. 14, no. 2, pp. 961–974,
2022.

[6] Z. Liu, J. Li, J. Li et al., “Mannan-modifed Ad5-PTEN
treatment combined with docetaxel improves the therapeu-
tic efect in H22 tumor-bearingmice,” International Journal of
Nanomedicine, vol. 7, pp. 5039–5049, 2012.

[7] M. Guardascione and G. Tofoli, “Immune checkpoint in-
hibitors as monotherapy or within a combinatorial strategy in
advanced hepatocellular carcinoma,” International Journal of
Molecular Sciences, vol. 21, no. 17, p. 6302, 2020.

[8] J. Zeng, X. Huang, L. Zhou et al., “Metabolomics identifes
biomarker pattern for early diagnosis of hepatocellular car-
cinoma: from diethylnitrosamine treated rats to patients,”
Scientifc Reports, vol. 5, no. 1, Article ID 16101, 2015.

[9] C. J. Wu, Y. T. Tsai, I. J. Lee et al., “Combination of radiation
and interleukin 12 eradicates large orthotopic hepatocellular
carcinoma through immunomodulation of tumor microen-
vironment,” OncoImmunology, vol. 7, no. 9, Article ID
e1477459, 2018.

[10] J. Liu, Z. Liu, W. Wang, and Y. Tian, “Real-time tracking and
sensing of Cu(+) and Cu(2+) with a single SERS probe in the
live brain: toward understanding why copper ions were in-
creased upon ischemia,” Angewandte Chemie International
Edition, vol. 60, no. 39, pp. 21351–21359, 2021.

[11] N. Kitada, K. Takara, T. Minegaki et al., “Factors afecting
sensitivity to antitumor platinum derivatives of human co-
lorectal tumor cell lines,” Cancer Chemotherapy and Phar-
macology, vol. 62, no. 4, pp. 577–584, 2008.

[12] S. Pantoom, A. Pomorski, K. Huth et al., “Direct interaction of
ATP7B and LC3B proteins suggests a cooperative role of
copper transportation and autophagy,” Cells, vol. 10, no. 11,
p. 3118, 2021.

[13] Z. Tumer and L. B. Moller, “Menkes disease,” European
Journal of Human Genetics, vol. 18, no. 5, pp. 511–518, 2010.

[14] L. M. Guthrie, S. Soma, S. Yuan et al., “Elesclomol alleviates
Menkes pathology and mortality by escorting Cu to
cuproenzymes in mice,” Science, vol. 368, no. 6491, pp. 620–
625, 2020.

[15] Y. Wang, K. Hou, Y. Jin et al., “Lung adenocarcinoma-
specifcthree-integrin signature contributes to poor out-
comes by metastasis and immune escape pathways,” Journal
of Translational Internal Medicine, vol. 9, no. 4, pp. 249–263,
2021.

[16] A. Pal, “Copper toxicity induced hepatocerebral and neuro-
degenerative diseases: an urgent need for prognostic bio-
markers,” Neurotoxicology, vol. 40, pp. 97–101, 2014.

[17] A. Pal, I. Rani, A. Pawar, M. Picozza, M. Rongioletti, and
R. Squitti, “Microglia and astrocytes in alzheimer’s disease in
the context of the aberrant copper homeostasis hypothesis,”
Biomolecules, vol. 11, p. 1598, 2021.

[18] J. M. Hu Frisk, L. Kjellen, S. G. Kaler, G. Pejler, and H. Ohrvik,
“Copper regulates maturation and expression of an MITF:
tryptase Axis in mast cells,” Te Journal of Immunology,
vol. 199, no. 12, pp. 4132–4141, 2017.

[19] L. Xin, X. Yang, G. Cai et al., “Serum levels of copper and zinc
in patients with rheumatoid arthritis: a meta-analysis,” Bi-
ological Trace Element Research, vol. 168, pp. 1–10, 2015.

[20] M. Yang, X. Wu, J. Hu et al., “COMMD10 inhibits HIF1α/CP
loop to enhance ferroptosis and radiosensitivity by disrupting

20 Journal of Oncology

https://downloads.hindawi.com/journals/jo/2023/9557690.f1.doc
https://downloads.hindawi.com/journals/jo/2023/9557690.f1.doc


Cu-Fe balance in hepatocellular carcinoma,” Journal of
Hepatology, vol. 76, no. 5, pp. 1138–1150, 2022.

[21] X. Ren, Y. Li, Y. Zhou et al., “Overcoming the compensatory
elevation of NRF2 renders hepatocellular carcinoma cells
more vulnerable to disulfram/copper-induced ferroptosis,”
Redox Biology, vol. 46, Article ID 102122, 2021.

[22] D. Tang, X. Chen, and G. Kroemer, “Cuproptosis: a copper-
triggered modality of mitochondrial cell death,” Cell Research,
vol. 32, no. 5, pp. 417-418, 2022.

[23] P. Tsvetkov, S. Coy, B. Petrova et al., “Copper induces cell
death by targeting lipoylated TCA cycle proteins,” Science,
vol. 375, no. 6586, pp. 1254–1261, 2022.

[24] M. A. Kahlson and S. J. Dixon, “Copper-induced cell death,”
Science, vol. 375, no. 6586, pp. 1231-1232, 2022.

[25] S. Zhang, N. Zheng, X. Chen, K. Du, J. Yang, and L. Shen,
“Establishment and validation of a ferroptosis-related long
non-coding RNA signature for predicting the prognosis of
stomach adenocarcinoma,” Frontiers in Genetics, vol. 13,
Article ID 818306, 2022.

[26] G. Qu, D. Wang, W. Xu, and W. Guo, “Comprehensive
analysis of the correlation between pyroptosis-related
LncRNAs and tumor microenvironment, prognosis, and
immune infltration in hepatocellular carcinoma,” Frontiers in
Genetics, vol. 13, Article ID 867627, 2022.

[27] S. Zhu, X. Huang, K. Zhang et al., “Low expression of long
noncoding RNA CTC-297N7.9 predicts poor prognosis in
patients with hepatocellular carcinoma,” Cancer Medicine,
vol. 8, no. 18, pp. 7679–7692, 2019.

[28] Y. Liu, Y. Liu, S. Ye, H. Feng, and L. Ma, “Development and
validation of cuproptosis-related gene signature in the
prognostic prediction of liver cancer,” Frontiers in Oncology,
vol. 12, Article ID 985484, 2022.

[29] M. Abbastabar, M. Sarf, A. Golestani, and E. Khalili, “lncRNA
involvement in hepatocellular carcinoma metastasis and
prognosis,” EXCLI journal, vol. 17, pp. 900–913, 2018.

[30] A. A. Mohamed, A. A. A. Omar, R. R. El-Awady et al., “MiR-
155 and MiR-665 role as potential non-invasive biomarkers
for hepatocellular carcinoma in Egyptian patients with
chronic hepatitis C virus infection,” Journal of Translational
Internal Medicine, vol. 8, no. 1, pp. 32–40, 2020.

[31] A. A. Tasneem and N. H. Luck, “Autoimmune hepatitis:
clinical characteristics and predictors of biochemical response
to treatment,” Journal of Translational Internal Medicine,
vol. 8, no. 2, pp. 106–111, 2020.

[32] J. Xu, J. Zhang, and J. Wang, “Te application of traditional
Chinese medicine against the tumor immune escape,” Journal
of Translational Internal Medicine, vol. 8, no. 4, pp. 203-204,
2020.

[33] Y. Jiang, Z. Huo, X. Qi, T. Zuo, and Z. Wu, “Copper-induced
tumor cell death mechanisms and antitumor theragnostic
applications of copper complexes,” Nanomedicine (Lond),
vol. 17, no. 5, pp. 303–324, 2022.

[34] C. Jin, Y. Li, Y. Su et al., “Novel copper complex CTB regulates
methionine cycle induced TERT hypomethylation to promote
HCC cells senescence via mitochondrial SLC25A26,” Cell
Death & Disease, vol. 11, no. 10, p. 844, 2020.

[35] L. Cui, A. M. Gouw, E. L. LaGory et al., “Mitochondrial
copper depletion suppresses triple-negative breast cancer in
mice,” Nature Biotechnology, vol. 39, no. 3, pp. 357–367, 2021.

[36] F. Voli, E. Valli, L. Lerra et al., “Intratumoral copper modulates
PD-L1 expression and infuences tumor immune evasion,”
Cancer Research, vol. 80, no. 19, pp. 4129–4144, 2020.

[37] E. J. Ge, A. I. Bush, A. Casini et al., “Connecting copper and
cancer: from transition metal signalling to metalloplasia,”
Nature Reviews Cancer, vol. 22, no. 2, pp. 102–113, 2022.

[38] Y. Feng, J. W. Zeng, Q. Ma, S. Zhang, J. Tang, and J. F. Feng,
“Serum copper and zinc levels in breast cancer: a meta-
analysis,” Journal of Trace Elements in Medicine & Biology,
vol. 62, Article ID 126629, 2020.

[39] D. Ramchandani, M. Berisa, D. A. Tavarez et al., “Copper
depletion modulates mitochondrial oxidative phosphoryla-
tion to impair triple negative breast cancer metastasis,”Nature
Communications, vol. 12, no. 1, p. 7311, 2021.

[40] K. Zablocka-Slowinska, A. Prescha, S. Placzkowska,
I. Porebska, M. Kosacka, and K. Pawelczyk, “Serum and whole
blood Cu and Zn status in predicting mortality in lung cancer
patients,” Nutrients, vol. 13, no. 1, p. 60, 2020.

[41] W. Gao, Z. Huang, J. Duan, E. C. Nice, J. Lin, and C. Huang,
“Elesclomol induces copper-dependent ferroptosis in co-
lorectal cancer cells via degradation of ATP7A,” Molecular
Oncology, vol. 15, no. 12, pp. 3527–3544, 2021.

[42] Y. Liao, J. Zhao, K. Bulek et al., “Infammation mobilizes
copper metabolism to promote colon tumorigenesis via an IL-
17-STEAP4-XIAP axis,” Nature Communications, vol. 11,
no. 1, p. 900, 2020.

[43] F. Chen, J. Wang, J. Chen et al., “Serum copper and zinc levels
and the risk of oral cancer: a new insight based on large-
scalecase-control study,” Oral Diseases, vol. 25, no. 1, pp. 80–
86, 2019.

[44] H. Mortazavi, S. Sabour, M. Baharvand, S. Manifar, and
R. Akkafan, “Serum levels of ferritin, copper, and zinc in
patients with oral cancer,” Biomedical Journal, vol. 37, no. 5,
pp. 331–336, 2014.

[45] I. Naletova, V. Greco, S. Sciuto, F. Attanasio, and E. Rizzarelli,
“Ionophore ability of carnosine and its trehalose conjugate
assists copper signal in triggering brain-derived neurotrophic
factor and vascular endothelial growth factor activation
in vitro,” International Journal of Molecular Sciences, vol. 22,
no. 24, p. 13504, 2021.

[46] C. K. Sen, S. Khanna, M. Venojarvi et al., “Copper-induced
vascular endothelial growth factor expression and wound
healing,” American Journal of Physiology - Heart and Cir-
culatory Physiology, vol. 282, no. 5, pp. H1821–H1827, 2002.

[47] M. Landriscina, C. Bagala, A. Mandinova et al., “Copper
induces the assembly of a multiprotein aggregate implicated
in the release of fbroblast growth factor 1 in response to
stress,” Journal of Biological Chemistry, vol. 276, no. 27,
pp. 25549–25557, 2001.

[48] L. Qiu, L. Ding, J. Huang, D. Wang, J. Zhang, and B. Guo,
“Induction of copper/zinc-superoxide dismutase by CCL5/
CCR5 activation causes tumour necrosis factor-alpha and
reactive oxygen species production in macrophages,” Im-
munology, vol. 128, no. 1, pp. e325–e334, 2009.

[49] T. Tsang, J. M. Posimo, A. A. Gudiel, M. Cicchini,
D. M. Feldser, and D. C. Brady, “Copper is an essential
regulator of the autophagic kinases ULK1/2 to drive lung
adenocarcinoma,” Nature Cell Biology, vol. 22, no. 4,
pp. 412–424, 2020.

[50] J. Tong, J. Lu, X. Mao et al., “Circular RNA-UBE2D2 accel-
erates the proliferation and metastasis of non-small cell lung
cancer cells via modulating microRNA-376a-3p/Eukaryotic
Translation Initiation Factor 4c2 axis,” Bioengineered, vol. 13,
no. 3, pp. 5942–5953, 2022.

[51] C. M. Opazo, A. Lotan, Z. Xiao et al., “Nutrient copper
signaling promotes protein turnover by allosteric activation of
ubiquitin E2D conjugases,” bioRxiv, Article ID 431211, 2021.

Journal of Oncology 21



[52] A. Cucchetti, F. Trevisani, L. Bucci et al., “Years of life that
could be saved from prevention of hepatocellular carcinoma,”
Alimentary Pharmacology & Terapeutics, vol. 43, no. 7,
pp. 814–824, 2016.

[53] H. Y. Han, J. T.Mou,W. P. Jiang, X.M. Zhai, and K. Deng, “Five
candidate biomarkers associated with the diagnosis and prog-
nosis of cervical cancer,” Bioscience Reports, vol. 41, no. 3, 2021.

[54] N. Zhang, J. Shi, X. Shi, W. Chen, and J. Liu, “Mutational
characterization and potential prognostic biomarkers of
Chinese patients with esophageal squamous cell carcinoma,”
OncoTargets and Terapy, vol. 13, pp. 12797–12809, 2020.

[55] J. P. Luo, J. Wang, and J. H. Huang, “CDKN2A is a prognostic
biomarker and correlated with immune infltrates in hepa-
tocellular carcinoma,” Bioscience Reports, vol. 41, no. 10, 2021.

[56] Z. Liu, Q. Zhou, Z. Wang et al., “Intratumoral TIGIT(+)
CD8(+) T-cell infltration determines poor prognosis and
immune evasion in patients with muscle-invasive bladder
cancer,” J Immunother Cancer, vol. 8, no. 2, Article ID
e000978, 2020.

[57] Y. Feng, M. Wu, S. Hu, X. Peng, and F. Chen, “LncRNA
DDX11-AS1: a novel oncogene in human cancer,” Human
Cell, vol. 33, no. 4, pp. 946–953, 2020.

[58] Z. Xiang, Q. Lv, Y. Zhang et al., “Long non-coding RNA
DDX11-AS1 promotes the proliferation and migration of
glioma cells by combining with HNRNPC,” Molecular
Terapy - Nucleic Acids, vol. 28, pp. 601–612, 2022.

[59] G. Ding, Y. Zeng, D. Yang et al., “Silenced lncRNA DDX11-
AS1 or up-regulated microRNA-34a-3p inhibits malignant
phenotypes of hepatocellular carcinoma cells via suppression
of TRAF5,” Cancer Cell International, vol. 21, no. 1, p. 179,
2021.

22 Journal of Oncology




