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Clear cell renal cell carcinoma (ccRCC) is the most common pathology type of renal cancer that has an abysmal prognosis.
Although a crucial role for 7-methylguanosine modifcation in cancer cell development has been reported, its role in ccRCC
remains uncertain. Tis study was conducted to determine the efcacy of predictive biomarkers based on m7G-related genes in
ccRCC. Firstly, we extracted clinical data and gene expression profles of ccRCC patients from publicly accessible databases. It
identifed that 22 of the m7G-related 34 genes were related to overall survival, and 5 of the 22 genes were signifcantly expressed
diferently in tumor tissues. Based on Lasso regression analysis, fve optimal genes (CYFIP2, EIF4A1, NUDT1, NUDT10, and
NUDT4) were chosen to build a new predictive risk model in the TCGA cohort. Validation was carried out with the E-
MTAB-1980 cohort.Ten, a prognostic nomogramwas erected, including them7G-related gene risk score, age, histological grade,
and stage status. Further studies and analysis showed that immune cell infltration might be associated with the m7G-related risk
genes. In addition, the relationship between gene expression and drug response was evaluated by the Pearson correlation test.
Terefore, the risk signature with fve selected m7G-related genes may be a promising prognostic biomarker and contribute to
standardized prognostic assessment for ccRCC.

1. Introduction

Ninety percent of all renal malignancies are renal cell car-
cinomas (RCC), a prevalent malignancy in the urinary
system [1]. ccRCC, the most common subtype of RCC,
accounts for approximately 70% of RCC and is also one of
the most aggressive subtypes [2]. Te early symptoms of
renal clear cell carcinoma are not obvious, with only 6–10%
of patients presenting with typical symptoms such as
backache, an abdominal mass, or hematuria [3]. More than
about 30% of ccRCC patients already havemetastasis or local
progression at the frst diagnosis [4], so it is necessary to
diagnose ccRCC at an early stage. Although surgery is the
best therapy method for ccRCC, nearly 30% of patients
develop local recurrence and metastasis after surgically re-
moving local ccRCC [5]. Despite the advent of targeted
drugs and immune checkpoint inhibitors, patients with

metastatic renal cancer still have a low overall survival rate.
Hence, it is crucial to discover efective and novel bio-
markers to provide novel molecular targets for adjuvant
therapies and improve patient outcomes.

In the last decade, the role of RNAs in cellular processes
has attracted more and more attention. Over 150 types of
RNA modifcations have been identifed to date [6, 7], in-
cluding N7-methylguanosine, N1-methyladenosine,2′-O-
methylation, N6-methyladenosine, and 5-methylcytosine
[8–10]. In general, M7G, an RNA modifcation with a pos-
itive charge [11], is present in the eukaryotic mRNA, tRNA,
rRNA, and microRNAs [12], which is required for nearly all
phages that participate in the expression of mRNAs, such as
transcription elongation [13], pre-mRNA splicing [14],
polyadenylation [15], nuclear export [16], and translation
[17]. Although some literature reported that m7G modif-
cation is linked to the development of various cancers,
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including lung cancer [18] and colon cancer [19], the re-
lationship between m7G RNA methylation regulators and
ccRcc remains widely unclear.

We frst downloaded mRNA expression and clinical data
from public databases. Ten, selected fve optimal genes and
constructed a predictive model.Temodel’s predictive value
has been confrmed via various survival analyses. Moreover,
we also validated the accuracy of the model in the E-
MTAB-1980 cohorts. Furthermore, we set up a nomogram
to enhance individualized prognosis assessment. Finally, we
elucidate the underlying mechanism of ccRCC through
functional analysis and explore the relationship between risk
genes and chemosensitivity.

2. Materials and Methods

2.1. Data Acquisition. We acquired the RNA sequence data
of 539 tumors and 72 normal tissues of ccRCC and clinical
information (n� 537) in the TCGA database. In addition,
101 patients in the E-MTAB-1980 cohort with clinico-
pathological information and RNA sequence data were also
downloaded from the ArrayExpress database. Reference
[20]. Our analysis excluded patients who had no follow-up
days during the survival period. Tirty-four m7G-related
genes were obtained from earlier studies [21], and gene sets:
gomf-m7G-5-pppn-diphosphatase-activity, gomf-RNA-7-
methylguanosine-cap-binding, and gomf-RNA-cap-binding
(https://www.gsea-msigdb.org/gsea/index.jsp). Basic clinical
information is summarized in Table 1. A fow chart of our
overall study is displayed in Figure 1.

2.2. Prognostic Model Construction and Validation.
Diferentially expressed genes (DEGs) in ccRCC normal
samples and tumor samples in the TCGA cohort were
processed using the “Limma” R package, and the flter
conditions were set (fdrFilter <0.05, logFCflter >1). Ten,
a univariate Cox analysis of survival outcomes was per-
formed to screen the genes with prognostic values. Te
“Venn” R package was used to select m7G-related DEGs
with predictive values through DEGs and prognostically
valuable genes. Furthermore, we used the “pheatmap”
package to display heatmaps and the “Survival” package to
show forest maps to represent diferences between groups.
In the TCGA cohort, the “Survival” and the “glmnet”
packages were applied for prognostic risk characteristics.
Te risk score of each patient was estimated as follows: Risk
score�  (gene expression× corresponding coefcient.
Ten, we calculated the risk score of each patient according
to the above formula and divided all patients into high-risk
and low-risk groups with the median score. “Survminer” and
“Survival” of the R language were introduced to evaluate
overall survival (OS) based on the Kaplan–Meier (K–M)
method. Te “timeRoc” of the R package was applied to
assess the accuracy of the related gene model. Te “pheat-
map” of the R package was used to describe the risk scores
and corresponding survival times. Te R packages “Rtsne”
and “GGplot2” were used to investigate whether there was
a diference in distribution between the two groups of at-risk

patients. We further processed the same analyses to validate
the model’s predictive performance in the E-MTAB-1980
cohorts.

2.3. Te Construction of a Predictive Nomogram Using Risk
Scores and Clinical Factors. We performed the analysis of
univariate and multivariate Cox regression further to ex-
amine the relationship between OS and clinical factors.
Ten, establishing a nomogram including a risk score and
the independent prognostic clinical characteristics, we can
assess the probability of survival at 1, 3, and 5 years for
ccRCC patients. In order to measure this nomogram’s
predictive precision, calibrate curve analysis was used.

2.4.Functionaland Immune InfltrationEnrichmentAnalyses.
Using the package ClusterProfler, we used GO and KEGG
to analyze risk-related DEGs. Te ESTIMATE algorithm
assessed the association between risk score and stromal score
or immune score. “GSVA” and “GSEABASE” were utilized
to assess immune functions and cells among risk-
related DEGs.

Table 1: Basic clinical characteristics of patients in the TCGA
cohort and the E-MTAB-1980 Cohort.

TCGA cohort (537) E-MTAB
1980 cohort (101)

Age (years)
≤65 352 57
>65 185 44

Gender
Female 191 24
Male 346 77

Grade
G1 14 13
G2 230 59
G3 207 22
G4 78 5
Gx 5
Unknown 3 2

Stages NA
I 269
II 57
III 125
IV 83
Unknown 3

T Stage
T1 275 68
T2 69 11
T3 182 21
T4 11 1

N Stage
No 240 94
Not no 17 7
Nx 280

M Stage
M0 426 89
M1 79 12
Mx 30
Unknown 2
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2.5. Drug Response Analysis. We obtained the NCI-60 data
from the CellMiner platform and used the Pearson corre-
lation test to assess the relation of m7G-related gene ex-
pressions with drug response.

2.6. Statistics Analysis. Statistical analyses were conducted
using the R software (version 4.1.0) and the PERL pro-
gramming language (version 5.32.1). Statistical signifcance
is set at P< 0.05, and P values follow a double-tailed dis-
tribution. To calculate the adjusted P value, Benjamini-
Hochberg was invoked.

3. Results

3.1. Diferential Expression of MRGs. Most of the m7G-
related expressed genes (5/34, 14.7%) were diferentially
expressed between nontumorous tissues and tumorous
tissues in the TCGA cohort (adjusted P< 0.05, logFCflter
>1). We screened out 22 genes associated with OS (P< 0.01)
via univariate Cox regression analysis. Tus, fve m7G-
related genes were identifed, as indicated by the Venn di-
agram (Figure 2(a)). Afterward, the heatmap demonstrated
the expression levels in normal and tumor samples
(Figure 2(b)). Furthermore, we calculated the P values,
hazard ratios, and 95% confdence intervals (CI) of each gene
displayed in forest plots (Figure 2(c)). Finally, we visualized
fve prognostic m7G-related DEG interactions with corre-
lation networks (Figure 2(d)).

3.2. Generation of the Predictive Risk Model and Survival
Analyses in theTCGADatabase. By lasso regression analysis,
we discovered that fve m7G-related genes ft the model
(Figure 3(a) and 3(b)). Among them, EIF4A1, NUDT1, and
NUDT10 are high-risk genes, while CYFIP2 and NUDT4 are
assigned to low-risk genes. In order to establish the prog-
nosis model based on the expression levels of the selected
genes, we computed risk scores using the following formula:
risk score � (−0.532106574444019∗CYFIP2) + (0.25728474
2647963∗EIF4A1) + (0.210867606644546∗ NUDT1) + (0.027
3145419183592∗NUDT10) + (−0.254461172952311∗NUDT
4). Five m7G-related genes model was identifed in the
TCGA cohort. We categorized all patients based on the
median risk scores into two groups: high-risk (n � 262) and
low-risk (n � 263). (Figure 4(a)). Te results of PCA and t-
SNE analysis of MRGs indicated that diferent risk groups of
patients were entirely distributed diferently (Figures 4(b)
and 4(c)). Furthermore, we noticed that the high-risk pa-
tients died more frequently than the low-risk patients when
we took survival outcomes into consideration (Figure 4(d)).
Terefore, the predictive capacity for the clinical prognosis
of the model was evaluated using the K-M survival and time-
dependent ROC analyses, respectively. Te results are as
follows: survival rates for patients assigned to the high-risk
group were signifcantly worse than those in the low-risk
group according to the K-M survival curve (P � 4.097e − 14)
(Figure 4(e)). During 1 year, 0.748 AUC was recorded,
followed by 0.694 at 2 years, and 0.704 at 3 years (Figure 4(f ))

mRNA expression data
of ccRcc patient

from TCGA

Tumor sampel
n = 539

Normal sampel
n = 72

Tumor VS normal
diferential analysis

DEGs with prognostic
value (n = 5)

Lasso Cox regression

5 gene signature model a prognostic nomogram
E-MTAB-1980 from

Array Express
Tumor=101

Survival analysis Functional analysis Immune correlation
analysis

Analysis of
therapeutic sensitivity

Univariate Cox
Regression

Excluded 5 tumor samples
follow-up with 0 day

34 m 7G-related genes

Figure 1: Te overall workfow of this study.
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and reached 0.748 at risk, 0.766 at stage, 0.645 at grade, 0.641
at age, and 0.506 at gender in the ROC analysis (Figure 4(g)).

3.3. Survival Analyses of the E-MTAB-1980 Cohorts for
Verifcation. We also calculated the risk score for the E-
MTAB-1980 cohorts for validation (n� 101). In light of the
median risk score, patients were divided into two sets: those
at high-risk (n� 50) and those at low-risk (n� 51).
(Figure 5(a)). MRGs were reduced in dimension by PCA and
T-SNE analysis, and then we found that diferent risk groups
were distributed in two diferent directions (Figures 5(b) and
5(c)). Additionally, the death rates in the high-risk group
were higher than those in the low-risk group. (Figure 5(d)).
In addition, we performed analyses of K-M survival and
time-dependent ROC curves, which suggested that both
were signifcant in assessing the prognostic value of the risk

score model. Survival curves showed that patients in the
high-risk group had signifcantly worse OS than patients in
the low-risk group (P � 1.53e − 03) (Figure 5(e)). Te area
under the curve (AUC) was 0.617 at 1 year, at 2 years it
reached 0.622, and at 3 years it reached 0.659 (Figure 5(f ))
and reached 0.617 at risk, 0.757 at stage, 0.681 at grade, 0.609
at age, and 0.522 at gender in the ROC analysis (Figure 5(g)).

3.4. Te Independent Prognostic Evaluation of Five Genes.
We depicted to use a heatmap to illustrate the expression
levels of the fve selected m7G genes and clinical features in
the two low-high groups, which suggested the signifcant
diferences in clinical features between the low and high
groups (Figure 6(a)). Toward a better understanding of the
predictive value of risk scores and other clinical features in
ccRCC patients, the TCGA cohort was subjected to both
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Figure 2: Intersection of diferentially expressed m7G-related genes and survival-associated m7G-related genes. (a) Venn diagram showing
the fve m7G-related genes associated with survival between diferentially expressed genes and prognostic genes. Te green circle represents
diferentially expressed genes, and the pink circle represents prognostic genes. (b) Heatmap showing the fve m7G-related associated with
survival. Te red rectangle represents tumor tissue, and the blue rectangle represents normal tissue. (c) Te forest fgure of the 5 key m7G-
related genes in univariate Cox regression. Te blue line represents a 95% confdence interval. Te position of the square represents the
hazard ratio. (d) Te correlation network of 5 m7G-related genes, in which diferent colors represent the correlation coefcients. Te red
represents a positive relationship, and the blue represents a negative relationship.
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Figure 3: Identifcation of fve optimal MRGs. (a) Partial likelihood deviance was plotted against log (λ). Te vertical dotted lines indicate
the λ value with minimum error. Te largest λ value is where the deviation is within one standard error (SE) of the minimum. (b) Least
absolute shrinkage and selection operator (Lasso) coefcient profles of MRGs in ccRCC.
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Figure 4: Survival analyses of the 5-genemodel in the TCGA cohort. (a)Te distribution of the risk scores in the TCGA cohort. (b) Principal
component analysis plots display the established gene signature expression distribution in diferent risk groups. (c) t-Distributed stochastic
neighbor embedding plots reveal the patients’ distribution in diferent risk groups. (d)Te distributions of the risk scores and corresponding
survival times of all patients in the TCGA cohort. (e) OS-based K-M survival curves for the patients in the high and low-risk groups in the
TCGA cohort. (f ) AUC of time-dependent ROC curves verifed the prognostic performance of the risk score in the TCGA cohort. (g) AUC
of clinical ROC curves verifed the prognostic performance of the risk score in the TCGA cohort.
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univariate and multivariate Cox regression analyses
(Figures 6(b) and 6(c)). We omitted the N-stage in our
further analyses because most patients lacked clinical in-
formation on the N-stage. A prediction model was de-
veloped using four independent prognostic factors: age, risk
score, grade, and stage. A nomogram predicting the OS
probability over the course of 1, 3, and 5 years was estimated
using the fve m7G-related genes (Figure 6(d)) and assessed
its predictive power (Figures 6(e) and 6(g)). Te calibration
curves proved that the nomogram had a positive efect on
prognosis.

3.5. Functional Analyses in TCGA Cohort. To address the
potential biological diferences, we conducted GO and
KEGG enrichment analyses on the DEGs between the dif-
ferent risk groups. Te GO enrichment analysis of risk-
related DEGs revealed signifcant correlations between
humoral immune response, immunoglobulin complex, and
antigen binding (Figure 7(a), P adjust <0.05). Te KEGG
pathway analysis demonstrated that DEGs had signifcantly
enriched the following pathways: cytokine-cytokine receptor
interaction, viral protein interaction with cytokine, and
cytokine receptor and mineral absorption (Figure 7(b), P

adjust <0.05).

3.6. Immune Infltration ssGSEA in TCGA Cohort. Te
TCGA cohort was evaluated by ESTIMATE, which man-
ifested a positive correlation between risk scores, immune

scores (P< 0.001; Figure 8(a)), and stromal scores (P � 0.03;
Figure 8(b)). On six of the 16 immune cells, the high-risk
group demonstrated signifcantly higher infltration of ac-
tivated dendritic cells (aDCs), CD8+ T cells, helper T cells 2
(T2 cells), helper Tcells 1 (T1 cells), follicular helper Tcells
(Tfh), and tumor-infltrating lymphocyte (TIL). In contrast,
iDCs and mast cells showed the opposite pattern (P< 0.05,
Figure 8(c)). In the immunopathways analysis, seven
pathways were positively associated with risk scores, such as
CCR, check-point, cytolytic-activity, infammation-
promoting, parainfammation, T cell co-stimulation, and
type I IFN response. In comparison, the type II IFN response
had a negative efect (P< 0.05, Figure 8(d)). Te signature
signifcantly correlates with immune infltration, based on
our fndings.

3.7. Expressions of MRGs Correlated with Terapeutic
Response. We incorporated the data on cancer cell ex-
pression and the efectiveness of FDA-approved drugs in our
study in order to investigate the clinical applications of the
m7G-related gene signature. CYFIP2-overexpressed cancer
cells were demonstrated to be more sensitive to the following
drugs: nelarabine, melphalan, idarubicin, and so on. Te
elevated NUDT4 expression levels in cancer cells increased
the sensitivity to selumetinib, but drug resistance to ever-
olimus was correlated with them. Overexpression of NUDT1
in cancer cells makes them more susceptible to carboplatin
and triethylenemelamine, and cancer cells expressing higher
levels of EIF4A1 were more sensitive to cladribine (Figure 9).
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Figure 5: Validation of the 5-gene model in the E-MTAB-1980 cohort. (a) Te distribution of the risk scores in the E-MTAB-1980 cohort.
(b) Principal component analysis plots display the established gene signature expression distribution in diferent risk groups. (c) t-
Distributed stochastic neighbor embedding plots reveal the patients’ distribution in diferent risk groups. (d) Te distributions of the risk
scores and corresponding survival times of all patients in the E-MTAB-1980 cohort. (e) OS-based K-M survival curves for the patients in the
high- and low-risk groups in the E-MTAB-1980 Cohort. (f ) AUC of time-dependent ROC curves verifed the prognostic performance of the
risk score in the E-MTAB-1980 cohort. (g) AUC of clinical ROC curves verifed the prognostic performance of the risk score in the E-
MTAB-1980 cohort.
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4. Discussion

Clear cell renal cell carcinoma is a fatal adult renal cancer
[22], with a higher risk of recurrence and metastasis [23].
m7G and m6A are both common types of internal RNA
modifcations. Interestingly, numerous studies have revealed
that m6A RNA methylation regulators are connected with
the development and progression of cancer in humans [24],
such as bladder cancer [25], hepatocellular carcinoma [26],
and breast cancer [27]. However, there are few similar
studies on m7G.Terefore, this study explored the impact of
m7G RNA methylation regulators on ccRCC and con-
structed an m7G-related signature and nomogram for
prognostic prediction of ccRCC.

First, we fltered out the diferentially expressed m7G-
related genes with prognostic values. Ten we constructed
the signature of fve m7G-related genes, including CYFIP2,
EIF4A1, NUDT1, NUDT10, and NUDT4. Te expression of
CYFIP2 and NUDT4 was downregulated, whereas EIF4A1,
NUDT1, and NUDT10 expressions were upregulated in the
ccRCC high-risk group. Te cytoplasmic FMR1-interacting
protein (CYFIP) family was initially recognized as a protein
associated with brain diseases [28]. Recent research dem-
onstrated that Cyfp 2 might play a critical role and have
potential functions in cancers, such as gastric cancer [29]
and colorectal adenocarcinoma [30]. Previous studies in-
dicated CYFIP2 was downregulated in ccRCC patients due
to its DNAmethylation, and it was involved in the metabolic
reprogramming, the EMTpathway, and immune infltration
processes in ccRCC by its DNA methylation [31]. Te
eukaryotic initiation factor 4A (eIF4A) family plays a vital
role in many cancers [32–34]. In human cancers like gastric
cancers and breast cancers, ZBP1 expression is increased,
which also correlates with poor prognoses [35, 36]. EIF4A1
is a necessary component of EIF4F, which was considered
a direct connection between essential steps in cancer de-
velopment and translation initiation [37]. Moreover, ac-
cumulating studies have linked EIF4A1 to malignant
phenotypes of tumor cells and tumor-specifc survival
[38, 39]. NUDT1, NUDT4, and NUDT10 belong to the nudix

hydroxylase (NUDT) family. Te expression of NUDT1 and
NUDT10 is increased and the expression of NUDT4 is
decreased in ccRCC [40]. Up to now, the association be-
tween the NUDTfamily and tumorigenesis has been unclear,
and studies about their role in ccRCC are rare [41–43].
Previous studies indicated that NUDT1 might provide di-
agnostic and prognostic value for KIRC [44]. A study
revealed that NUDT1 is activated by HIF2αtranscription,
thereby inhibiting oxidative stress and promoting the pro-
gression of ccRCC [45]. Te roles of NUDT4 and NUDT10
remain ambiguous in ccRCC tumor progression and
metastasis.

An analysis using Cox regression displayed that risk
score, age, stage, and grade could act as the independent
predictive factors for patients with ccRCC. Tese in-
dependent predictive factors were used to build a nomogram
to improve the ability to predict the prognosis for ccRCC.
Te calibration curves demonstrated that the nomogramwas
fairly accurate in predicting the actual OS.

After performing GO, KEGG, and immune infltration
analyses on diferential risk DEG genes, many biological
pathways and functions were identifed as contributing to
immunity. It might be reasonable to conclude that m7G
modifcation is closely related to tumor immunity. Lines of
evidence demonstrate that the progression of ccRCC is
associated with the presence of diferent types of immune
cells and immune functions [46]. It has been proven that
RNA methylation contributes to tumor immunity [47]. But
the relationship between m7G modifcation and tumor
immunity is still developing, and a deeper exploration of the
mechanism is needed.

To facilitate the clinical transformation of the fve genes
model, we further identifed FDA-approved sensitive drugs
that express high levels of CYFIP2, EIF4A1, NUDT1,
NUDT4, and NUDT10 in multiple cancer cell types. A high
expression of CYFIP2 is related to cancer cells’ sensitivity to
nelarabine, Melphalan, and so on. Nelarabine is a process for
obtaining the deoxyguanosine analog 9-β-Darabinofur-
anosylguanine(Ara-G) [48, 49]. Nelarabine has preferential
cytotoxicity to T lymphoblastic cells through an
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Figure 6: Construction of a new prognostic nomogram. (a) Heatmap and the clinicopathologic characters of the low- and high-risk groups.
∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. (b) Univariate Cox regression analysis. (c)Multivariate Cox regression analysis. (d) Prognostic
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accumulation of Ara-GTP, thereby inhibiting ribonucleotide
reductase and subsequent DNA synthesis [50, 51].
According to the score comparisons of immune cells and
immune function, we observed that high-risk patients
possessed higher scores in helper T cells 2 (T2 cells), CD8+
T cells, follicular helper T cells (Tfh), helper T cells 1 (T1
cells), and T cell co-stimulation, suggesting a potential
therapeutic agent in ccRCC with nelarabine. However, no
literature has been found on the treatment of kidney cancer

by nelarabine. Melphalan plus fudarabine is a feasible and
efective RIC regimen for allogeneic SCT in metastatic RCC
[52]. Increasing NUDT4 expression has been related to the
resistance of tumor cells to everolimus. Nevertheless, it has
been associated with increased sensitivity to selumetinib.
Everolimus, a mammalian target of rapamycin (mTOR)
inhibitor, is the standard second or third line therapy in
patients with ccRCC [53]. SELUMETINIB inhibits MEK1/2,
a mitogen-activated protein kinase, which can abrogate
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resistance, leading to improved antitumor efcacy in renal
cell carcinoma [54]. NUDT1 expression was positively
correlated with carboplatin and triethylenemelamine sen-
sitivity in cancer cells. Te increased expression of EIF4A1
was connected with higher sensitivity to cladribine in cancer
cells. Carboplatin, triethylenemelamine, and cladribine are
some of the most widely used cancer chemotherapeutics, but
ccRCC is not sensitive to chemotherapy [55].

Currently, a large amount of literature on gene markers
predicting the prognosis of ccRCC patients can be found. Some
studies have constructed models without internal or external
validation [56, 57] or only constructed prediction models
without nomogram diagrams [57, 58]. Wenwei Chen and
colleagues included age, sex, grade, and stage in univariate
regression analysis but did not include TNM clinical indicators
[59]. Zhao et al. constructed a nomograph diagram, including
age, grade, stage, and risk score. Risk-score is classifed as low
and high rather than specifc numerical values [56]. Compared
with other gene predictive models of ccRCC patients, our
research makes up for these defciencies and has specifc in-
novations and advantages. First of all, it is undeniable that our
study is the frst comprehensive study of m7G-related mRNA
in ccRCC. In addition, the nomogram diagrams contain risk
scores and clinical indicators that can further efectively predict
the outcome of patients with ccRCC. Furthermore, Zhao et al.
only evaluated the accuracy of the nomogram diagram, but not

the accuracy of the gene-related model [56]. However, we
evaluated the accuracy of the model using ROC.Te closer the
AUC is to 1.0, the higher the authenticity of the predictive
model. Wang et al. also estimated the model’s accuracy using
ROC, and the risk AUC was 0.704 [60]. Our study demon-
strates that the risk AUC is 0.748 in the TCGA cohort and the
risk AUC is 0.811 in the E-MTAB-1980 cohort. It shows that
our model is more accurate and efective. Tis study still has
some faws in its process and methodology. Firstly, the ccRCC
cohort is relatively small, and the samples lack complete clinical
information. Secondly, how those m7G-related genes interact
with each other andwhich pathway is involved in ccRCCneeds
further study. Finally, the molecular mechanism of m7G-
related genes in ccRCC remains to be conducted both in in-
ternal and external experiments.

5. Conclusion

Collectively, we constructed fve m7G-related gene pre-
dictive models, which performed well in predicting survival
prognosis, immune microenvironment, and sensitivity to
drugs in ccRCC. Ten, a prognostic nomogram for survival
prediction based on fve m7G-related genes could improve
survival estimates for ccRCC patients. However, the po-
tential mechanism of m7G-related genes in ccRCC remains
unclear and needs further exploration.
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