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Methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) were two core components of the N6-
methyadenosine (m6A) methyltransferase complex (MTC) and played a basic role in maintaining an appropriate m6A level
of target genes. In gastric cancer (GC), previous researches on the expression and role of METTL3 and METTL14 were not
consistent, and their specifc function and mechanism have remained elusive. In this study, the expression of METTL3 and
METTL14 was evaluated based on the TCGA database, 9 paired GEO datasets, and our 33 GC patient samples, and METTL3 was
highly expressed and acted as a poor prognostic factor, whereas METTL14 showed no signifcant diference. Moreover, GO and
GSEA analyses were performed, and the results pointed out that METTL3 and METTL14 were jointly involved in multiple
biological processes, while they could also take part in diferent oncogenic pathways independently. And BCLAF1 was predicted
and identifed as a novel shared target of METTL3 and METTL14 in GC. In total, we conducted a comprehensive analysis of
METTL3 and METTL14 in GC including their expression, function, and role, which could provide a novel insight into the
research of m6A modifcation in GC.

1. Introduction

As a novel kind of posttranscriptional regulation, N6-
methyadenosine (m6A) RNA modifcation was one of the
most abundant and prevalent RNA modifcations in eu-
karyotes [1–3]. It was a reversible and dynamic process that
was installed by m6A methyltransferases “writers” and de-
leted by m6A demethylases “erasers” [4, 5], andm6A sites on
target RNAs that recognized by m6A-binding proteins
“readers” afect multiple aspects of RNA metabolism, in-
cluding their transcript, splicing, processing, translation,
and decay [6].

To date, a large number of related studies have focused
on the relationships between m6A modifcation and dis-
eases, especially cancers [7]. Emerging evidence suggested
that m6A modifcation played a critical role in multiple
cancer processes through various mechanisms [8], and

alteration of m6A levels on tumor-related genes dramatically
afected the cancer development, proliferation, and metas-
tasis, [7, 9, 10]. It was reported that methyltransferase-like 3
(METTL3)-mediated m6A modifcation of HDGF mRNA
promotes gastric cancer (GC) progression and has prog-
nostic signifcance [11]. Wang et al. [12] demonstrated that
YTHDF1 promoted ARHGEF2 translation and RhoA sig-
naling in colorectal cancer (CRC), and Pu et al. [13] reported
that IGF2BP2 promoted liver cancer growth through an
m6A-FEN1-dependent mechanism. Moreover, m6A mod-
ifcation was also involved in lung cancer [14], gliomas [15],
and other diferent cancers.

In the digestive system, GCwas one of the most common
cancers worldwide, with a high incidence rate and mortality
[16]. Te occurrence and metastasis of GC were considered
a multifactor, multistep process, in which aberrant regula-
tion of m6A modifcation was widely involved [11, 17–19].
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METTL3 and METTL14 were two core components of the
m6A methyltransferase complex (MTC) which was pri-
marily responsible for m6A methylation [18, 20]. Results of
crystal structure indicated that METTL3 acted as the cata-
lytic subunit bound to the methyl donor S-
adenosylmethionine (SAM) and catalyzed methyl group
transfer, andMETTL14 was a cofactor that was necessary for
substrate RNA binding and METTL3 conformation stabi-
lization [20–22]. In GC, one major issue concerned the
existing body of research suggested that METTL3 was
overexpressed and promoted GC progression
[11, 19, 23, 24], while downregulated METTL14 acted as
a tumor suppressor [25, 26]. Tese two core components of
MTC paradoxically exhibited opposite expressions and roles
in GC progression. Previous studies have reported dysre-
gulation of m6A modifcation in GC tumorigenesis [18–20],
but few types of research focused on the expression and role
of METTL3 and methyltransferase-like 14 (METTL14) and
their relation in the process of m6A methylation. Terefore,
to elucidate the molecular mechanism of m6A modifcation
in GC, we performed a comprehensive analysis of METTL3
and METTL14 in GC, including their expression, function,
and role, as shown in Figure 1.

2. Materials and Methods

2.1. TCGA Database Analysis. GEPIA2 [27], an enhanced
web (https://gepia2.cancer-pku.cn/) server for large-scale
expression profling and interactive analysis, was used to
explore the expression of METTL3 and METTL14 between
GC samples and normal samples in the TCGA database, and
444 eligible samples (408 GC tumor samples and 36 normal
samples) were obtained. Diferential expression analysis was
compared by the limma package in R software.

2.2. GEO Database Download. Datasets in the Gene Ex-
pression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) were used to explore the expression of METTL3
and METTL14. Ten, “Gastric Cancer or Stomach” was
selected as the keyword, and “Series (Entry type), Expression
profling by the array (Study type), Homo sapiens (Organ-
ism)” was used to flter the results. Te datasets of GC were
excluded if not meet the following criteria: (1) detection of
METTL3 or METTL14 expression level in samples; (2) the
dataset provided paired samples; (3) the included GC
samples were all carcinoma in situ; (4) sample sizes of the
dataset greater than 50. Finally, 9 datasets were obtained
with the accession number: GSE29272 [28], GSE66229 [29],
GSE27342 [30], GSE3438 [31], GSE29998 [32], GSE63089
[33], GSE65801 [34], GSE13911 [35], and GSE33429 [36].
Log transformation has been applied to the data of
GSE27342, GSE29998, and GSE13911 samples for their high
dispersion.

2.3. Prognostic Prediction. Kaplan-Meier (K-M) (https://
kmplot.com/analysis/), one of the most comprehensive
and authoritative online survival analysis websites, was used
to predict the prognostic value of genes. To reveal the

correlation between the expression of genes and the overall
survival (OS) time of patients, the signifcance was computed
using the Cox–Mantel (log-rank) test. Te diference be-
tween the cohorts is numerically characterized by the hazard
rate (HR), which is based on the diferential descent rate of
the two cohorts, and more information could be found by
the authors of [37].

2.4. Gene Set Enrichment Analysis. Te clusterProfler
package in R software was used to perform gene set en-
richment analysis (GSEA), and h.all.v6.2.symbols.gmt was
chosen as the annotated gene set. Te enrichplot package in
R software was used to draw the plots.

2.5. GO Functional Annotation. Gene ontology (GO)
functional annotation was used to explore the biological
function of METTL3 and METTL14. Te clusterProfler
package in R software was used to perform enrichment
analysis, and the result was divided into three parts, in-
cluding biological processes (BP), cellular components (CC),
and molecular function (MF). Te enrichplot package,
colorspace package, stringi package, and ggplot2 package in
R software were also used. Te bar plots were drawn to
visualize the top results.

2.6. Tissue Samples from GC Patients. 33 pairs of gastric and
paracancer tissues were collected from Jiangsu Cancer
Hospital (Nanjing, China), stored in RNA later (QIAGEN,
Germany), and frozen in the freezer at −80°. All tissues were
from patients who had been diagnosed pathologically as new
cases of primary gastric cancer without radiotherapy.

2.7. Cell Lines Culture and Transfection. Human gastric
mucosal epithelial cells (GES-1) and two cancer cells
(AGS, HGC-27) were obtained from the Key Laboratory of
Environmental Medicine Engineering, Southeast Uni-
versity (Nanjing, China) and certifed by DNA fnger-
printing. Te cells were cultured in a 5% CO2 humidifed
atmosphere at 37°C. GES-1 and HGC-27 were cultured in
RPMI 1640 medium (Gibco, Gaithersburg, USA) sup-
plemented with 10% fetal bovine serum (FBS). AGS was
cultured in DMEM (Gibco) supplemented with 10% FBS.
Te human METTL3 knockdown lentivirus, METTL14
overexpressing lentivirus, and the corresponding negative
control lentivirus were synthesized by Hanheng Bio-
technology Co (Nanjing, China), and the viral vector was
pHBLV-CMV-MCS-3fag-EF1-ZsGreen-T2A-Puro. After
24 h of lentivirus treatment, the medium was removed and
replaced with a fresh complete medium. After 72 h of
lentivirus treatment, fuorescence was observed under the
microscope, and puromycin was used to screen stably
transfected cells.

2.8. RNA Isolation and RT-qPCR. Gene expression levels in
tissues and cells were measured by real-time fuorescent
quantitative PCR quantitative reverse transcription PCR
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(RT qPCR). TRIzol reagent (Invitrogen, USA) was used to
extract total RNA from cells and tissues, and purity and
concentration were determined using a NanoDrop 2000
spectrophotometer (Termo Fisher Scientifc, USA). RT
reactions and RT-qPCR were performed using the reverse
transcription system kit (GenStar, Beijing, China), and the
reverse transcription procedure was accomplished in two
steps. General Biotech Co., Ltd. (Shanghai, China) pro-
vided all of the RNA primers. Supplementary Table S1 listed
the mRNA primer sequences for candidate genes and
housekeeping genes. Te comparative Ct (cycle threshold)
was used for the comparison of gene expression, and the
relative mRNA expression value was calculated as
40−ΔCt [38].

2.9. Western Blotting. Western blotting (WB) was used to
detect the protein level expression, cells from transfected and
negative control groups were collected, and proteins were
extracted using a lysate mixture (198 μl RIPA and 2 μl
PMSF). After measuring the concentration of protein
samples, they were mixed with SDS loading bufer in equal
volume and adjusted to the same concentration. Acrylamide
gels were prepared (TGX™ FastCast™ Acrylamide Kit), 15 μl
of the loading bufer was added to each well, and 15 μl Maker
was added to the last well for indication. 90-volt electro-
phoresis was performed for about 2 h, and the membrane
was transferred at 70-volt for 4 h and then closed with 5%
skimmed milk powder. Te primary antibodies used here
were shown as follows: BCLAF1(Proteintech, Cat No.
26809-1-AP), GAPDH (ABclonal, AC001), METTL3
(ABclonal, A8370), and METTL14 (ABclonal, A8530).

2.10. m6A Target Gene Prediction. m6A-related prediction
websites were used in this study, including Whistle [39]
(https://180.208.58.19/whistle/index.html), m6A Target2 [40]
(m6A2Target (canceromics.org)), m6Avar [41] (m6avar-
database of functional variants involved in m6A modifcation
(renlab.org)), and SRAMP [42] (https://www.cuilab.cn/
sramp/). Te genes predicted in these websites were con-
sidered to be the potential targets of METTL3 andMETTL14.

2.11. Statistical Analysis. For statistical analysis, SPSS 26.0
software (IBM Corp, USA), R software, and Excel software
were utilized. All data were presented as mean± standard
deviation (SD) or median, and GraphPad Prism 9 was used
for statistical analysis and graphing. Meta-analysis and forest
plots were completed by Revman (Cochrane). A paired t-test
was used to examine the diferences in gene expression levels
between tumor and paracancer tissues. In diferential ex-
pression analysis, |log2 FC|> 0.05 and P − value< 0.01 were
considered to be statistically signifcant. In prognostic
prediction, log-rank P< 0.05 was considered to be statisti-
cally signifcant. In GO functional annotation and GSEA,
adjust P (P adj) value <0.05 and false discovery rate (FDR) q
value <0.25 were considered to be statistically signifcant.

3. Results

3.1. Te Expression and Prognostic Value of METTL3 and
METTL14 in GC

3.1.1. METTL3 Was High Expressed While METTL14 Was
Shown No Signifcant Diference. Te majority of studies
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Figure 1: Te fowchart of this study.
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reported [11, 19, 23] that METTL3 was overexpressed in GC
although METTL14 was low-expressed [43]. To begin, we
explored their expression in GC based on the TCGA da-
tabase, which contained 408 GC samples and 36 normal
samples. As shown in Figure 2(a), the expression ofMETTL3
was signifcantly upregulated (P< 0.01) while METTL14
showed no signifcant diference.

Considering the few number of normal samples from the
TCGA and comparability between samples, the paired GC
samples among GSE29272 [28], GSE66229 [29], GSE27342
[30], GSE3438 [31], GSE29998 [32], GSE63089 [33],
GSE65801 [34], GSE1391 [35], and GSE33429 [36] were
obtained from GEO to examine the expression of METTL3
and METTL14. For METTL3, all GEO datasets showed
a signifcant upregulation in GC (Figure 2(b), Table 1). For
METTL14, GSE66229 [29] and GSE13911 [35] showed
a signifcant downregulation while GSE33429 [36] showed
a signifcant upregulation and other datasets showed no
signifcant diference (Figure 2(c), Table 2). In addition to
public databases, 33 paired GC tissues from Jiangsu Cancer
Hospital (Nanjing, China) were collected to further confrm
the expression of METTL3 and METTL14, all tissues were
from patients who had been diagnosed pathologically as new
cases of primary GC without radiotherapy, and RT-qPCR
results of our tissues showed that METTL3 was signifcantly
overexpressed, and METTL14 was signifcantly decreased
(Figure 2(d)).

For the inconsistent results between datasets and our
tissues, a comprehensive meta-analysis was conducted to
determine the expression of METTL3 and METTL14 in GC.
All GEO datasets are mentioned previously, our tissues were
involved, and I2> 50% indicated signifcant heterogeneity,
and the random-efects model was used. Te pooled stan-
dard mean diference (SMD) of METTL3 was 0.95 (95% CI:
0.66 to 1.24, P< 0.001) (Figure 3(a)). Te pooled SMD of
METTL14 was −0.09 (95% CI: −0.49 to 0.31, P � 0.67)
(Figure 3(b)). Terefore, we concluded that METTL3 was
signifcantly overexpressed in GC, and METTL14 was low
expressed but had no statistical signifcance.

3.1.2. Prediction of Prognostic Value. Te online bio-
informatics tool K-M plotter was used to calculate the hazard
ratio (HR) and P value for OS. 1065 patients with accom-
panying clinical data were included in the K-M plotter
database GC cohort [44]. As shown in Figure 4, high
METTL3 expression was found to be a negative prognostic
factor in GC patients, with those who had higher METTL3
expression having a shorter OS time than those who had
lower METTL3 expression (HR� 1.46, log-rank P< 0.01).
Contrarily, GC patients with higher METTL14 expression
had a longer OS time (HR� 0.86), but the diference showed
no signifcance.

3.2. Te Biological Function of METTL3 and METTL14

3.2.1. M3DEGs and M14DEGs Jointly Enriched in Multiple
Biological Processes in GC. To discover more about the
biological function of METTL3 and METTL14, GC patient

samples in GSE66229 were chosen. Te median expression
of METTL3 was used to divide GC patient samples into two
groups, and METTL14 handled the same. Ten, diferential
gene analysis was performed. Tere were 1246 diferentially
expressed genes between the high- and low-METTL3 groups
(METTL3 DEGs, M3DEGs) and 2098 diferentially
expressed genes between the high- and low-METTL14
groups (METTL14 DEGs, M14DEGs). 218 genes between
M3DEGs and M14DEGs were overlapped and named
M3M14DEGs (Figure 5(a)).

GO function annotation was frst performed on these
M3DEGs and METTL14 DEGs. Te results were divided
into three parts: MF, BP, and CC, and the bar plots were
drawn to visualize the top results of each part (Figures 5(b)
and 5(c)). As expected, the results of M3DEGs and
M14DEGs were both signifcantly enriched in the modif-
cation and regulation of RNA, and 32 GO terms were
overlapped, including regulation of mRNA processing (GO:
0050684), ncRNA processing (GO: 0034470), RNA splicing
(GO: 0008380), regulation of mRNAmetabolic process (GO:
1903311), ribonucleoprotein complex biogenesis (GO:
0022613), and ncRNA metabolic process (GO: 0034660).
Moreover, GO function annotation of M3M14DEGs dem-
onstrated similar results (Figure 5(d)). Tese results in-
dicated that METTL3 and METTL14 jointly participated in
multiple biological processes in GC, which supported the
cooperative role of METTL3 and METTL14 in m6A
modifcation.

3.2.2. METTL3 and METTL14 Participated in the Specifc
Carcinogenic Pathways in GC. GSEA on M3DEGs and
M14DEGs was also performed to gain a deeper insight into
how METTL3 and METTL14 play a role in the GC process.
TeHallmark gene set in theMSigDB collections was chosen
as the reference gene set. As the enrichment plots shown,
E2F_TARGETS (NES� 2.54, P adj� 0.0038, Figure 6(a)),
G2M_CHECKPOINT (NES� 2.31, P adj� 0.0038,
Figure 6(b)), and MYC _TARGETS_V1 (NES� 1.76, P

adj� 0.0047, Figure 6(c)) were most commonly enriched in
M3DGEs, showing the association between M3DGEs and
these carcinogenic signaling pathways; M14DEGs was sig-
nifcantly enriched in INTERFERON_GAMMA_RES-
PONSE (NES� −2.77, P adj� 0.0047, Figure 6(d)) and
negatively correlated with MTORC1_SIGNALING
(NES� 2.31, P adj� 0.0047, Figure 6(e)) and GLYCOLYSIS
(NES� 2.18, P adj� 0.0047, Figure 6(f)). Tese results
pointed out that METTL3 and METTL14 took part in
diferent carcinogenic pathways in GC cancer progression,
which hinted that METTL3 and METTL14 might target
diferent genes in the GC process except in addition to
coworking.

3.3. Target Genes Prediction of METTL3 and METTL14

3.3.1. BCLAF1 as a Novel m6A Target in GC. 4 m6A target
prediction databases [39–42] were utilized to predict the
m6A-modifed genes of METTL3 and METTL14, and 54
validated targets of METTL3 and METTL14 were
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discovered. We intersected M3M14DEGs with 54 vali-
dated targets to get our target gene: BCL2 associated
transcription factor 1(BCLAF1) (Figure 7(a)), which
might be comodifed by METTL3 and METTL14 in GC.
BCLAF1 was signifcantly high expressed in GC
(Figure 7(b)), and the correlation analysis between
METTL3 and BCLAF1, andMETTL14 and BCLAF1 in GC
revealed a strong positive connection (Figure 7(c)). As
a result, we hypothesized that METTL3 and METTL14
working together to produce m6A modifcation on
BCLAF1 would enhance its expression.

Terefore, lentiviral infection was used for the con-
struction of cell transfection models. Based on the high-
expressed METTL3 and low-expressed METTL14 in GC

cells (Figure 7(d)), we established the METTL3 knockdown
(METTL3-KD) cell transfection models and METTL14
overexpressed (METTL14-OE) cell transfection models in
AGS and HGC-27 cell, and the transfection efciency was
verifed by RT-qPCR and WB (Figures 7(e) and 8(b)). In-
terestingly, we found that the mRNA expression of
METTL14 was upregulated after METTL3 knockdown
(Figure 7(f )).

Our RT-qPCR results showed that BCLAF1 was dra-
matically decreased after METTL3 knockdown and was
signifcantly upregulated after overexpressing METTL14
(Figure 8(a)). Meanwhile, these results were verifed in
protein level in HGC-27 and AGS cells by WB, as shown in
Figure 8(b).
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Figure 2: Te expression exploration of METTL3 and METTL14 in GC. (a) Te expression of METTL3 and METTL14 in GC from TCGA.
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Table 1: Te expression of METTL3 from the GEO datasets.

Datasets Country Platform Sample N Expression P

GSE29272 [28] (2013) USA GPL96 GC tumor 134 8.629± 0.540 <0.001∗∗GC normal tissue 134 8.276± 0.439

GSE66229 [29] (2015) USA GPL570 GC tumor 98 2.618± 0.126 0.001∗GC normal tissue 98 2.562± 0.096

GSE27342 [30] (2011) USA GPL5175 GC tumor 78 6.481± 0.773 0.016∗GC normal tissue 78 6.226± 0.807

GSE3438 [31] (2006) South Korea GPL2912 GC tumor 49 0.287± 0.385 <0.001∗∗GC normal tissue 49 −0.368± 0.334

GSE29998 [32] (2012) Singapore GPL6947 GC tumor 49 8.823± 0.336 0.002∗GC normal tissue 49 8.591± 0.367

GSE63089 [33] (2014) China GPL5175 GC tumor 45 6.037± 0.697 <0.001∗∗GC normal tissue 45 5.460± 0.595

GSE65801 [34] (2015) China GPL14550 GC tumor 32 10.47± 0.286 <0.001∗∗GC normal tissue 32 10.22± 0.128

GSE13911 [35] (2008) Italy GPL570 GC tumor 31 10.46± 0.393 0.002∗GC normal tissue 31 10.17± 0.273

GSE33429 [36] (2011) China GPL5175 GC tumor 25 5.289± 0.440 <0.001∗∗GC normal tissue 25 4.762± 0.272
∗P< 0.01; ∗∗P< 0.001.

Table 2: Te expression of METTL14 from the GEO datasets.

Datasets Country Platform Sample Number Expression P

GSE66229 [29] (2015) USA GPL570 GC tumor 98 2.348± 0.097 <0.001∗∗GC normal tissue 98 2.438± 0.127

GSE27342 [30] (2011) USA GPL5175 GC tumor 79 6.496± 1.139 0.989GC normal tissue 79 6.494± 1.064

GSE63089 [33] (2014) China GPL5175 GC tumor 43 6.014± 0.782 0.073GC normal tissue 43 5.717± 0.735

GSE65801 [34] (2015) China GPL14550 GC tumor 32 8.058± 0.356 0.717GC normal tissue 32 8.022± 0.409

GSE13911 [35] (2008) Italy GPL570 GC tumor 31 5.066± 1.193 0.041∗GC normal tissue 31 5.577± 1.332

GSE33429 [36] (2011) China GPL5175 GC tumor 25 4.103± 0.228 <0.007∗GC normal tissue 25 3.962± 0.132
∗P< 0.01; ∗∗P< 0.001.
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3.3.2. m6A Modifcation on PTEN Mediated by METTL3/
METTL14 Played an Opposite Role in Its Expression.
Moreover, this study retrieved that the articles related to
METTL3 or METT14 in GC, METTL3-modifed genes, and
METTL14-modifed genes mentioned in GC articles were
met in the middle (Figure 8(c), Supplementary Table S2),
and phosphatase and tension homolog (PTEN) was over-
lapped [26, 45].

Acting as a classical tumor suppressor in the cancer
process, PTEN was a key negative regulator in the PI3K
signaling pathway [40]. In GC, PTEN was low expressed,

and Yan et al. [45] found that METTL3 facilitated m6A-
YTHDF2-dependent PTEN mRNA degradation
(Figure 9(b)). Interestingly, Yao et al. [26] discovered that
METTL14-mediated m6A modifcation on PTEN enhanced
its mRNA stability (Figure 9(c)). Intrigued by these in-
consistent fndings, our transient transfection cell models
were used to validate their fndings. Knockdown ofMETTL3
reduced m6A modifcation on PTEN and signifcantly in-
creased its mRNA expression, whereas overexpressed
METTL14-enhanced m6A modifcation on PTEN also
signifcantly increased its mRNA expression (Figure 8(d)).
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Figure 3: Te expression validation of METTL3 and METTL14 in GC. (a) Forest plot of METTL3 expression data from GEO datasets and
RT-qPCR, the pooled SMD of METTL3 was 0.95 by the random-efects model. (b) Forest plot of METTL14 expression data from GEO
datasets and RT-qPCR, the pooled SMD of METTL14 was −0.09 by the random-efects model.
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Figure 4:Te prognostic value of METTL3 andMETTL14 in GC. (a) Prognostic prediction of METTL3 in GC. (b) Prognostic prediction of
METTL14 in GC. HR> 1 was shown to be negatively connected with prognosis, while HR< 1 was found to be positively correlated with
prognosis.
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Figure 5: GO function annotation on M3DEGs, M14DEGs, and M3M14DEGs. (a) Venn diagrams illustrating the overlaps between
M3DEGs and M14DEGs; (b)–(d) GO function annotation of M3DEGs, M14DEGs, and M3M14DEGs.
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Figure 6: Gene set enrichment analysis of METTL3 and METTL14. (a)–(c) GSEA results of METTL3; (d)–(f) GSEA results of METTL14.
NES: normalized enrichment score.
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Te fact that METTL3-mediated m6A modifcation on
PTEN andMETTL14-mediatedm6Amodifcation on PTEN
played opposite efects in GC remained obscure.

4. Discussion

In this study, we frst determined the expression of METTL3
andMETTL14 in GC. A comprehensive meta-analysis based
on 9 paired GEO datasets and 33 GC tissue samples validated
that METLL3 was signifcantly high expressed while the
expression of METTL14 showed no signifcant diference in
GC, which was consistent with the result of the TCGA
database. Survival analysis results showed that METTL3 was
a poor prognostic factor for GC patients while METTL14
had less prognostic value.

GO function annotation was also performed, and the
result showed that M3DEGs andM14DEGs both enriched in
32 GO terms, including regulation of mRNA processing,
RNA splicing, ncRNA processing, ribonucleoprotein com-
plex biogenesis, ncRNA metabolic process, regulation of
mRNA metabolic process, RNA metabolic process. It was
considered that METTL3 and METTL14 jointly participated
in multiple biological processes, implying the cooperative
role of METTL3 and METTL14 in m6A modifcation.

Target genes of METTL3 and METTL14 were predicted
in this study, and BCLAF1 was found. It was upregulated
and reported as an oncogene [46–48]. m6A site was detected
on the coding sequence (CDS) of BCLAF1 mRNA that
METTL3 and METTL14 could combine with [49], and
BCLAF1 revealed a strong positive correlation with
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Figure 7: Exploration of METTL3 and METTL14 targets. (a) Venn diagrams that depicted the overlaps between METTL3 targets and
METTL14 targets; (b) the expression of BCLAF1 in TCGA-STAD and GC cell lines; (c) the correlation analysis of METTL3 and BCLAF1,
andMETTL14 and BCLAF1 in GC; (d) the expression ofMETTL3,METTL14 in GC cells; (e) the validation of transfection efciency by RT-
qPCR; (f ) the expression of METTL3 and METTL14 in METTL3-kd and METTL14-oe cell models.
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METTL3 andMETTL14. In our cell transfection models, the
mRNA expression and the protein level of BCLAF1 were
decreased after METTL3 knockdown and were upregulated
after overexpressing METTL14. Taken together, we in-
dicated that METTL3 and METTL14 jointly mediated m6A
modifcation on BCLAF1 and promoted its mRNA ex-
pression (Figure 9(a)).

On the other hand, GSEA results demonstrated that
M3DEGs and M14DEGs took part in diferent oncogenic
pathways in the GC process, hinting that METTL3 or
METTL14 might mediate m6A methylation on diferent
target RNAs independently. PTEN was one of the classical
tumor suppressors in the GC process, and the m6A mod-
ifcation on PTEN was deeply discussed. It was reported that
METTL3 facilitated m6A-YTHDF2-dependent PTEN
mRNA degradation while METTL14-mediated m6A mod-
ifcation on PTEN enhanced its mRNA stability
(Figures 9(b) and 9(c)) [26, 45].

It was necessary to emphasize that the role of m6A
modifcation in all cancers had two sides. According to our
understanding, the biological function of m6A modifcation
on target RNA and cancer progress was a multistage process

and is determined by multiple factors (Figure 9(d)): frstly,
m6A writers and erasers determined the m6A level of target
RNA. Besides, the m6A level of target RNA and the m6A-
binding proteins “readers” combined on target RNA de-
termined its expression level. Finally, the own function and
downstream pathway target RNA also should be considered.

Combining the GSEA results previously, we hypothe-
sized that except for the synergistic efect of METTL3 and
METTL14 on m6A MTC, each of them could mediate m6A
nidifcation on target RNAs independently, and them6A site
could be identifed by diferent readers under certain con-
ditions. Terefore, the situation that METTL3-mediated
RNA modifcation and METTL14-mediated RNA modif-
cation played an opposite role in the expression of PTEN and
cancer progress could be explained.

While METTL3 and METTL14 both contained a meth-
yltransferase catalytic domain, current theories mainly
considered [20, 21] that METTL3 methylated m6A sites and
METTL14 stabilized METTL3 conformation, producing
m6A sites on target RNAs together. Our hypothesis needed
further experimental validation and proof of chemical
structure.
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Figure 8:Te expression validation of BCLAF1 and PTEN in transfection cell models. (a)TemRNA expression of BCLAF1inMETTL3-kd
and METTL14-oe cell models; (b) the protein validation of BCLAF1, METTL3, and METTL14 in METTL3-kd and METTL14-oe cell
models; (c) Venn diagrams that depicted the overlaps between METTL3-related articles and METTL14-related articles; the expression of
PTEN in GC cell lines; (d) the expression of PTEN in METTL3-kd and METTL14-oe cell models.
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5. Conclusion

In conclusion, the present study conducted a comprehen-
sive analysis of METTL3 and METTL14 in GC, including
their expression, function, and role in GC. BCLAF1 was
identifed as a shared target of METTL3 and METTL14.
Tis study provided a deeper insight into the function of
m6A modifcation in the cancer process and hoped it could
be benefcial to the mechanism exploration of m6A
modifcation.
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