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Background. 5-methylcytosine (m5C) is a major site of RNA methylation modifcation, and its abnormal modifcation is associated
with the development of gastric cancer (GC). Tis study aimed to explore the value of m5C-related genes on the prognosis of GC
patients through bioinformatics. Methods. First, m5C-related genes were obtained by nonnegative matrix factorization (NMF)
analysis and diferentially expressed analysis. Te m5C-related model was established and validated in distinct datasets. Moreover,
a diferential analysis of risk scores according to clinical characteristics was performed. Te enrichment analysis was carried out to
elucidate the underlying molecular mechanisms. Furthermore, we calculated the diferences in immunotherapy and chemotherapy
sensitivity between the high- and low-risk groups. Finally, we validated the expression levels of identifedmodel genes by quantitative
real-time polymerase chain reaction (qRT-PCR). Results. A total of fve m5C-related subtypes of GC patients in the TCGA database
were identifed. Te m5C-related model was constructed based on APOD, ASCL2, MFAP2, and CREB3L3. Functional enrichment
revealed that the m5C-related model might involve in the cell cycle and cell adhesion. Moreover, the high-risk group had a higher
abundance of stromal and immune cells inmalignant tumor tissues and a lower tumor purity than the low-risk group.Te patients in
the high-risk group were more sensitive to chemotherapy and had better sensitivity to CTLA4 inhibitors. Furthermore, qRT-PCR
results from our specimens verifed an over-expression of ASCL2, CREB3L3, and MFAP2 in the cancer cells compared with the
normal cells. Conclusion. A total of fve GC subtypes were identifed, and a risk model was constructed based on m5C modifcation.

1. Introduction

GC is the ffth most commonmalignancy worldwide and the
third leading cause of global cancer-related mortality [1, 2].
Although clinical and surgical conditions improved signif-
icantly, the 5-year survival rate for GC patients remains very
low, as more than 80% of patients are diagnosed at an
advanced stage [3, 4]. Now, surgical resection is still the most
efective treatment for early GC. Besides, chemotherapy,
radiotherapy, immunotherapy, and molecular targeted
therapy also play essential roles in the prognosis for GC
[5, 6]. However, the mechanism of GC progression and

metastasis is still unclear, and the prognosis leading to
metastasis, recurrence, and advanced GC is not yet satis-
factory.Terefore, it is urgent to study the mechanism of GC
progression to develop new therapeutic strategies.

RNAmodifcations, such as N6methyladenosine (m6A),
play a visible role in epigenetic gene regulation and cell
function and are closely related to many human diseases
such as cancer, neurological diseases, and immune disorders
[7–11]. As another important RNA modifcation, m5C has
attracted more and more attention, and like m6A, m5C has
its methyltransferase, demethylase, and binding proteins
[12]. Members of the NOP2/Sun domain family 1-7
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(NSUN1-7) and DNA methyltransferase (DNMT) homolog
DNMT2 act as m5C writers in mammals and catalyze
methylation at the C5 site of RNA [13, 14]. In contrast, TET2
oxidizes m5C to 5-hmC and then removes the methyl group
[15, 16]. Subsequently, the Aly/REF output factor (ALYREF)
and Y-box binding protein 1 (YBX1), which are charac-
terized by readers, recognize and bind the m5C motif and
then perform diferent biological functions [17, 18]. In
addition, these regulatory factors are known to be syner-
gistically involved in multiple tumor progressions with m5C
modifcation. Chen et al. [19] found TRDMT1, an RNA
methyltransferase known to methylate tRNA, is a writer of
RNA m5C at sites of DNA damage and contributes to the
resistance of cancer cells to radiotherapy and PARP in-
hibitors. Breast tumors expressing low levels of TRDMT1 are
more responsive to radiotherapy. Du et al. [20] analyzed the
clinical relevance of m5C regulators in pan-cancer. Liu et al.
[21] wrote that the RNAm5Cmodifcation and its regulators
have been shown to be involved in the progression of various
cancers, including hepatocellular carcinoma, bladder cancer,
glioblastoma multiforme, breast cancer, and head and neck
carcinoma, indicating that RNA m5C might play an im-
portant role in tumorigenesis and progression.

In the present study, the efect of m5C on the prognosis
of GC patients was explored by bioinformatics methods,
which identifed fve m5C-related subtypes and mined four
m5C-related genes as biomarkers, and based on the re-
lationship of the prognosis model, patient survival, thera-
pies, and the role of m5C in GC were demonstrated roundly.

2. Materials and Methods

2.1. Data Source. GC-related datasets were obtained from
Te Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/) and the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/gds). Te
TCGA-GC dataset contains 32 normal cases and 373 cancer
cases. Te 345 cancer samples that have complete survival
data were split into a training set (242 cases) and a testing set
(103 cases) according to a ratio of 7 : 3. Te t-test was used to
compare the diferent characteristics between patients in
training and testing sets. Te results are shown in Table 1.
Moreover, the GSE15459 dataset containing 192 cancer
cases was obtained from the GEO database as a validation
set. Te 13 m5C RNA regulators (NOP2, NSUN2, NSUN3,
NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, TRDMT1,
DNMT3A, DNMT3B, TET2, and ALYREF) were obtained
from the previous literature [22].

2.2. Identifcation of m5C-Related Subtypes. 373GC samples
from the TCGA database and the expression of 13m5C RNA
genes from the previous study were used for the nonnegative
matrix factorization (NMF) analysis (R language, Version
0.23.0) [23] to identify m5C-related subtypes for GC pa-
tients. Ten, overall survival (OS) and disease-specifc
survival (DSS) analyses of diferent subtypes were per-
formed to screen the two subtypes with the most signifcant
prognostic diferences.Tese two subtypes were then used in

subsequent analyses. Moreover, the clinical characteristics of
the two subtypes were analyzed, and the results were vi-
sualized by ggplot2 (R package, Version 3.3.5) [24]. Te
immune cell infltration of the two subtypes was calculated
using the ssGSEA algorithm in the GSVA (R package) based
on 24 immune cell types [25] and the MCPcounter algo-
rithm by immunedeconv (R package, Version 2.0.4) based
on 8 immune cell types and 2 stromal cell types.

2.3. Construction and Validation of an m5C-Related Model.
Te edgeR (R package) (Version 4.1) is used to perform
diferential expression analysis [26, 27]. P< 0.05 and |
log2FC|> 1 were considered as a diference. Te DEGs
between the two subtypes with the most signifcant difer-
ences were detected, and the DEGs between the GC samples
(n� 373) and para-cancerous samples (n� 32) in the TCGA
dataset were also screened. By overlapping DEGs selected
above, the DEm5CRGs were fnally screened. Ten, Cox
regression analyses and the LASSO algorithm were adopted
to construct the risk signature. Te threshold was P< 0.05.
Te risk score of each sample was calculated by the following
formula: risk score� h0(t)× exp (β1X1 + β2X2 + ... βnXn). Te
h0(t) was the baseline hazard function, and the β was the
regression coefcient. GC patients in the training set were
split into high- and low-risk groups based on the median risk
score. At last, R package Survminer and survival ROC were
used to plot the Kaplan–Meier (KM) and ROC curves to
evaluate the risk model in the training set, and then the
testing and validation sets were used to validate [28, 29].

2.4. Diferential Analysis of Risk Values in Clinical
Characteristics. Te stratifcation survival analysis was
performed to confrm whether the risk model could apply in
diferent clinicopathological characteristics (including age,
gender, radiotherapy, and chemotherapy). Meanwhile, the
clinicopathological data were involved in variance analysis
to investigate diferences between clinicopathological fea-
tures and risk values.

2.5. Construction of a Nomogram. Te risk score and clin-
icopathological data were merged into Cox regression an-
alyses to detect the independent prognosis factors. Ten, the
selected independent prognostic factors were integrated to
establish a nomogram. Furthermore, the calibration curves
and the decision curve analysis (DCA) were plotted to assess
the nomogram.

2.6. Diference Analysis andGSEA. Te DEGs between high-
and low-risk groups were detected by the “limma” package.
P< 0.05 and |log2FC|> 1 were considered as a diference. R
package clusterProfler (Version 4.0.2) was selected to
perform GO enrichment and KEGG pathway analyses on
these DEGs. Moreover, to further explore the related sig-
naling pathways and potential biological mechanisms, R
package clusterProfler (Version 3.18.1) [30] was adopted to
perform GSEA enrichment analysis. Te signifcance
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thresholds for GSEA were |NES|> 1, q< 0.25, and NOM
P< 0.05.

2.7. Analysis of Immunotherapy and Chemotherapy. Te
immune cell infltration situations of the sample are inferred
by the ESTIMATE and the CIBERSORT algorithms, and
diferences were analyzed between the high- and low-risk
groups from the training set [31]. Te tumor purity of the
two groups was assessed using ABSOLUTE software. Te
expression of targeted immune checkpoints and the sensi-
tivity to immunotherapy were analyzed in the two groups,
and the prediction of susceptibility to PD-1 and CTLA4
inhibitors was analyzed in the two groups using the SubMap
algorithm. We used oncoPredict (Version 0.2) in R language
to analyze the sensitivity of commonly used chemotherapy
drugs of GC samples [32].

2.8. Expression Validation of Prognostic lncRNAs. GC cell
lines (MKN-27, MKN-45, and SMU-1) and human im-
mortalized normal gastric cells CES-1 were obtained from
CyberKang (Shanghai) Biotechnology Co., Ltd. and main-
tained in complete RPMI-1640 and DMEM medium
(Welgene, Inc., Gyeongsan-si, Korea) at 37°C in a humidifed
5% CO2 incubator. Te prognostic gene expression levels
were vilifed by qRT-PCR. All cells were lysed with the
TRIzol Reagent (cat.:356281), and total RNA was isolated.

Te RNA was reverse-transcribed to cDNA using the Script
RT I First strand cDNA SynthesisAll-in-OneTMFirst-Strand
cDNA Synthesis Kit (cat: G33330-50) before qRT-PCR. PCR
was conducted in a BIO-RAD CFX96 Touch TM PCR de-
tection system (Bio-Rad Laboratories, Inc., USA). Te de-
tailed forward and reverse primers are shown in
supplementary table 1. All primers were synthesized by
Servicebio (Servicebio, Wuhan, China). Te experiment was
repeated in triplicate on independent occasions.

2.9. Statistical analyses. Te Wilcoxon test was used to
perform a diferent comparison between the two groups.
Associations between risk scores and gene function or re-
lated pathways were calculated by Pearson correlation.

3. Results

3.1. Identifcation of m5C-Related Subtypes. NMF analysis
fnally identifed fve m5C-related subtypes (Figures S1 and
1(a)). OS and DSS analyses showed that survival diferences
between group3 and group4 were the most signifcant
(P< 0.05; Figure S2). Te distribution features of the clinical
characteristics and the infltration of immune cell types in
group3 and group4 are shown (Figures 1(b) and 1(c)). Te
two groups were quite diferent in 5-cell concentrations
(Figure 1(d)). Nine 5mC genes were signifcantly diferent
between them (Figure 1(e)).

Table 1: Characteristics of patients in the training set and the testing set from the TCGA-GC cohort.

Characteristics n Training set Testing set P value
Total cases 148 102 46
Age
≤60 65 43 22
>60 83 59 24 0.074

Metastasis
M0 139 96 43
M1 9 6 3 0.627

Node
N0 30 20 10
N1 46 31 15
N2 32 23 9
N3 40 28 12 0.00 

Stage grouping
Stage I 7 4 3
Stage II 49 32 17
Stage III 77 56 21
Stage IV 15 10 5 0.310

Tumor
T1 1 1 0
T2 27 16 11
T3 80 60 20
T4 40 25 15 0.330

Treatment type
Pharmaceutical therapy 86 58 28
Radiation and pharmaceutical therapy 61 44 17
Radiation therapy 1 0 1 0.385

Gender
Female 51 35 16
Male 97 67 30 0.250

Statistical signifcance is shown in bold.
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Figure 1: Continued.
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3.2. Construction and Validation of an m5C-Related Model.
In group3 and group4, 377 DEGs (245 up, 132 down) were
identifed (Figure 2(a)). In contrast, a total of 1196 DEGs
(748 up and 448 down) were identifed from normal and GC
samples (in the TCGA dataset) (Figures 2(b)–2(d)). Finally,
102 DEm5CRGs were extracted from the intersection
(Figure 2(e)). Cox regression (univariate) analysis showed
that 8 DEm5CRGs were related to OS (P< 0.05; Table 2).
Subsequently, a model involving 4 DEm5CRGs (APOD,
ASCL2, MFAP2, CREB3L3) was constructed by LASSO and
Cox regression (multivariable) analysis (Table 3 and
Figure 2(f )). Ten, the risk score of each sample was cal-
culated with the following equation: risk
score � 0.0807× expAPOD+ (0.1439)× expASCL2 + 0.1296
× expMFAP2 + 0.1091 × expCREB3L3, and the samples
were grouped according to the median risk score. Te high
scores patients had a shorter OS (Figure 2(g)). Te AUCs
were 0.628, 0.695, and 0.641 (1, 3, and 5 years) (Figure 2(h)).
Te results showed that MFAP2, APOD, and CREB3L3
were highly expressed in the high score group, while ASCL2
was low. Similarly, the 103GC (testing set) cases were split
into high- (n� 52) and low-score (n � 51) groups, and the
192GC cases (validation set) were split into high- (n� 96)
and low-score (n � 96) groups. Results are consistent with
the training set (Figures S(3a) and (3b)). Te AUCs of the
testing set were 0.670, 0.658, and 0.869 (1, 3, 5-year)
(Figure S3(c)), and the AUCs of the validating set were
0.627, 0.671, and 0.700 (for 1, 3, 5-year OS) (Figure S3(d)).

Te risk scores, patient survival status, survival time, and
gene expression pattern are shown in Figures S4(a)–S4(c).

3.3. Diferential Analysis of Risk Values. To implore the
clinicopathological characteristics and the survival of
cases in the two groups, a hierarchical analysis of the km
curve in the TCGA cases was performed. High score
patients younger than 60 years old or whose pathological
stage were T3 or T4 had a worse prognosis (Figure 3).
Diferences analysis between clinicopathological features
and risk values showed that M0 and M1 and Stage II,
Stage III, and Stage IV had signifcant diferences
(Figure S5).

3.4. Construction of a Nomogram. Score and treatment type
were associated with GC cases prognosis and were the factor
that were independent prognostic (Figures 4(a) and 4(b)).
Ten, the nomogram model was constructed to predict the
survival of GC patients (Figure 4(c)). Te calibration curves
(C-index� 0.6547) and DCA curves of the nomogram were
also plotted (Figures 4(d) and 4(e)).

3.5. Diference Analysis and GSEA. A total of 151 DEGs (139
up and 12 down) were identifed (Figures 5(a) and 5(b)).

Te main enriched cellular functions and KEGG path-
way of DEGs between high- and low-risk groups are ex-
tracellular matrix organization, complement and
coagulation cascades, ECM-receptor interaction, and so on
(Figures 5(c) and 5(d)).

Te results of GSEA analysis showed that the expression
of focal adhesion, etc. were up-regulated (Figures 5(e) and
5(f )).
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3.6. Analysis of Immunotherapy and Chemotherapy. Te
stromal score, the immune score, and the ESTIMATE
composite score were obtained, and there were diferences in
the ESTIMATE composite score and the stromal score
between high- and low-risk groups (Figure 6(a); P< 0.0001).
Te high-risk group has lower tumor purity (Figure 6(b)).
Tere are eight immune cell (macrophages M1, mast cells
resting, etc.) abundances that difer between high- and low-
risk groups (Figure 6(c)). Te results of the correlation
analysis between the risk score and immune cell abundance

suggest that the abundance of monocytes, mast cells resting,
and T cells CD4 memory resting was positively correlated
with a risk score and the abundance of NK cells resting,
T cells follicular helper, and T cells CD4 memory activated
was negatively correlated with the risk score (Figure 6(d)).

Te immune checkpoint PD-L1 expression levels dif-
fered signifcantly between high- and low-risk groups
(Figure 7(a)). Te expression of routine immune check-
points in high- and low-risk groups is shown in supple-
mentary table 2. Te high-risk group was more sensitive to
the overall immune checkpoint and had better sensitivity to
CTLA4 inhibitors (Figure 7(b)).

Among 198 commonly used drugs for the treatment of
GC, 182 species showed signifcant diferences between
high- and low-risk groups, and most high-risk groups were
more sensitive to these drugs than low-risk groups
(Figure 7(c)).

3.7. Expression Validation of Prognostic lncRNAs. Te qRT-
PCR results from our specimens verifed an over-expression
of ASCL2, CREB3L3, and MFAP2 in GC cells compared
with the human immortalized normal gastric cells
(Figure 8).

4. Discussion

It is well known that GC is one of the leading causes of
cancer-related deaths globally [33]. Although signifcant
advancements in the treatments for GC have been acquired
in recent years, the overall prognosis of GC patients is still
poor [34]. m5C, in which the methyl group is attached to the
ffth position of the cytosine ring, is catalyzed by RNA
methyltransferase. m5C modifcation has also been closely
related to cancer progression [35]. Meanwhile, bio-
informatic studies have shown that m5C regulators could be
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Figure 2: Construction of an m5C-related risk model. (a) Te volcano map of DEGs of two subtypes of survival diferences in GC. Te
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Table 2: Cox regression (univariate) analysis 8 DEm5CRGs related
to OS (P< 0.05).

Variable HR Lower 95% CI Upper 95% CI P value
APOD 1.1320 1.0342 1.2390 0.007148
GAMT 1.2210 1.0477 1.4229 0.010569
FKBP10 1.1510 1.0105 1.3111 0.034305
ASCL2 0.8947 0.8045 0.9949 0.039988
MFAP2 1.1789 1.0068 1.3804 0.040913
CREB3L3 1.1468 1.0051 1.3085 0.041760
PLEKHS1 0.8649 0.7516 0.9954 0.042918
AGT 1.1425 1.0013 1.3036 0.047765
CI: confdence interval.

Table 3: Cox regression (multivariable) analysis 4 DEm5CRGs as
biomarkers.

Variable coef HR Lower 95%
CI

Upper 95%
CI P value

ASCL2 −0.1439 0.8659 0.7746 0.968 0.01136
APOD 0.0807 1.0840 0.9808 1.198 0.11401
CREB3L3 0.1091 1.1153 0.9691 1.284 0.12800
MFAP2 0.1296 1.1384 0.9601 1.350 0.13573
CI: confdence interval.
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used as a prognostic factor for lung adenocarcinoma
(LUAD), head and neck squamous cell carcinoma
(NHSCC), and hepatocellular carcinoma (HCC) [36–38].

With the development of molecular biology and clinical
treatment with precision therapy, researchers have been
exploring new prognostic markers of GC at the molecular
level. Zhu et al. [3] revealed the expression, prognostic value,
potential functional networks, protein interactions, and
immune infltration of MTFR2 (mitochondrial fssion reg-
ulator 2) in GC, concluding that MTFR2 may be a potential
prognostic marker and therapeutic target for GC patients.
Zhu et al. [34] explored the association between VEGFR-2
and the prognosis of GC. Tey showed that the high ex-
pression of VEGFR-2 as well as the VEGFR-2 rs1870377
A>T genetic polymorphism may be prognostic factors for
patients with resected GC. Zu et al. [39] considered that the

preoperative prealbumin level was an independent prog-
nostic factor for GC patients, and it is essential to predict the
prognosis of patients with GC. Here, we established
a prognosis model for GC based on fve m5C-related sub-
types and four DEm5CRGs (APOD, ASCL2, MFAP2, and
CREB3L3) as biomarkers, employing 405 GC samples about
second-generation sequencing data, clinical information,
and copy gene variation information from the TCGA da-
tabase, and at last, verifying the four biomarkers in GC cells
compared with the human immortalized normal gastric cells
by the RT-qPCR method, which is usually missing in bio-
informatic analysis.

Te four m5C-related genes based on 2 m5C-related
subtypes afect the occurrence and development of cancer.
Firstly, APOD (apolipoprotein D) is a lipocalin that par-
ticipates in various cellular processes, including
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cytoprotection, and is a biomarker positively correlated with
the prognosis of breast and prostate cancer [40]. APOD was
also reported to be the prognostic factor of GC. Patients with
high expression of APOD might have a shorter OS time,
correlating with worse prognosis [41]. Second, ASCL2
(Achaete-scute homolog 2) is an essential helix-loop-helix
transcription factor and a cancer stem cell marker, and
specifc reports have revealed that ASCL2 promotes cell
proliferation and migration in colon cancer [42, 43]. In the
meantime, ASCL2 also serves an essential role in the growth
of GC. It was able to downregulate the expression level of
miR223, contribute to EMT (the epithelial-mesenchymal
transition), and promote gastric tumor metastasis, which
indicated that ASCL2 might serve as a therapeutic target in
the treatment of GC [44]. Tird, MFAP2 (microfbril-
associated protein 2) plays a vital role in the regulation of the
integrin signal pathway in cancer cell-ECM (extracellular
matrix) interaction. Te intracellular form of MFAP2 can

induce the transcription of integrin α4 in human osteo-
sarcoma cell line SAOS-2 in vascular development [45].
Scholars also validated that MFAP2 was up-regulated in GC
tissue, and it was implicated in themalignant behavior of GC
cells, such as proliferation, migration, and invasion [46].Te
fourth biomarker is CREB3L3, a member of the basic leucine
zipper family and the AMP-dependent transcription factor
family. It can link to acute infammatory response and
hepatocellular carcinoma [47]. Dewaele et al. illustrated that
EWSR1-CREB3L3 gene fusion is associated with a mesen-
teric sclerosing epithelioid fbrosarcoma [48]. In GC,
CREB3L3 is related to the OS derived from univariate and
multivariate Cox regression analysis and is highly expressed
in cancer tissues [49]. In a word, the four biomarkers can
afect the occurrence and development of cancer in various
degrees, including GC, and the guiding signifcance is great
to analyze the relationship between the prognosis model and
the survival of GC patients.
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Moreover, GO and KEGG function analysis indicated
that DEGs among the four gene biomarkers were closely
correlated with biological processes and signaling pathways,
such as ECM organization, extracellular structure organi-
zation, external encapsulating structure organization,
complement and coagulation cascades, vascular smooth
muscle contraction, and focal adhesion.

Te m5C locus has been reported to be involved in
a variety of biological processes, including structural stability
and metabolism of RNA, tRNA recognition, and stress re-
sponse [8]. A recent study has shown that in human uro-
thelial cell carcinoma of the bladder, m5C regulators bound
to the 3′UTR of oncogene mRNA, stabilizing its expression,
thereby promoting cancer progression [50]. Yang et al. [17]
found that NSUN2 (NOP2/Sun domain family, member 2;
MYC-induced SUN domain-containing protein, Misu) was
the main enzyme catalyzing m5C formation, while the Aly/
REF export factor (ALYREF, an mRNA transport adaptor,
also named THOC4) functioned as a specifc mRNA m5C-
binding protein regulating mRNA export. In addition,
p57Kip2 was an important downstream gene regulated by

NSUN2 in GC. p57Kip2 is the recently found CDK inhibitor
of the Cip/Kip family and has been involved in many bi-
ological processes, including cell cycle control, diferentia-
tion, apoptosis, tumorigenesis, and development, which is in
accordance with GO terms and KEGG pathways of 4 m5C-
related genes [51, 52]. Previous studies found that the ex-
pression level of NSUN2 was negatively correlated with
p57Kip2, and the ability of NSUN2 to knockdown cells
proliferation was enhanced after p57Kip2 silencing in GC. It
revealed another regulatory mechanism that NSUN2 plays
an oncogenic role by repressing p57Kip2 expression in GC.
Te cause may be NSUN2 destabilizing the p57Kip2 mRNA
relying on its methyltransferase activity and m5C modif-
cations in the 3′-untranslated region (UTR) of p57Kip2
mRNA [53].

It has been reported that m5C modifcation is involved in
immunemicroenvironment regulation, and the tumor immune
microenvironment plays a role in the efect of m5C regulators
on patient prognosis [54]. ALYREF, the Aly/REF nuclear export
factor, functions as an m5C reader; its expression levels were
signifcantly associated with immune infltrating cells, such as
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B cells, macrophages, NK cells, and dendritic cells [55]. In an
eight-lncRNAm5C-related prognostic signature, monocytes,
memory B cells, activated mast cells, and näıve CD4 T cells
presented a signifcant diferences in high- and low-risk groups
[56]. In the present study, signifcant diferences existed in 5
types immune infltrating cells obtained by the MCP counter
algorithm, including NK cells, monocytic lineage, myeloid
dendritic cells, cytotoxic lymphocytes, and neutrophils, which
have similarities with previous studies.

5. Conclusion

Four DEm5CRGs were identifed as biomarkers of the prog-
nostic model in GC using three cohort profle datasets and
integrated bioinformatics analysis. Te expression pattern and
prognostic value of m5C genes in GC were determined, and
a novel m5C gene-based risk scoring system was established to
predict the clinical outcomes of GC patients. It was found that
m5C genes can reliably predict theOS of GCpatients, providing
a new target for the treatment of GC. However, to provide
patients with a better prognosis and fnd the ideal individualized
and targeted therapy, further prospective trials to test clinical
efcacy are necessary.
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