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Background. Cluster of diferentiation 86 (CD86), also known as B7-2, is a molecule expressed on antigen-presenting cells that
provides the costimulatory signals required for T cell activation and survival. CD86 binds to two ligands on the surface of T cells:
the antigen CD28 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). By binding to CD28, CD86—together with
CD80—promotes the participation of T cells in the antigen presentation process. However, the interrelationships among CD86,
immunotherapy, and immune infltration in acute myeloid leukemia (AML) are unclear. Methods. Te immunological efects of
CD86 in various cancers (including on chemokines, immunostimulators, MHC, and receptors) were evaluated through a pan-
cancer analysis using TCGA and GEO databases. Te relationship between CD86 expression and mononucleotide variation, gene
copy number variation, methylation, immune checkpoint blockers (ICBs), and T-cell infammation score in AML was sub-
sequently examined. ESTIMATE and limma packages were used to identify genes at the intersection of CD86 with StromalScore
and ImmuneScore. Subsequently, GO/KEGG and PPI network analyses were performed.Te immune risk score (IRS) model was
constructed, and the validation set was used for verifcation. Te predictive value was compared with the TIDE score. Results.
CD86 was overexpressed in many cancers, and its overexpression was associated with a poor prognosis. CD86 expression was
positively correlated with the expression of CTLA4, PDCD1LG2, IDO1, HAVCR2, and other genes and negatively correlated with
CD86methylation.Te expression of CD86 in AML cell lines was detected by QRT-PCR andWestern blot, and the results showed
that CD86was overexpressed in AML cell lines. Immune infltration assays showed that CD86 expression was positively correlated
with CD8 T cell, Dendritic cell, macrophage, NK cell, and T1_cell and also with immune examination site, immune regulation,
immunotherapy response, and TIICs. ssGSEA showed that CD86 was enriched in immune-related pathways, and CD86 ex-
pression was correlated with mutations in the genes RB1, ERBB2, and FANCC, which are associated with responses to ra-
diotherapy and chemotherapy. Te IRS score performed better than the TIDE website score. Conclusion. CD86 appears to
participate in immune invasion in AML and is an important player in the tumor microenvironment in this malignancy. At the
same time, the IRS score developed by us has a good efect and may provide some support for the diagnosis of AML. Tus, CD86
may serve as a potential target for AML immunotherapy.

1. Introduction

Acute myeloid leukemia (AML) is a common hematological
disease characterized by the clonal proliferation, abnormal
diferentiation, and cell death evasion of bone-marrow-

derived hematopoietic stem and progenitor cells [1]. Tese
cells proliferate in the peripheral blood and infltrate the
bone marrow. Te tumor microenvironment in AML is
characterized by immunosuppression, which promotes
immune tolerance and the immune escape of malignant cells
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[2]. Te main components of the AML bone marrow mi-
croenvironment (BMM) include Tcells, B cells, and NK cells
[3]. Te immune imbalance of T helper cells (T cells) is
a major contributor to the sudden progression of AML [4].

T-cell-mediated cellular immunity is primarily achieved
by the specifc binding of antigen peptides to the major
histocompatibility complex (MHC) (frst signal) and the
binding of costimulatory molecules located on the surface of
antigen-presenting cells (APCs) to their receptors (second
signal) [5]. Te absence of costimulatory molecules leads to
immune unresponsiveness, which promotes tumor escape in
AML. Owing to advancements in research, immunother-
apies that retarget efector cells (T cells, NK cells) have been
developed, and these have become the key for AML treat-
ment [6]. Typically, tumors suppress the immune system,
resulting in the impairment of T-cell function. Te goal of
immunotherapy is to eliminate this impairment. Studies
have shown that vaccines for AML/dendritic cell fusion can
amplify T-cell populations and prevent AML recurrence [7].
Terefore, efective immunotherapy approaches that target
specifc proteins are the key to AML treatment.

B7-2, better known as CD86, is a member of the B7
family [8]. CD28 and cytotoxic T lymphocyte antigen 4
(CTL1-4) are regulated. CD86 can bind to CD28, leading to
signal production and the recognition of antigenic peptides
by T-cell receptors (TCRs), which leads to T-cell pro-
liferation and IL-2 production [9]. CD86 has been reported
to be overexpressed in samples from AML patients [10].
CD86 is a marker for monocytes and dendritic cells and is
involved in the progression of AML [11]. Improvements in
sequencing technology have promoted extensive research on
molecular networks using gene sequencing data from public
databases [12]. However, the correlation between CD86 and
immunomodulators (chemokines, receptors, and MHC
proteins), immunotherapy results, and immune checkpoint
proteins in AML has not been reported. Terefore, it is very
important to explore the associations among CD86-related
molecules, immune infltration, and immunotherapy.

2. Methods

2.1. Data. Te Cancer Genome Atlas (TCGA) data: Pan-
carcinoma (33 species) RNA sequencing (RNA-SEQ) data
(FPKM values) were downloaded from the UCSC Xena data
portal (https://xenabrowser.net/). Tey were converted to
TPM format, and somatic mutation data and survival in-
formation were downloaded. Log2 transformation was
performed on the RNA-SEQ data, and somatic mutation
data were analyzed using MuTect. Copy number variation
(CNV) data processed using GISTIC were downloaded from
the UCSC Xena data portal. Further, the methylation data
were downloaded from the LinkedOmics data portal.

Ten, information was obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) LAML GEO queue,
which contains detailed survival data. Te information in-
cluding data from the GSE10358, GSE37642 (including data
from the GPL570 and GPL96 platforms), GSE146173,
GSE106291, and GSE12417 databases (including data from
the GPL97 and GPL96 platforms). Te sample data for

leukemia was retained. Further, three GEO databases con-
taining information on responses to immunotherapy were
downloaded: GSE78220 (melanoma), GSE135222 (non-
small-cell lung cancer), and GSE91061 (melanoma).
Moreover, complete expression data and detailed clinical
information of patients from the IMvigor210 study (AML
immunotherapy-related data) were obtained from https://
research-pub.Gene.com/imvigor210corebiologies/under the
3.0 license.

2.2. Diferential Gene Analysis. Te R limma package was
used to flter out immune-related genes (IRGs) (https://
Bioconductor.org/packages/limma/). Te diferentially
expressed genes (DEGs) were identifed based on a cutof
value of false detection rate (FDR)< 0.05 and Log2 |fold
change|> 1. Te diferentially expressed IRGs were then
extracted from the list of all DEGs.

2.3. Analysis of Immunological Characteristics of AML.
First, using the web portal TISIDB (https://cis.hku.hk/
TISIDB) [13], genes related to the immune response, in-
cluding those encoding immune stimulants, MHC proteins,
immune receptors, and chemokines, were identifed.
‘ggplot2’ in R software was used for visualization, and the R
package ‘Corrlot’ was used to calculate the Spearman cor-
relation coefcients between the expression of CD86 and
that of the abovementioned genes. In order to calculate the
correlation between CD86 expression and that of various
oncogenes expressed in the tumor microenvironment,
single-sample gene enrichment analysis (ssGSEA) was
performed and the correlation between CD86 and immune
cell scores was calculated. Te association of CD86 with
immune risk scores (IRSs) and the infammatory coefcient
of T cells was calculated using the generalized T-cell in-
fammation score formula [14].

Ten R package ‘limma’ was used to analyze the dif-
ferences in the expression of chemokines, immunostimu-
lators, MHC proteins, and immune receptors based on high
vs. low CD86 expression. CIBERSORT, MCPcounter,
TIMER, Quantiseq, and Xcell were used to examine the
immune-infltrating cells in AML. Te correlation between
CD86 and common immune checkpoint blockers (ICBs) was
calculated. Further, StromalScore and ImmuneScore were
calculated for AML samples using the R package ‘ESTI-
MATE.’ ‘Limma was used to identify the DEGs in the high
vs. low CD86 expression, StromalScore, and ImmuneScore
groups. Ten, ‘ggplot2’ was used to draw volcano maps and
heat maps of the DEGs. A total of 308 up-regulated genes
and 16 down-regulated genes were identifed through this
analysis.

2.4. Immune Risk Score (IRS) Calculation. IRSs were cal-
culated based on the time of patient enrollment. Te 324
DEGs were randomly sampled from TCGA to establish the
training and validation sets at a 1 :1 ratio. Te R package
‘SurvMiner’ was used to conduct univariate Cox regression
analysis for the DEGs, and the optimal characteristic genes
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were identifed according to the Least Absolute Shrinkage
and Selection Operator (LASSO) method. Multivariate Cox
regression analysis was performed, and based on the median
IRS, the sample was divided into groups. Te Kaplan–Meier
method was used to compare survival outcomes between
these groups. Univariate Cox analysis was used to screen
PRGs with a prognostic value. Te P value threshold for
signifcance was set at 0.05, and 17 survival-related genes
were selected for further analysis. LASSO-penalized Cox
regression analysis and GLMNET R software package were
used to establish a prognostic model to reduce overftting.
Finally, six genes and their coefcients were retained to
determine the penalty parameter (λ) with the minimum
criterion. Te risk score was obtained using the formula
IRS� 

n
i�1 β∗xi, where β� the regression coefcient. AML

patients were divided into two groups: high-risk group and
low-risk group. Te ‘SurvMiner’ R software package was
used to compare survival status between the two risk groups,
and ‘Survival’ and ‘timeROC R software packages were used
for receiver operating characteristic (ROC) curve analysis. In
addition, univariate and multivariate Cox regressions were
used to determine the independent prognostic value of the
three genes. To verify the validity of the model, analyses were
performed using data from the GEO internal test queue or
ICGC external validation queue. Median risk scores were
obtained using the GEO training cohort, whereas patients in
the GEO test cohort were divided into low- and high-risk
groups.

2.5.GO,KEGGandPPIAnalysis. Based on CD86 expression,
StromalScore, and ImmuneScore, the patients were divided
into two groups. Using the limma package and subsequent
fltering based on a |Log2FC|≥ 1 and FDR< 0.05, DEGs were
identifed in the high vs. lowCD86 expression, StromalScore,
and ImmuneScore groups. Te ‘cluster analyzer’ R package
was used for Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis. Normalized P

values< 0.05 and an FDR q< 0.05 were considered statis-
tically signifcant.

PPI analysis was performed for the 324 DERs using
STRING, Cytoscape was used for visualization, and the
MCODE plug-in was used to identify critical clusters.

2.6. Cell Culture. Myelodysplastic SKM-1 cells and human
myeloid leukemia OCI-AML2, SH-1, KU812, MEG01, and
K562 cells were purchased from the Shanghai Cell Bank,
Chinese Academy of Sciences. SKM-1 cells were cultured in
DMEM high-glucose medium (Gibco), and OCI-AML2,
SH-1, HL-60, MEG01, and K562 cells were cultured in
IMDMmedium (Gibco). All media were supplemented with
10% fetal bovine serum (Biological Industries) and 1%
cyanin-streptomycin (Biosharp). All cells were cultured at
37.5°C in a 5% CO2 incubator.

2.7. Total RNA Extraction and RT-PCR. Te TRIzol reagent
(Invitrogen) was used to extract total RNA from cells after
treatment. Te Prime Script RT Master Mix kit (TaKaRa)

was used to reverse transcribe the extracted RNA into
cDNA. Subsequent RT-PCR was performed based on the
manufacturer’s instructions of the amplifcation kit. PCR
primers: CD86: R: 5′-CTGCTCATCTATACACGGTTACC-
3′; F: 5′-GGAAACGTCGTACAGTTCTGTG-3′; GAPDH :
R: 5′-AGAAGGCTGGGGCTCATTTG-3′, F: 5′-AGGGG
CCATCCACAGTCTTC-3′.

2.8. Western Blot Assay. After cell digestion and centrifu-
gation, RIPA lysis bufer (Beyotime Biotech) was added, and
the cells were lysed on ice for 30min. Ten, cells were
centrifuged at 12000 rpm for 30min. Te supernatant was
removed, and protein levels were quantifed using the BCA
kit (Beyotime Biotech). Te proteins were separated using
SDS-PAGE and electrotransferred to PVDF membranes.
Te CD86 primary antibody (Proteintech) was incubated
overnight at 4°C after 2 hours of rapid blocking solution
(BSA; Beyotime Biotech). On the following day, the cor-
responding secondary antibody was added. Protein bands
were detected using the ECL exposure solution.

2.9. Statistical Analysis. Data were plotted using R package
(V 4.0.0). Te T test and Utest were used to compare variables
between two groups. Categorical variables were evaluated using
the Chi-square test. Pearson and Spearman coefcients were
used for correlation analysis. Te Kaplan–Meier method was
used to plot survival outcomes, and the logarithmic rank sum
test was used to analyze statistical diferences. P< 0.05 was
considered statistically signifcant.

3. Results

3.1. CD86 IsOverexpressed inManyCancers and Is Associated
with the Prognosis and Immune Response of AML. Using
TCGA data on the expression profles of 33 cancers, CD86
expression was examined. Te fndings showed that CD86
was highly expressed in most of the cancers, such as breast
cancer, cholangiocarcinoma, colorectal cancer, esophageal
cancer, glioma, renal clear cell carcinoma, renal papillary cell
carcinoma, lung adenocarcinoma, lung squamous cell car-
cinoma, pancreatic cancer, rectal adenocarcinoma, gastric
cancer, thyroid cancer, and endometrial cancer (Supple-
mentary Figure 1). CD86 was also overexpressed in AML
(Supplementary Figure 1). Ten, based on the median ex-
pression value of CD86, patients were divided into high- and
low-expression groups.

Kaplan–Meier analysis was performed to examine high
vs. low CD86 expression in various cancers using TCGA
data, and log-rank tests were used for survival analyses. Te
results showed that lowCD86 expression was associated with
bladder urothelial carcinoma, cervical squamous cell car-
cinoma, and endocervical adenocarcinoma. In AML, low
expression of CD86 had a statistically signifcant better
prognosis (Supplementary Figure 2). Te results of uni-
variate Cox regression analysis were then used to create
a forest map, which showed that CD86 expression was
statistically signifcant in various cancers (Supplementary
Figure 3A). Subsequently, using the TISIDB website
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established by Ru et al., four gene sets—chemokines,
immunostimulators, MHC proteins, and receptors—were
downloaded (Supplementary Table 1). Spearman correlation
coefcients were used to analyze the association between
CD86 and these four gene sets in diferent cancer types
(Figure 1(a)). Subsequently, the correlation between key pan-
carcinoma molecules (including CTLA4, PDCD1LG2, IDO1,
and HAVCR2) and CD86 was calculated. Tese genes were
found to be positively correlated with CD86 in AML
(Figures 1(b)–1(d)). ssGSEA method was then used to
evaluate the scores of 28 immune cell types in diferent cancer
types, and then calculated the correlation between CD86 and
them.Te results showed thatCD86 expression was positively
correlated with 28 types of immune cells (Figure 1(f)).

3.2. Single Nucleotide Variation (SNV), Gene Copy Number
Variation (CNV), andMethylation Analysis of CD86 in AML.
Site mutations are a key pathogenic factor causing abnormal
proliferation in AML. To investigate whether CD86 is
mutated in AML, SNV, and gene CNV data for AML were
analyzed. Te results showed that CD86 was not mutated in
AML. Te AML samples were divided into two groups
according to a CD86-expression-based cutof. Te group
with high CD86 expression had a higher risk, indicating that
the high CD86 level was a risk factor for leukemia (Fig-
ure 2(a)). Ten, the 10 genes with the highest mutation
frequencies in the high- vs. low-expression groups were
plotted. Accordingly, we found that DNMT3A, FLT3,
NPM1, IDH2, and other genes had a relatively high mutation
frequency in the low expression group (Figure 2(b)). Dif-
ferences in tumor mutation load (TMB) were examined in
the CD86 high- vs. low-expression groups, but the results
revealed no signifcant diferences (Figure 2(c)). Te am-
plifcation and deletion of CD86 was examined. However,
most samples showed no copy number changes in the CD86
gene (Figure 2(d)). Te expression of the CD86 gene was
compared across diferent groups. Meanwhile, the correla-
tion between the expression of CD86 and the degree of
methylation was calculated and plotted. CD86 expression
showed a signifcant negative correlation with CD86
methylation (Figure 2(e)). All previous experiments were
conducted using public databases. To validate whether CD86
is associated with AML, we examined CD86 expression
in vitro. QRT-PCR and Western blot were used to detect
CD86 expression in SKM-1 (myelodysplastic syndrome),
OCI-AML2 (human myeloid leukemia cell), SH-1 (human
myeloid leukemia cell), HL-60 (human myeloid leukemia
cell), MEG01 (human megakaryoblastic leukemia cell), and
K562 cells (human myeloid leukemia cell). Te results
showed that CD86 was overexpressed in OCI-AML2, THP-
1, SH-1, and K652 cells (Figures 2(f) and 2(g)). Tese results
demonstrated that while CD86 was not mutated in AML and
was not related to the TMB, the degree of CD86methylation
decreased with an increase in CD86 expression.

3.3. Immune Status of CD86High- vs. Low-Expression Groups
in AML. To further understand the association between
CD86 expression and immunoassay sites in AML, the

diferences in chemokine, immunostimulator, MHC pro-
tein, and immune receptor expression were compared be-
tween the high vs. low CD86 expression groups
(Supplementary Table 2). A heat map was drawn to rep-
resent the DEGs (Figure 3(a)).Te distribution of 28 types of
immune cells in the high vs. low CD86 expression groups
was analyzed. Te results showed that for 24 types of im-
mune cells, the group with the high expression of CD86 had
a higher immune score (Figure 3(b)). To further understand
the correlation between CD86 expression and tumor-
infltrating immune cells (TIICs) in AML, CIBERSORT,
MCPcounter, TIMER, Quantiseq, and Xcell were used.
Immune infltration analysis was performed, and correlation
between CD86 expression and immune scores was calcu-
lated. Further, given that CD8+ T cell recruitment and
dendritic cell, macrophage, NK cell, and T1 activation are
required during the migration of immune cells to tumors,
the marker genes of these cell types were analyzed in the
CD86 high- vs. low-expression groups (Supplementary
Table 3). Te heat map is shown in Figure 3(c). In addition,
the correlation between CD86 and immune checkpoints was
calculated. Te results indicated that CD86 was positively
correlated with these aforementioned immunoassay sites
(Figure 3(d)).

3.4. CD86 Is Associated with Immune Checkpoint Blockers
(ICBs) in AML. Immune checkpoint blockers (ICBs) are the
key to enhancing the body’s endogenous anti-tumor im-
mune efect. It is critical to fnd markers that predict the
clinical efcacy of ICBs. Te correlation between CD86
expression and the infammatory scores of ubiquitous Tcells
were examined. Interestingly, a signifcant positive corre-
lation was identifed (Figure 4(a)). Tis suggested that high
CD86 expression promotes the infammatory response. In
addition, the correlation between CD86 and the immune
characteristics of diferent ICB response subgroups, in-
cluding immune regulators, tumor-infltrating immune cell-
efector genes, immune checkpoints, and immunotherapy-
related genes was examined. CD86 was also found to be
positively correlated with these factors (Figure 4(b)). Sub-
sequently, ssGSEA was used to evaluate the scores for tumor
and immune-related pathways, including Immune_difer-
entiation and Interferon_response. Te results showed that
high CD86 expression was present in these pathways
(Figure 4(c)). Molecular subtypes also have a great impact on
adjuvant chemotherapy. Subsequently, based on a literature
survey [15–17], we compared the mutations in RB1, ERBB2,
FANCC, and other genes that could be associated with
chemoradiotherapy responses. Accordingly, diferent mu-
tation frequencies were observed in the high and low CD86
groups (Figure 4(d)). Common pathways of tumor growth
(EGFR_network, Immune_inhibit_Oncogenic_pathways,
and Radiotherapy_predicted_pathways) were compared
between the high- and low-CD86-expression groups
(Figure 4(e)). Te results suggested that CD86 is
associated with diferent subtypes of ICB, and that the
high expression of CD86 can result in higher mutation
frequencies in chemoradiation-related genes.
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Figure 1: Continued.
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Figure 1: CD86 was associated with immunoassay sites in pan-cancers. (a) Correlation between CD86 and immunomodulators (che-
mokines, receptors, MHC, and immunostimulators). (b–e) Correlation between CD86 and four immune checkpoints, PDCD1, CTLA4,
CD274, and LAG3. Te dots represent cancer types. Te Y-axis represents the Pearson correlation, while the X-axis represents –log10P.
(f ) Correlation between difuse carcinoma and 28 tumor-associated immune cells calculated with the ssGSEA algorithm.Te color indicates
visual cues the correlation coefcient (red is positive, blue is negative). Te asterisks indicate a statistically signifcant P value calculated
using Spearman correlation analysis. (∗P< 0.05).
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Figure 2: Continued.
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3.5. Identifcation of Immune-Associated Diferential Genes
(DERs), Protein–Protein Interaction (PPI) Network, and
KEGG/GO Analysis. To determine whether CD86 is asso-
ciated with the tumor microenvironment in AML, Stro-
malScore and ImmuneScore scores were calculated for AML
samples using the ESTIMATE algorithm. Ten, samples
were divided based on CD86 expression cutofs, and limma
package was used to identify the DEGs in high vs. low CD86

expression, StromalScore, and ImmuneScore groups (Sup-
plementary Table 4). Volcano and heat maps of the DEGs
were plotted (Supplementary Figure 4). Te DEGs common
to the CD86, StromalScore, and ImmuneScore groups were
determined. Accordingly, 308 common up-regulated genes
and 16 common down-regulated genes were identifed
(Figures 5(a) and 5(b)). Ten, we used WebGestaltR for the
GO and KEGG functional enrichment analysis of the DERs.
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Figure 2: SNV, CNV, and methylation analysis of CD86 in AML. (a) KM curve with CD86 as cutof in LAML; (b) mutation distribution of
the top 10 genes with the highest mutation frequency in the median group of CD86 expression; (c) comparison of TMB distribution of CD86
expression median group; (d) CD86 gene expression diference among CD86 gene amplifcation groups; (e) correlation analysis between
expression of CD86 gene andmethylation. (f )TemRNA expression of CD86 in AML cell lines was detected by QRT-PCR. (g)Western blot
was used to detect the expression of CD86 in AML cell lines.
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Figure 3: CD86was correlated with immunoassay sites. (a) Diferences in expression of immunomodulators (chemokines, receptors, MHC,
and immune stimulants) in LAML between the high and low CD86 groups; (b) diferences in immune cell scores between high CD86 and
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Figure 4: Continued.
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Figure 4: CD86 predicts progression of immune checkpoint blockades (ICBs) in LAML. (a)–(b) Correlations between CD86 and the pan-
cancer T-cell infamed score and the individual genes included in the T-cell infamed signature. Te T-cell infamed score is positively
correlated with the clinical response to cancer immunotherapy; (c) correlations between CD86 and molecular subtypes using seven diferent
algorithms and AML signatures; (d) mutational profles of neoadjuvant chemotherapy-related genes in low- and high-CD86 groups.
(e) correlations between CD86 and the enrichment scores of several therapeutic signatures such as targeted therapy and radiotherapy.
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Te DERs were found to be closely related to tumorigenesis
and immune pathways (Figures 5(c)–5(f)). Tere were 3
clusters with more than fve genes, namely, Mcode1,
Mcode2, and Mcode4. Subsequently, WebGestaltR was used
for GO and KEGG functional enrichment analysis to
identify the functions of the clusters (Supplementary Fig-
ures 5 and 6). Te Mcode1 module was closely related to
immune pathways (Figure 6(a)), including the toll-like re-
ceptor (TLR) signaling pathway and cytokine-cytokine re-
ceptor interaction (Figures 6(b)–6(e)).

3.6. IRS Model Construction and Verifcation. After a series
of analyses, 324 DERs were identifed. Subsequently, 65
prognostic genes were obtained through random sampling
based on TCGA samples (training: test� 1 :1) and univariate
Cox regression (P< 0.05, Supplementary Table 5). Ten, the
LASSO method was used to select the best genes, and six
genes were obtained according to the minimum lambda
cutof of 0.1452 (Figure 7(a)). Multivariate Cox regression
analysis was performed using these six genes, and the risk
coefcients of related genes were obtained and represented
by a forest map (Figure 7(b)). Ten, the risk score of each
sample in the TCGA training and verifcation datasets was
calculated. Te samples were divided into two groups (high
vs. low expression) based on the best cutof, and
Kaplan–Meier curves were drawn. Further, ROC curve
analysis was also performed. Te results showed that the
low-expression group had a better survival prognosis
(Figures 7(c) and 7(d)). Subsequently, IRS model validation
was performed using all TCGA datasets, GSE10358 datasets,
and GSE37642 (GPL570) datasets. Te results showed that
patients in the low-expression group had a good prognosis
(Figures 7(e)–7(g)). In order to further verify the accuracy of
the IRS, evaluations were performed using the following
GEO datasets: GSE146173, GSE106291, GSE37642 (a subset
of the GPL96 platform), GSE12417 (a subset of the GPL97
platform), and GSE12417 (a subset of the GPL96 platform).
Here too, the results revealed a better prognosis in the low-
risk group (Supplementary Figures 7A–7E).

3.7. Association between IRS and Immunity. Meanwhile,
based on the TCGA dataset, we compared the diferential
expression of high and low IRC expression groups and
concentration of chemokine, immunostimulator, MHC, and
receptor genes. Tese were represented by heat maps
(Figure 8(a)).Te diference in CD86 expression between the
high- and low-expression groups was detected (Figure 8(b)).
Analyses of infammation scores for pan-cancer T cells
revealed signifcantly higher scores in the high-expression
group (Figure 8(c)). Subsequently, we plotted the correlation
between IRC and 28 types of immune cells using ssGSEA
method. Te results suggested that the high-expression
group was enriched for a variety of immune cells (Fig-
ure 8(d)). Diferences in immunoassay sites and IRC
groupings were also examined (Figure 8(e)). Te results
suggested that a high IRS is correlated with immune cells
in AML.

3.8. Performance Comparison between IRS and TIDE. To
verify the efect of the IRS model constructed by us, we
collected data from the IMvigor210, GSE91061, GSE78220,
and GSE135222 datasets after immunotherapy. We used our
method to calculate the IRS, and the TIDE website was used
to evaluate the TIDE score (https://tide.dfci.harvard.edu/)
for immune treatment efects.Te predictive value of the IRS
and TIDE for the response to treatment was then compared.
Survival prediction curves and Kaplan–Meier curves (me-
dian cutof) were used for analysis. Our IRS score was found
to be better than the TIDE score (Figures 9(a)–9(k)).

4. Discussion

AML is a malignancy tightly linked to the bone marrow
microenvironment [18]. Te BMM is mainly composed of
immune cells and stromal cells, with the former playing
a key role in AML progression [2]. Tcells are important cells
of the immune system [19]. According to fndings, a high
lymphocyte count in the bone marrow is directly associated
with better overall survival in patients with AML.
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Figure 7: Continued.
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Figure 7: IRS construction and validation. (a) LASSO coefcient profles of 40 prognostic RNAs in GEO training cohort. Te coefcient
profle plot was developed against the log (lambda) sequence; (b) the forest map shows the genetic multifactorial results of the fnal IRS
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In AML, T cell dysfunction is caused by the immuno-
logical confict between a dysfunctional cytokine regulatory
network and overactivated T cells [20]. Te complete acti-
vation of T cells requires two stimuli. During the frst signal,
TCRs need to bind to the antigenic peptide-bound MHC on
APCs [21]. Te secondary signal is provided by cos-
timulatory molecules on APCs that interact with receptors
on the surface of T cells. Te most important costimulatory
molecules are CD86 and CD80.

A molecule can be a central target for cancer immu-
notherapy depending on its specifc expression in the tumor
microenvironment. CD86 (B7-2), a member of the B7 family
of proteins, is one of the surface proteins of APCs [22]. Te
B7 family has been implicated in the progression of AML.
Te levels of CD80 (B7-1) are elevated in AML [23].
Moreover, programmed cell death ligand (PD-L1, B7H-1) is
abnormally expressed in AML patients and is directly as-
sociated with a poor prognosis [24]. T cells can be activated
to exert immune efects only when CD86 is expressed on
APCmembranes and binds to CD28 on the surface of Tcells
[11]. Using data from public databases, we found that CD86
is overexpressed in many cancers, and especially in AML.
We also demonstrated this in AML cell lines. In AML, a high
expression of CD86 was found to be associated with a poor

prognosis. Further, clinical data from GEO and TCGA
datasets show that high CD86 expression is directly asso-
ciated with a poor prognosis in AML.

In AML, the immunomodulatory network in the BMM
is an important factor promoting cancer progression [25].
Tese regulatory networks include chemotactic cytokines,
immunostimulatory molecules, MHC, and receptors. In-
terestingly, the expression of CD86 is positively correlated
with the expression of these genes [26]. Using TCGA data,
we observed increased infltration of dendritic cells, NK cells,
CD4+ cells, CD8+ cells, macrophages, and T1 cells in the
group with high CD86 expression. Tis was confrmed using
external validation data. Te upregulation of immune in-
spection sites by infltrating immune cells is also a key factor
in cancer progression. Some immune targets—including
cytotoxic T lymphocyte antigen 4 (CTLA4), programmed
cell death protein 1 ligand 2 (PDCD1LG2), indoleamine 2,3-
dioxygenase 1 (IDO1), and hepatitis A virus cellular receptor
2 (HAVCR2)—promote the progression of AML [27–29].
However, immune checkpoints act as double-edged swords
in AML. Clinical studies on targeted ICBs have shown that
drug resistance is a key factor leading to a poor prognosis
after AML treatment using ICBs. Our study showed that
CD86 expression was positively correlated with these
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Figure 8: Diferent risk IRS typing groups were associated with immunity. (a) Diferential expression of high- and low-risk group and
concentration of chemokine, immunostimulator, MHC, and receptor genes; (b)Te CD86 expression level in IRS high- and low-risk group;
(c) T-cell validation score of generalized carcinoma in IRS high- and low-risk group; (d) ssGSEA showed the correlation between IRS high-
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Figure 9: Performance comparison of IRS and TIDE (a) IRS survival curve and ROC curve of dataset IMvigor210; (b) TIDE survival curve
and ROC curve of dataset IMvigor210; (c) ROC curves of IRS and TIDE efect on immunotherapy in dataset IMvigor210; (d) IRS survival
curve and ROC curve of dataset GSE91061; (e) TIDE survival curve and ROC curve of dataset GSE91061; (f ) ROC curve of IRS and TIDE
efect on immunotherapy in dataset GSE91061; (g) IRS survival curve and ROC curve of dataset GSE78220; (h) TIDE survival curve and
ROC curve of dataset GSE78220; (i) ROC curves of IRS and TIDE efect on immunotherapy in dataset GSE78220; (j) IRS survival curve and
ROC curve of dataset GSE135222; (k) TIDE survival curve and ROC curve of dataset GSE135222; (l) ROC curves of IRS and TIDE efects on
immunotherapy in dataset GSE135222.
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immunoassay sites. Tis may be because CD86 promotes the
expression of immune-infltrating cells in BMM, thus
stimulating the expression of immune checkpoints. Tis
indicates that AML patients with low CD86 expression may
not be responsive to ICBs. Meanwhile, we calculated the
diferentially expressed genes based on CD86 expression and
the immune and matrix components in the BMM. Tese
DEGs were mainly concentrated in the TLR signaling
pathway, cytokine–cytokine receptor interaction, and other
immune-related pathways.

Our fndings also confrmed the involvement of CD86 in
the immune response in AML. Te pan-cancerT-cell in-
fammation score indicates the efcacy of anti-PD-1 immu-
notherapy for various cancers [30]. Te high expression of
CD86was positively correlated with a high T-cell infammation
score [31, 32], indicating that high CD86 expression was
negatively correlated with the efects of immunotherapy.

In AML, mutation sites not only afect disease classif-
cation but also afect risk stratifcation and chemothera-
peutic resistance. For example, FLT3mutations are detected
in about one-third of AML patients, and these mutations are
directly related to the poor prognosis of AML [33]. However,
interestingly, the mutation rates of DNMT3A, FLT3, NPM1,
and IDH2 were higher in the low CD86 expression group in
our study [34, 35]. Te mutation rate of RUNX1 was higher
in the CD86 group, which could be because of the number of
samples. Our study also showed that CD86 expression was
negatively correlated with DNA methylation. Tis was
noteworthy because methylation has been found to predict
chemotherapy outcomes in AML [36]. Meanwhile, we
predicted that mutations in RB1, ERBB2, and FANCC in-
creased as CD86 expression increased, suggesting that CD86
may be related to radiotherapy and chemotherapy resistance
in AML. However, further verifcation is still needed.

Te IRS is a genetic prognostic model calculated using
a formula to assess the risk of a disease. An IRS can predict
the survival and prognosis of AML patients undergoing
chemotherapy. Immune risk scores can be used to predict
the beneft of adjuvant chemotherapy in diferent risk groups
of patients. Wang Yun et al. [37] constructed diferent al-
gorithms to evaluate the prognostic models of AML immune
components after receiving diferent degrees of radiother-
apy, and the results were highly accurate. However, in cases
of AML, the IRS is currently inaccurate and inconsistent.
Hence, we developed an IRS model to predict the overall
prognosis of AML. Verifcation with external datasets
showed that our model is superior to the TIDE score. Tis
complements the enrichment of AML risk scores.

Nevertheless, there are some limitations to our study.
First, all our samples were obtained from public databases,
and a large number of patient samples are still needed for
follow-up verifcation. Second, no in vivo experiments or
mechanistic studies were performed. Tis area needs to be
explored further.

5. Conclusion

Tis study found that CD86 is involved in the progression of
AML and is closely related to the BMM in AML. Te

expression ofCD86 could be used to predict immunotherapy
efcacy. Terefore, the development of CD86-targeting
drugs could lead to advancements in AML treatment.
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