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Background. Multiple myeloma (MM) is a clonal plasma cell disorder which still lacks sufficient prognostic factors. The serine/
arginine-rich splicing factor (SRSF) family serves as an important splicing regulator in organ development. Among all members,
SRSF1 plays an important role in cell proliferation and renewal. However, the role of SRSF1 in MM is still unknown. Methods.
SRSF1 was selected from the primary bioinformatics analysis of SRSF family members, and then we integrated 11 independent
datasets and analyzed the relationship between SRSF1 expression and MM clinical characteristics. Gene set enrichment analysis
(GSEA) was conducted to explore the potential mechanism of SRSF1 in MM progression. ImmuCellAI was used to estimate the
abundance of immune infiltrating cells between the SRSF1™8" and SRSF1'°" groups. The ESTIMATE algorithm was used to
evaluate the tumor microenvironment in MM. The expression of immune-related genes was compared between the groups.
Additionally, SRSF1 expression was validated in clinical samples. SRSF1 knockdown was conducted to explore the role of SRSF1 in
MM development. Results. SRSF1 expression showed an increasing trend with the progression of myeloma. Besides, SRSF1
expression increased as the age, ISS stage, 1q21 amplification level, and relapse times increased. MM patients with higher SRSF1
expression had worse clinical features and poorer outcomes. Univariate and multivariate analysis indicated that upregulated
SRSF1 expression was an independent poor prognostic factor for MM. Enrichment pathway analysis confirmed that SRSF1 takes
part in the myeloma progression via tumor-associated and immune-related pathways. Several checkpoints and immune-
activating genes were significantly downregulated in the SRSF1"8" groups. Furthermore, we detected that SRSF1 expression
was significantly higher in MM patients than that in control donors. SRSF1 knockdown resulted in proliferation arrest in MM cell
lines. Conclusion. The expression value of SRSF1 is positively associated with myeloma progression, and high SRSF1 expression
might be a poor prognostic biomarker in MM patients.

1. Introduction

Multiple myeloma (MM) is characterized by abnormal
proliferation of clonal plasma cells that produce monoclonal
immunoglobulin or M protein in bone marrow, leading to
organ dysfunctions, such as hypercalcemia, renal failure,
anemia, and bone lesions [1, 2]. Monoclonal gammopathy of

undetermined significance (MGUSY) is a premalignant stage,
and approximately, 0.5-1% of MGUS can transform into
MM per year [3]. Between MGUS and MM, smoldering
multiple myeloma (SMM) represents an intermediate,
asymptomatic condition without the SLiM features, which
stand for sixty, light chain ratio, MRI, but at a higher risk of
progression to MM [4]. Plasma cell leukemia (PCL) is an
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aggressive MM variant defined by the presence of 5% or
more circulating plasma cells in peripheral blood smears in
patients with symptomatic MM [5-7].

Alternative splicing generates different RNA isoforms
and increases protein diversity to ensure normal develop-
ment. Thus, abnormal regulation of mRNA splicing may
produce altered proteins with oncogenic potential that
contribute to cancer development [8, 9]. Previous studies
have demonstrated that alternative splicing mediated by
mutant splicing regulators could drive the initiation and
progression of hematological malignancies [10-13]. The
serine/arginine-rich splicing factor (SRSF) family has 12
members that share the conserved serine/arginine (SR)
domain and have been reported to be essential for devel-
opment [14]. Loss of SRSF genes leads to embryonic lethality
and organ failure [15-17]. Previous studies have shown that
SRSF1 is a potent oncogene and upregulated in many solid
tumors, including breast, lung, and liver cancer [18-20].
Additionally, studies about the role of SRSF1 in normal
hemopoiesis and hematological malignancies have been
emerging as well. For example, SRSF1 is a critical post-
transcriptional regulator in the late stage of thymocyte
development [21, 22]. Upregulated SRSF1, with the co-
operation of PRTMI, acts as an adverse factor in pediatric
acute lymphoblastic leukemia [23]. In chronic myeloid
leukemia, overexpression of SRSF1 resulted in impaired
imatinib sensitivity via BCR-ABL1 and cytokine-mediated
signaling pathways [24]. However, the role of SRSF1 in MM
is still unclear.

In order to explore the role of SRSF1 in MM, we in-
vestigated the relationship between SRSF1 expression and
MM progression, ISS stages, amplification of 1q21, relapse
status, and prognosis. We also explore the possible un-
derlying mechanisms of SRSF1 in MM. To make our results
more credible, we detected SRSF1 expression in clinical
samples and reduced SRSF1 expression in MM cell lines to
investigate the role of SRSF1 in MM development. Using
a combination of comprehensive bioinformatic and ex-
perimental analysis, we conclude that SRSF1 is an un-
favorable prognostic indicator in MM and essential for MM
development.

2. Methods

2.1. Data Sources. In this study, we selected 11 datasets from
the Gene Expression Omnibus (GEO) (http://www.ncbi.
nlm.nih.gov/geo) to explore the role of SRSF1 in MM. A
total of 3928 samples were included, among them were 32
normal controls, 62 MGUSs, 12 SMMs, 3792 MMs, and 30
PCLs. The datasets of GSE39754 (n = 176), GSE5900 (n = 78),
GSE116294 (n=69), GSE13591 (n=162), and GSE2113
(n=52) were used for microarray expression analysis;
GSE24080 (n=559), GSE4204 (n=538), GSE31161
(n=1038), and GSE83503 (n=602) were analyzed to de-
termine the relationship between SRSF1 expression and age,
ISS staging, 1q21 abnormalities, or disease relapse. For
survival analysis, GSE24080 (n=559), GSE4204 (n=538),
GSE2658 (n=599), and GSE57317 (n=55) were used.
Among these datasets, GSE31161 and GSE83503 contain 255
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and 403 relapsed patients, respectively; while the remaining
datasets include only patients with newly diagnosed MM.
The cancer dependency score of SRSF1 was acquired from
the DEPMAP portal. DEPMAP portal is a genome-wide
CRISPR screening database that identifies essential genes for
tumorigenesis (https://depmap.org/portal) [25]. A lower
score means a gene is more likely to be dependent in a given
tumor cell line. A median score of 0 means a gene is not
essential for tumor cells, whereas a median score of -1 is
equivalent to a gene that is essential for tumor cell lines.

2.2. Exploring the Role of SRSFI in MM. The protein-protein
interaction (PPI) network of the SRSF family was analyzed
through the Search Tool for Interaction Genes (STRING)
database [26]. Pearson’s correlation test was applied to
evaluate the relationship between members of the SRSF
family. To define the prognostic role of the SRSF family,
univariate Cox regression was conducted in GSE24080. The
expression of the SRSF family between healthy donors and
MM patients was analyzed in the GSE39754 dataset, and
SRSF1 was chosen to do further analysis due to its differ-
ential expression and prognostic value. The relationship
between SRSF1 expression and the clinical characteristics of
MM patients was analyzed in GSE24080. Patients were
divided into the SRSF1'°" group and the SRSF1™€" group
based on the median expression values of SRSFI.
Kaplan-Meier methods and log-rank test were used for
survival analysis. Univariate Cox regression and multivariate
Cox regression were constructed for event-free survival
(EFS) and overall survival (OS), using the “Backward: LR”
procedure. The confidence interval (CI) was 95%.

2.3. Identification of Differentially Expressed Genes and En-
richment Analysis. Differential gene expression analysis was
performed by the “limma” package [27]. |Fold change | > 1.5,
and p<0.05 was utilized to determine differentially
expressed genes (DEGs). Gene Ontology (GO) enrichment
terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were performed by “clusterProfiler”
package [28]. Gene set enrichment analysis (GSEA) was
performed by GSEA software (https://www.gsea-msigdb.
org/gsea/index.jsp) [29].

2.4. Analysis of Immune Cell Characteristics and Immune-
Specific Gene Expression between SRSF1"€" and SRSF1'"
Groups. Immune cell characteristics between the SRSF1™€"
and SRSF1'°" groups were analyzed by ImmuCellAl (Im-
mune Cell Abundance Identifier), an online tool to provide
the quantitative infiltration of immune cells by using gene
expression matrix data (http://bioinfo.life.hust.edu.cn/
ImmuCellAI) [30]. ESTIMATE was used to score the tu-
mor microenvironment (TME) of samples, including stro-
mal score, immune score, ESTIMATE score, and tumor
purity [31]. Differences in the TME between the SRSF1™¢"
and SRSF1'™™ groups were analyzed. The correlation be-
tween SRSF1 expression and immune cell infiltration was
calculated by Pearson correlation analysis.
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2.5. Cell Culture and Primary Cells from Normal Donors and
MM Patients. KM3, U266, 8226, and H929 cells were cul-
tured in Roswell Park Memorial Institute (RPMI)-1640
medium (Gibco, USA) with 10% fetal bovine serum (FBS,
Gibco, USA), 100 y/mL penicillin, and 100 mg/mL strep-
tomycin. All cells were acquired from the American Type
Culture Collection (ATCC, USA). Eight patients with MM
and three patients with benign diseases were included, and
informed consents were obtained from all the participants.
The mononuclear cells were isolated from the bone marrow
samples using Ficoll density centrifugation.

2.6. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR) and Western Blotting. Total RNA was
extracted from mononuclear cells by TRIZOL reagent
(Invitrogen, USA) and was then reverse transcribed to
cDNA using PrimeScript™ RT reagent Kit (Takara, Japan)
according to the manufacturer’s instruction. Real-time
fluorescent quantitative PCR was performed to amplify
the SRSF1 cDNA fragment by SYBR Green Master Mix
(Yeasen, China), with S-actin as an internal control. The
expression level of related IncRNAs was analyzed using
2744CT Each PCR reaction was performed in triplicate. The
following primers were used: SRSF1 forward, 5'-GCCGCA
TCTACGTGGGTAAC-3'; SRSF1 reverse, 5'-GAGGTC
GATGTCGCGGATAG-3";8-actin forward, 5'-GATCAT
TGCTCCTCCTGAGC-3';B-actin reverse, 5'- ACTCCT
GCTTGCTGATCCAC-3'. The expression of SRSF1 in MM
cell lines was detected by western blotting as previously
described [32]. Primary rabbit anti-SRSF1 antibody was
purchased from Abcam (ab133689), and primary mouse
anti-S-tubulin antibody was purchased from HUABIO
(M1305-2).

2.7. Knockdown of SRSF1 and Cell Proliferation Assay.
We used short hairpin RNA (shRNA) to reduce SRSF1
expression. The shSRSF1 and shctrl plasmids were con-
structed with the PLKO.1 vector (Addgene, US). shSRSF1
target sequence: GCTGATGTTTACCGAGATGGC; control
target sequence: TTCTCCGAACGTGTCACGT. The target
and control plasmids were separately cotransfected with the
lentiviral packaging plasmids (pM2D.G and psPAX2) into
HEK293 T cells with Liposomal Transfection Reagent
(Yeasen, China) to produce lentiviruses. Target cells were
infected with the virus and 10 ug/ml polybrene (Sigma, US)
for 24 hours, and 2 pg/ml puromycin was added at 72 hours
after infection. For the cell proliferation assay, a total of
5x10° H929 and 2 x 10° U266 were seeded in 96-well plates
in triplicates and cultured at 37°C. Cell proliferation was
determined by CCK-8 assays (Dojindo Lot.JE603).

2.8. Statistical Analysis. SPSS statistical software (SPSS
statistics 23.0), R software (version 3.6.3), GraphPad Prism
8.0, and GSEA software were used for statistical analyses.
Gene expression datasets were obtained by using Affymetrix
Human Genome 133 plus 2.0 Array. All experiment design,
quality control, and data normalization follow the standard

Affymetrix protocols. This study was conducted in accor-
dance with the International Conference and the Declara-
tion of Helsinki. Each dataset was first evaluated for
normality of distribution by the Kolmogorov-Smirnov test
to decide whether a nonparametric rank-based analysis or
a parametric analysis should be used. The Fisher exact and
Wilcoxon rank-sum tests were used to compare categorical
and numerical data, respectively.

3. Results

3.1. The Role of SRSF Family in MM. To explore the potential
role of the SRSF family in MM, we performed gene ex-
pression profiling in GSE24080. The STRING database
showed a close PPI network among SRSF family genes
(Figure 1(a)). The RNA expression levels were correlated
with each other among SRSF members, and the correlation
was the strongest between SRSF2 and SRSF10 (r=0.67,
Figure 1(b)). We next investigated whether SRSF members
are prognostic for MM through univariate Cox regression
analysis, and SRSF1, SRSF2, SRSF7, and SRSF10 were found
to be associated with OS of MM patients (Figure 1(c), all
p <0.05, all hazard ratio (HR) > 1). Moreover, we utilized the
GSE39754 dataset to screen differentially expressed SRSF
genes between healthy donors and MM patients. As shown
in Figure 1(d), SRSF1, SRSF2, and SRSF7 were expressed
significantly higher in MM than those in healthy control,
and among these, SRSF1 was top-ranked in terms of HR
value and was selected for further analysis.

3.2. The Expression Level of SRSF1 in Normal Donors and
Multiple Myeloma Patients in Different Stages. To charac-
terize the SRSF1 expression pattern related to MM devel-
opment, we employed five datasets to determine the SRSF1
mRNA levels in different stages of MM, including MGUS,
SMM, MM, and PCL. In GSE39754, the expression level of
SRSF1 was significantly higher in 170 MM patients than that
in 6 normal donors (p = 0.011) (Figure 2(a)). A prominent
trend of increase in SRSF1 expression was found from
normal control (n=22), MGUS (n=44) to SMM (n=12) in
GSE5900 (p =0.016, 0.00013, and 0.096, respectively,
Figure 2(b)). Similarly, the GSE116249 dataset showed that
SRSF1 expression increased from normal control (n=4),
MM (n=50) to PCL (n=15), even though the difference is
not statistically significant (p = 0.058, 0.08, and 0.58, re-
spectively, Figure 2(c)). Moreover, the expression of SRSF1
significantly increased in MGUS (n = 11), MM (n = 142), and
PCL (n=9) (p=0.0021, 1.2¢e—05, and 7.7e—05, re-
spectively, Figure 2(d)). The same trend was also found in
the GSE2113 dataset, from MGUS (n=7) to MM (n=39)
and PCL (n=6) (p=3.5e—-05, 0.0012, and 0.063, re-
spectively, Figure 2(e)). Together, these data suggest that
SRSF1 was overexpressed during the courses of MM
progression.

3.3. The Expression Level of SRSF1 in MM Patients with
Different Age Groups, ISS Stages, Amplification of 1921, and
Relapse Statuses. To better understand the clinical
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FIGURE 1: Analysis of SRSF family in multiple myeloma patients. (a) The PPI network of SRSF family members. (b) Correlation analysis
between the expression of the SRSF family in the GSE24080 dataset. The size of the dot represents the correlation coefficient, and the larger
the dot, the higher the correlation. Red dots represent a positive correlation, while blue dots represent a negative correlation. (c) Univariate
Cox regression results for the subunits related to the survival of MM patients in GSE24080. (d) The expression of SRSF family members

between normal donors and MM patients in GSE39754.

characteristics associated with SRSF1 expression, MM
patients’ age, ISS stages, 1q21 aberrations, and relapse
status were analyzed using four independent datasets. In
GSE24080, SRSF1 expression in the group of age >65 was
significantly higher than that in the group of age <65
(p =0.0056, Figure 3(a)). Furthermore, a significantly
higher SRSF1 expression was observed in ISS stage III
when compared with stage I or II (p=0.011, Krus-
kal-Wallis test, Figure 3(b)), which specifically occurs in
IgG-type MM (p =0.013 and 0.01, respectively, Krus-
kal-Wallis test, Figure 3(c)), but not in free light chain
(FLC)- or IgA-type MM (p = 0.878 and 0.123, respectively,
Figure 3(c)).

The 1q21 copy number amplification is a common cyto-
genetic abnormality that is indicative of poor prognosis in
patients with MM [33-35]. In GSE4204 (n = 538), the expression
of SRSF1 had an upward trend with the amplification of 1g21
(p = 0.024, Kruskal-Wallis test, Figure 3(d)), and a similar
result was obtained in GSE2658 (n=599) (Supplementary
Figure 1). Furthermore, in GSE31161, we found a significant
increase of SRSF1 expression in relapsed MM patients (1 =258)
when compared with MM patients at diagnosis (n="780)
(p = 0.00028, Figure 3(e)). Besides, we found that SRSF1 ex-
pression increased with the duration of relapse in the GSE83530
dataset (p = 0.3,0.008, and 0.0025, respectively, Figure 3(f)),
suggesting that SRSF1 may contribute to the relapse of MM
patients.

3.4. Clinical and Molecular Characteristics of Patients between
SRSF1"¢" and SRSF1"" Groups. Using the GSE24080
dataset, we divided 559 patients into two groups, including
the SRSF1'°Y (1 =280) and the SRSF1"8" (n=279) groups.

Then, we analyzed the clinical and molecular characteristics
between the two groups (Table 1). Compared with the
SRSF1'" group, the SRSF1™&" group was more likely related
to race (p =0.003), advanced ISS stage (p = 0.047), and
increased beta-2 microglobulin (B2M) (p = 0.005). The
incidence of cytogenetic abnormality was higher in the
SRSF1"€" group than in the SRSF1'°Y group, although there
was no significant statistical difference (p = 0.09). Addi-
tionally, the SRSF1"8" group was associated with high ex-
pression of NOTCH2NL, MYBL2, and UBE2T and low
expression of CXCR4 and IL18R1 (all p<0.05).
NOTCH2NL, MYBL2, and UBE2T were reported to be
involved in tumorigenesis [36-38], while CXCR4 and
IL18R1 were associated with immune response and pathway
activation [39, 40], indicating SRSF1 may take part in MM
progression via tumor-related pathways. Between the two
groups, there were no significant differences in age, gender,
isotype, and therapy options.

3.5. Univariate and Multivariate Analysis of Possible Prog-
nostic Factors in MM. To further evaluate the potential
prognostic value of SRSF1 in MM, age (=65 vs. <65), gender
(female vs. male), B2M (=5.5 vs. <5.5), LDH (=250 vs. <250),
ALB (23.5 vs. <3.5), and lytic bone lesions on MRI (>2 vs.
<2) were enrolled in univariate and multivariate analysis. As
aresult, SRSF1, B2M, and LDH were significantly associated
with EFS in univariate analysis (all p<0.05) (Table 2).
Furthermore, the multivariate analysis showed that HR
values of SRSF1, B2M (=5.5 vs. 5.5), and LDH (=250 vs.
<250) were 1.851 (p<0.001), 1.614 (p = 0.008), and 2.590
(p <0.001), respectively. Additionally, SRSF1, B2M, LDH,
ALB, and MRI lesions were identified to be closely related to
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FIGURE 2: The expression level of SRSF1 in five datasets of normal donors and myeloma patients in different stages: (a) MM patients
(n=170) compared with normal donors (1 = 6); (b) the expression value of SRSF1 in normal donors (n =22) and other different stages of 56
myeloma patients. MGUS (n =44) and SMM (n = 12); (c) the different expressions of SRSF1 in normal donors (n=4), MM [33], and PCL
patients (1 =15); (d) SRSF1 expression levels in different subtypes of myeloma patients. MGUS (n = 11), MM (n =133), and PCL (n=9); (e)
comparison of SRSF1 expression levels in three different stages of myeloma patients. MGUS (n=7), MM (n=39), and PCL (n=6).

OS in univariate analysis (all p <0.05) (Table 3). Further-
more, the multivariate analysis for OS displayed that the HR
of SRSF1 was 1.720 (p = 0.001), and the HR values of other
OS-related factors, including B2M, LDH, ALB, and MR],
were 1.922, 2.909, 0.656, and 1.737 (p < 0.001, <0.001, 0.034,
and <0.002, respectively). These results suggested that SRSF1
expression was an independent risk factor affecting the
survival of MM patients.

3.6. SRSF1 Predicted Survival Levels in MM Patients. To
validate the poor prognosis conferred by high SRFSI1 ex-
pression in MM patients, we conducted survival analysis in
GSE24080 and other independent cohorts. In GSE24080, we
found that the SRSF1™¢" group had significantly shorter EFS
and OS than the SRSF1°" group, both p<0.001
(Figures 4(a) and 4(b)). A similar prognostic value of SRSF1
was demonstrated in GSE4204, GSE2658, and GSE57317
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TasLe 1: Clinical characteristics of 559 MM patients between the SRSF1° and SRSF1M&h groups in GSE24080.

SRSF1™", =280 SRSF1Migh 1 =279 p value
Age (mean, range) 57.74 (24.83-75.90) 56.62 (31.82-76.50) 0.161
Male 175 (62.50) 162 (58.06) 0.284
0,
Gender (%) Female 105 (37.50) 117 (41.94)
White 238 (85.00) 259 (92.83) 0.003
0
Race (%) Other 42 (15.00) 20 (7.17)
FLC 41 (14.64) 43 (15.41) 0.820
IgA 62 (22.14) 71 (25.45)
IgG 164 (58.57) 149 (53.41)
0,
Isotype (%) IgD 1 (0.36) 2 (0.72)
Nonsecretory 3 (1.07) 5 (1.79)
NA 9 (3.21) 9 (3.23)
B2M (mean (sd)) 4.177 (4.208) 5.290 (6.285) 0.005
ALB (mean (sd)) 4.093 (0.530) 4.005 (0.628) 0.073
Iand II 230 (82.1) 210 (75.3) 0.047
0,
ISS stage (%) it 50 (17.9) 69 (24.7)
CRP (mean (sd)) 10.327 (18.391) 12.928 (26.779) 0.270
CREAT (mean (sd)) 1.239 (1.129) 1.407 (1.399) 0.227
LDH (mean (sd)) 170.529 (63.305) 173.430 (68.553) 0.603
HGB (mean (sd)) 11.320 (1.825) 11.186 (1.799) 0.382
ASPC (mean (sd)) 41.413 (24.065) 43.953 (24.570) 0.229
BMPC (mean (sd)) 45.103 (26.527) 47.668 (26.009) 0.256
MRI (mean (sd)) 10.314 (13.934) 11.759 (15.102) 0.257
. ‘ Yes 94 (33.57) 113 (40.50) 0.090
Cytogenetic abnormality No 186 (66.43) 166 (59.50)
TT2 172 (61.43) 173 (62.01) 0.888
0,
Therapy, no (%) TT3 108 (38.57) 106 (38.3)
High CCND1, no (%) 140 (50.18) 140 (50.00) 0.966
High FGFR3, no (%) 142 (50.90) 138 (49.29) 0.703
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TaBLE 1: Continued.

SRSF1°", =280 SRSF1'€" =279 p value
High LIG4, no (%) 148 (53.05) 132 (47.14) 0.163
High TP53, no (%) 137 (49.10) 143 (51.07) 0.642
High CDK4, no (%) 140 (50.18) 140 (50.00) 0.966
High KRAS, no (%) 131 (46.95) 149 (53.21) 0.139
High NRAS, no (%) 139 (49.82) 141 (50.36) 0.899
High CXCR4, no (%) 158 (56.42) 122 (43.73) 0.003
High NOTCH2NL, no (%) 114 (40.71) 166 (59.50) <0.001
High UBE2T, no (%) 117 (41.79) 162 (58.06) <0.001
High IL18R1, no (%) 165 (58.93) 115 (41.22) <0.001
HighMYBL2, no (%) 127 (45.36) 153 (54.84) <0.025

AGE: age at registration (years); B2M: beta-2 microglobulin, mg/l; ALB: albumin, 10 g/l; CRP: c-reactive protein, mg/l; CREAT: creatinine, mg/dl; LDH:
lactate dehydrogenase, U/l; HGB: hemoglobin, g/dl; ASPC: aspirate plasma cells (%); BMPC: bone marrow biopsy plasma cells (%); MRI: number of magnetic
resonance imaging (MRI)-defined focal lesions (skull, spine, and pelvis); cytogenetic abnormality: an indicator of the detection of cytogenetic abnormalities;
TT2: total therapy 2; TT3: total therapy 3; no: number of patients. Bold values mean the differences between two groups are statistically significant.

(p =0.013,0.032, and 0.020, respectively, Figures 4(c)-4(e)).
Since B2M and LDH are recognized as important prognostic
biomarkers for MM, we further explored the prognosis of
SRSF1 expression levels in the B2M and LDH subgroups of
GSE24080. In the B2M<3.5mg/l and LDH <250 U/L
groups, the SRSF1"ieh group had significantly shorter EFS
and OS than the SRSF1'“ group (EFS: p<0.001 and
p<0.001; OS: p=0.0026 and p =0.001, respectively.
Supplementary Figures 2A and 2D; Supplementary
Figures 3A and 3C). In the LDH >250 U/L group, patients
with high SRSF1 expression tended to have shorter EFS and
OS than those with low SRSF1 expression, even though these
differences were not statistically significant (EFS: p = 0.073
and OS: p = 0.113, respectively. Supplementary Figures 3B
and 3D). While in the 3.5<B2M<5.5mg/l and
B2M > 5.5 mg/l groups, there were no significant differences
in OS and EFS between the SRSF1™¢" and the SRSF1'°"
expression groups (Supplementary Figures 2B-2F). The lack
of difference may suggest that the deleterious impact of
B2M >5.5mg/l on prognosis may override that of high
SRSF1 expression.

3.7. Differential Gene Expression and Pathway Enrichment
Analysis for SRSF1"" versus SRSF1°". To gain insight into
SRSF1 biological functions, we tried to identify the DEGs by
comparing the SRSF1"8" group with the SRSF1'°" group in
GSE24080. A total of 289 DEGs related to SRSF1 were
identified, of which 162 were upregulated and 124 were
downregulated (p<0.05, [log2 FC|>0.378, Figure 5(a),
Supplementary Table 1). The heatmap showed the top 30
upregulated genes and 30 downregulated genes
(Figure 5(b)). Furthermore, we analyzed the top 20 GO
terms and KEGG pathways to identify enriched categories
and signaling pathways (Supplementary Tables 2 and 3).
DEGs were mainly enriched in cell division, inflammatory
response, and positive regulation of immune response
(Figure 5(c)). In the KEGG pathway analysis, cytokine-
cytokine receptor interaction, systemic lupus eryth-
ematosus, transcriptional misregulation in cancer, and
complement and coagulation cascades were the most
enriched pathways (Figure 5(d)).

3.8. The PPI Network and Correlation Analysis of DEGs.
The PPI network in the STRING database showed the top
60 SRSF1-related DEGs’ interaction (Figure 6(a)). Then, we
discovered the subnetwork by using the MCODE in the
Cytoscape (Figure 6(b)). In addition, we used the top of 60
DEGs to calculate the correlativity between those genes.
Based on the expression heatmap, we found that SRSF1 was
positively correlated with SLC20A1, MIR142, and EIF3C
and negatively associated with IgK, GPHA2, and VCAM1
(Figure 6(c), all p<0.001). In addition, there were positive
correlations between SRSF1 and many noncoding RNAs,
such as EMC-AS1 and MIR142, and the function of most
noncoding RNA in MM is still unknown.

3.9. GSEA Analysis Showed a Lot of Gene Sets Enriched in the
SRSF1"¢" Group. The GSEA analysis showed that spliceo-
some, metabolism of RNA, protein ubiquitination, P53
signaling pathway, MYC targets, signaling by NOTCH,
interleukin 12 signaling, downstream signaling events of
B cell receptor BCR, and MARKG6/4 signaling were signifi-
cantly enriched in the SRSF1hish group (Figures 7(a)-7(i), all
p <0.01), while hematopoietic cell lineage, B cell receptor
signaling pathway, TNFa signaling via NFKB, inflammatory
response, complement, and coagulation were significantly
enriched in the SRSF1'°™ group (Supplementary Figure 4, all
p<0.01).

3.10. Analysis of Immune Cell Characteristics and Immune-
Specific Gene Expression between the SRSF1"" and SRSF1'"
Groups. ImmuCellAl is an online tool to estimate the in-
filtration of immune cells based on the gene expression
matrix data [30]. The abundance of immune cells with
significant differences between the high- and low-risk
groups is shown in Figure 8(a). The levels of type 1 regu-
latory T (Trl) cells, T helper 2 (Th2) cells, and central
memory T (TCM) cells in the SRSF1™¢" group were higher
than those in the SRSF1'Y group, while the levels of
macrophage cells in the SRSF1"8" group were lower than
that in the SRSF1'°" group (all p <0.05). To determine the
correlation between SRSF1 expression and tumor-
infiltrating immune cells, we found that the expression
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TABLE 2: Univariate and multivariate cox regression analysis of EFS in GSE24080.

Univariate analysis

Prognostic parameters

Multivariate analysis

HR (95% CI) p value HR (95% CI) p value
SRSF1 (high vs. low) 1.837 (1.347-2.506) <0.001 1.851 (1.353-2.533) <0.001
Age (265 vs. <65) 1.047 (0.731-1.500) 0.801 — —
Gender (female vs. male) 0.951 (0.697-1.297) 0.751 — —
B2M (=5.5 vs. <5.5) 1.855 (1.310-2.628) 0.001 1.614 (1.132-2.302) 0.008
LDH (=250 vs. <250) 2.633 (1.664-4.169) <0.001 2.590 (1.619-4.143) <0.001
ALB (=3.5 vs. <3.5) 0.810 (0.525-1.249) 0.340 — —
MRI (22 vs. <2) 1.063 (0.773-1.461) 0.709 — —

AGE: age at registration (years); B2M: beta-2 microglobulin, mg/l; LDH: lactate dehydrogenase, U/l; ALB: albumin, 10 g/l; MRI: number of magnetic
resonance imaging (MRI)-defined focal lesions (skull, spine, and pelvis). HR: hazard ratio and CI: credible interval.

TaBLE 3: Univariate and multivariate cox regression analysis of OS in GSE24080.

Univariate analysis

Prognostic parameters

Multivariate analysis

HR (95% CI) p value HR (95% CI) p value
SRSF1 (high vs. low) 1.660 (1.222-2.253) 0.001 1.720 (1.254-2.358) 0.001
Age (265 vs. <65) 1.398 (1.035-1.887) 0.300 — —
Gender (female vs. male) 1.030 (0.760-1.397) 0.848 — —
B2M (5.5 vs. <5.5) 2.563 (1.868-3.517) <0.001 1.922 (1.351-2.733) <0.001
LDH (250 vs. <250) 3.845 (2.624-5.633) <0.001 2.909 (1.919-4.410) <0.001
ALB (=3.5 vs. <3.5) 0.520 (0.359-0.754) 0.001 0.656 (0.444-0.969) 0.034
MRI (>2 vs. <2) 1.660 (1.222-2.253) 0.001 1.737 (1.223-2.467) 0.002

AGE: age at registration (years); B2M: beta-2 microglobulin, mg/l; LDH: lactate dehydrogenase, U/l; ALB: albumin, 10 g/l; MRI: number of magnetic
resonance imaging (MRI)-defined focal lesions (skull, spine, and pelvis). HR: hazard ratio and CI: credible interval. Bold values mean the differences between

two groups (like SRSF1-high vs. SRSF1-low) are statistically significant.

level of SRSF1 was positively correlated with Trl, Th2, and
central memory T cells and negatively correlated with
macrophage cells (Figure 8(b), all p < 0.05). We also used the
ESTIMATE algorithm to evaluate the TME between the two
groups. Notably, patients with a high SRSF1 expression
presented a lower ESTIMATE score, immune score, and
stromal score (all p<0.05) and a higher level of tumor
purity(p < 0.05) (Figure 8(c)). We observed that immune
checkpoint markers, consisting of PD-L1, LAG3, and
PDCDI1LG2, were remarkably downregulated in the
SRSF1Meh group. Moreover, genes associated with immune
response activation, including CDI163, CD27, CDA40,
CXCL12, IDO1, LAMP3, LGALS9, NKG7, NOS1, TIMD4,
TNESF9, and TREM2, were downregulated in SRSF1 high
expression MM patients, while genes related to immune
response limitation such as LAIRI and TNFRSF8 were
upregulated in SRSF1 low expression MM patients. Taken
together, these data suggested that SRSF1 was related to
tumor immune infiltrating cells and may have participated
in tumor immune escape in MM.

3.11. Validation of the Expression and Function of SRSF1 in
MM. In order to test whether SRSF1 is dispensable for the
survival of cancer cells, we extracted the cancer dependency
score of SRSF1 from a genome-wide CRISPR screening
database, the DEPMAP portal. A lower score means that
a gene is more likely to be dependent in a given tumor cell
line. A median score of 0 means that a gene is not essential
for tumor cells, whereas a median score of —1 is equivalent to
a gene that is essential for tumor cell lines. The dependency

score of SRSF1 is —1.113, which means that SRSF1 is
a common essential gene for tumor cell lines (Figure 9(a)).
Across more than 500 lines representing 28 different cancer
cell lineages, the dependency scores of SRSF1 in hemato-
logical malignancies, especially myeloma, were significantly
lower than those in solid tumors, suggesting SRSF1 might
play an essential role in hematological malignancies
(Figure 9(b)). Additionally, the expression level of SRSF1
had a positive correlation with MKI67 expression in MM
patients (Figure 9(c), r=0.3567, and p < 0.0001), indicating
the role of SRSF1 in myeloma development.

To validate our findings, we first tested the expression
level of SRSF1 in a cohort of three control donors and eight
MM patients using RT-qPCR analysis (Figure 9(d)). The
result showed that SRSF1 expression was significantly higher
in MM patients than that in normal honors. Western blot
showed that SRSF1 was commonly expressed in MM cell lines
(Figure 9(e)). To investigate the role of SRSF1 in MM cell
proliferation, we used short hairpin RNA (shRNA) to reduce
SRSF1 expression in H929 and U266 cell lines. The pro-
liferation assay showed that SRSF1 knockdown significantly
inhibited the growth of H929 and U266 (Figures 9(f)-9(g)).
These results were consistent with our previous findings,
indicating that SRSF1 plays an essential role in the devel-
opment and progression of multiple myeloma.

4, Discussion

In recent years, treatments for MM patients have achieved
significant advances, while drug resistance is still a critical
feature of the disease and contributes to disease relapses and
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FIGURE 4: Survival analysis of the SRSF1"" and SRSF1'°" groups. The X-axis represents the survival time (month), and the Y-axis represents
survival Erobability. (a, b) Analysis of EFS and OS between the SRSF1M8" and SRSF1'°% groups in GSE24080 (n=>559). (c) OS between
g

SRSF1"
MM patients after treatment in GSE57315 (n=55).

poor overall survival. Thus, finding predictive biomarkers is
essential for improving treatment results in MM patients.
In this study, we acquired RNA expression data and
clinical information of MM patients from the GEO database.
Firstly, we investigated the role of SRSF family members in
MM and screened SRSF1 as the most potential factor for
further analysis. SRSF1 was upregulated in newly diagnosed
and relapsed MM patients. Furthermore, SRSF1 over-
expression was associated with several adverse clinical pa-
rameters, including old age, high levels of B2M and LDH, low
ALB level, and 1q21 amplification. Univariate and multi-
variate Cox regression was conducted to identify whether
SRSF1 was an independent prognostic factor for MM. Sur-
vival analysis revealed that patients in the SRSF1"€" group
had a much worse prognosis than those in the SRSF1'°"
group. These results turned out that the SRSF1 expression
level can be used as a potential predictor in MM prognosis.
The high expression level of SRSF1 has been shown to
confer poor prognosis in a variety of cancers, and the un-
derlying mechanisms were characterized. For example, SRSF1
overexpression was reported to increase tumor invasion and
metastasis in hepatocellular carcinoma [18]. Du et al. sug-
gested that SRSF1 promotes the progression of breast cancer
through oncogenic splice switching of PTPMT1 [19]. Addi-
tionally, SRSF1 involves in both normal and malignant he-
matopoiesis. To protect T cell intrathymic maturation, SRSF1

and SRSF1'Y in GSE4204 (n =538). (d) OS analysis of 559 pretreatment MM patients in the GSE2658 dataset. (e) OS analysis of

regulates various cellular processes, such as cell differentia-
tion, proliferation, apoptosis, and type I interferon signaling
pathway [21]. NSrp70, a splicing factor, regulates thymocyte
development via partial alternative processing of SRSF1 [22].
Sinnakannu et al. reported that high SRSF1 expression in
chronic myeloid leukemia was associated with imatinib re-
sistance, which was mediated by the SRSF1/PRKCH/PLCH1
axis [24]. In AML, SRSF1 was responsible for the generation
of alternative isoforms of proapoptotic and antiapoptotic
genes, including BCL-x, MCLs, and capsase9b [41]. In pe-
diatric acute lymphoblastic leukemia (ALL), SRSF1 was
upregulated in clinical samples from de novo or relapsed
patients and decreased when complete remission was
achieved [23]. In our study, we also found that the expression
level of SRSF1 was significantly higher in the relapsed MM
compared with newly diagnosed MM and increased with
disease recurrences. Alternative splicing events can produce
tumor-related splice variants and proteins [42]. Thus, it is
tempting to investigate whether increased SRSF1 expression
affects alternative splicing to drive MM progression.

To explore the potential biological mechanism of SRSF1
overexpression, GO, KEGG, and GSEA analyses were per-
formed. It turned out that pathways were enriched in cell
division, inflammatory response, cytokine-cytokine receptor
interaction, RNA metabolism, and transcriptional mis-
regulation, specifically P53, MAPK4/6, NOTCH, and MYC
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FiGure 5: Differently expressed genes (DEGs) and the results of GO and KEGG enrichment analysis. (a) Volcano plot of the DEGs
expression between the SRSF1"8" and SRSF1'°" groups. Green dots represent 126 downregulated genes, red dots represent 163 upregulated
genes, and grey dots indicate nonsignificant genes. (b) Heatmap shows top 30 upregulated genes and the top 30 downregulated genes. Red
represents high expression, white represents intermediate expression, and blue represents low expression. (c-d) Top 20 terms of GO and

KEGG enrichment analysis for differential expressed genes.

pathways, which are critical regulators involved in myeloma
initiation and progression. SRSF1 is important for spliceo-
some formation and RNA metabolism, and dysregulation of
RNA stability could promote MM progression [43]. More-
over, SRSFI has been identified as an MYC-sensitive onco-
genic protein [13], suggesting that abnormal SRSF1
expression might affect MYC-related pathways. It has been
established that p53, NOTCH, and MAPKG6/4 signaling
pathways play important roles in MM initiation and

progression [44, 45]. Moreover, IL-12 and B cell receptor
(BCR) signaling are essential for an immune response
[46-48]. Therefore, it is necessary to further investigate
whether SRSF1 promotes MM development through immune
modulation.

Bone marrow microenvironment (BMME) is important
for MM initiation and progression. Components of BMME,
such as immune effector cells and immune molecules, can be
abnormally edited, which further promote MM progression
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by enhancing initial immunotolerance and subsequent tu-
mor cell escape from immune surveillance [49]. We found
that Trl, Th2, and TCM exhibited a higher degree of in-
filtration in the SRSF1"8" group, while the degree of mac-
rophage infiltration was higher in the SRSF1'" group.
Correlation analysis showed that the SRSF1 expression level
was positively correlated with Trl, Th2, and TCM and
negatively associated with macrophages. Tr1 cells play a role
in inflammatory responses and immune tolerance; however,
dysfunction of Trl cells may limit antitumor immunity
[50, 51]. Studies have shown that Th2 cells are closely as-
sociated with MM progression. Increased Th2 cells lead to
a closer myeloma cell interaction, which subsequently
contributes to MM development [52-55]. Recently, immune
checkpoint therapy has achieved great breakthroughs in the
treatment of hematological malignancies. Finding reliable
biomarkers and potential targets can provide new sights for
immunotherapy in MM. Therefore, we compared check-
point markers and immune-related genes between the
SRSF1""_ and SRSF1'®" groups. We observed that check-
point markers such as PD-L1, LAG3, and PDCD1LG2 were
downregulated in the SRSF1"€" group. PD-L1 inhibitors,
such as durvalumab and pembrolizumab, have been re-
ported to be effective in the treatment of relapsed or re-
fractory MM [56-58]. SRSF1 expression might provide
anew idea for immune checkpoint inhibitor therapy. In MM
patients with high SRSF1 expression, immune-related genes
for immune response activation were remarkably down-
regulated, whereas immunosuppressive genes were in-
creased, indicating SRSF1 might play a role in modulating

the expression of immune-related genes. Additionally, al-
ternative processing of mRNA has been reported to have the
potential to provide new therapeutic targets for cancer
immunotherapy [59]. Thus, splicing variants and proteins
produced by alternative splicing caused by abnormal ex-
pression of SRSF1 may provide a new insight for immu-
notherapy in MM patients. Altogether, our findings showed
that the SRSF1 expression level could affect tumor immune
characteristics via infiltrating immune cells, TME, check-
point markers, and immune-related genes, thereby de-
termining the prognosis of patients with MM.

SRSF1 has been widely reported as an oncogene in many
tumors. We identified SRSF1 as an essential cancer-dependent
gene in tumorigenesis by using the DepMap database, especially
in multiple myeloma. To validate the bioinformatic results, first,
we performed RT-qPCR on clinical samples and found that
SRSF1 expression was significantly increased in MM patients
compared with controls. Then, we found that the knockdown of
SRSF1 led to growth inhibition of MM cell lines. Combined
with Figures 3 and5, patients with the high expression level of
SRSF1 were associated with worse outcomes, indicating that
SRSF1 can be a promising biomarker and target in MM di-
agnosis and treatment.

Although we briefly profiled the SRSF1-induced gene
expression, this study has some limitations. Firstly, whether
or how SRSFI affects the splicing events of target genes in
MM needs to be explored. Secondly, the number of MM
patients enrolled for validation was small. We are collecting
more primary MM samples to further detect and correlate
SRSF1 expression with the clinical outcomes of MM
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FIGURE 7: Enrichment analysis of gene signaling pathways between the SRSF1"" group and the SRSF1'°" groups. GSEA showed that
spliceosome (a), metabolism of RNA (b), protein ubiquitination (c), P53 signaling pathway (d), MYC targets (e), signaling by NOTCH (f),
interleukin 12 signaling (g), downstream signaling events of B cell receptor BCR (h), and MARK6/4 signaling (i) were enriched in the
SRSF1"&" group. All p <0.01.

patients. In our study, we identified the SRSF1 expression in
MM with different ages, ISS stages, amplification of 1q21,
and relapse statuses in newly diagnosed and relapsed MM
patients. Since MM is a heterogeneous disease with different

patterns of clonal evolution [60], to better evaluate SRSF1 as
an important prognostic factor, MM patients with various
genetic alterations and disease statuses should be enrolled in
the future study.
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and ***p<0.001. (c) Correlation of SRSF1 expression and MKI67

expression in GSE39754 (n=170). (d) The expression level of SRSF1 between three normal samples and eight MM patients. (e) The
expression of level of SRSF1 in four MM cell lines. (f, g) SRSF1 knockdown inhibits the growth of MM cell lines: H929 and U266.

5. Conclusion

In conclusion, our study revealed that SRSF1 expression is
upregulated in MM patients. Notably, SRSF1 overexpression
was associated with worse clinical characteristics in MM
patients (age, ISS stage, amplification of 1q21, relapse sta-
tuses as well as beta-2 microglobulin) and predicts poor OS
and EFS of MM patients. Additionally, the knockdown of
SRSF1 repressed the growth of MM cell lines. Thus, our
results demonstrated that SRSF1 may promote MM growth
with prognostic significance and can potentially be used as
a novel biomarker in the future. Moreover, more research
studies need to be carried out to explore the complicated
mechanisms of SRSF1 in MM development and progression.
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