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We tested the hypothesis that obesity reversal by calorie restriction (CR) versus treadmill exercise (EX) differentially modulates
adipose gene expression using 48 female C57BL/6 mice administered a diet-induced obesity (DIO) regimen for 8 weeks, then
randomized to receive for 8 weeks either: (1) a control (AIN-76A) diet, fed ad libitum (DIO control); (2) a 30% CR regimen; (3)
a treadmill EX regimen (with AIN-76A diet fed ad libitum); or (4) continuation of the DIO diet. Relative to the DIO controls,
both CR and EX reduced adiposity by 35–40% and serum leptin levels by 80%, but only CR increased adiponectin and insulin
sensitivity. Gene expression microarray analysis of visceral white adipose tissue revealed 209 genes responsive to both CR and EX,
relative to the DIO group. However, CR uniquely altered expression of an additional 496 genes, whereas only 20 were uniquely
affected by EX. Of the genes distinctly responsive to CR, 17 related to carbohydrate metabolism and glucose transport, including
glucose transporter (GLUT) 4. Chromatin immunoprecipitation assays of the Glut4 promoter revealed that, relative to the DIO
controls, CR significantly increased histone 4 acetylation, suggesting epigenetic regulation may underlie some of the differential
effects of CR versus EX on the adipose transcriptome.

1. Introduction

More than two thirds of all adults in the USA are either
overweight or obese [1]. Obesity is associated with an
increased risk of developing several chronic diseases, includ-
ing atherosclerosis, type 2 diabetes and many types of cancer
[2–4]. At the crux of obesity-related diseases is metabolic
dysregulation characterized by insulin resistance and ele-
vated levels of circulating insulin, glucose, and several other
metabolic factors directly linked to excess adiposity. In the
context of low adiposity, insulin activates signaling through
the insulin receptor, resulting in translocation of the glucose
transporter 4 (Glut4) to the cell membrane to increase
glucose uptake into the adipocyte [5]. In contrast, high
levels of adiposity are marked by enlarged adipocytes which
are unresponsive to insulin levels even under conditions of

hyperinsulinemia [6]. In the insulin-resistant state, adipose
tissue secretes adipokines and proinflammatory factors that
reduce insulin sensitivity in peripheral tissues, thereby affect-
ing whole-body glucose homeostasis [7, 8]. Unfortunately,
the mechanisms underlying these changes in insulin respon-
siveness in adipocytes are poorly understood. Furthermore,
mechanism-based lifestyle strategies for effectively offsetting
obesity-induced insulin resistance are lacking.

Increased energy expenditure and decreased energy
intake are the two most commonly recommended lifestyle
changes to reduce adiposity and restore insulin sensitivity
[9]. Calorie restriction (CR) and exercise (EX) are both
effective at improving insulin sensitivity and decreasing both
body weight and percent body fat [10, 11], although the
differential effects of these two antiobesity interventions on
weight reduction, body composition, and chronic disease
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risk are well established [9, 11]. There are also conflicting
reports within the human literature concerning the effective-
ness of EX in improving body fat distribution and adipokine
secretion, two key predictors of insulin resistance [10, 12–
14]. Furthermore, studies on the beneficial effects of EX have
focused mainly on molecular changes in the skeletal muscle
and liver, while considerably less is known about changes in
adipose tissue [11, 15, 16]. Therefore, the aim of this study
was to compare the effect of CR and EX on visceral white
adipose tissue (VWAT) gene expression, along with changes
in body composition and insulin resistance, in diet-induced
obese mice. We utilized an animal model of postmenopausal
obesity because postmenopausal women are especially at risk
for developing diseases associated with obesity such as type 2
diabetes [17] and breast cancer, the second leading cause of
cancer death in women [4].

In the present study, we show that, despite comparable
reductions in adiposity in obese mice, CR was more effec-
tive than EX at increasing adiponectin, improving insulin
sensitivity, and altering the adipose transcriptome. Although
both CR and EX qualitatively affected a shared set of
genes related to metabolism, CR had a stronger quantitative
effect on these genes. Furthermore, CR induced a dramatic
change in expression of an additional set of genes related to
carbohydrate metabolism and transport in VWAT that was
not observed in the EX mice.

2. Materials and Methods

2.1. Animal Study Design. All animal protocols were ap-
proved by the University of Texas at Austin Institutional
Animal Care and Use Committee. To model the postmeno-
pausal state, 6-week-old ovariectomized C57BL/6 mice were
used (Charles River Labs, Inc. Frederick, Md, USA). Ovariec-
tomized mice exhibit characteristics of the postmenopausal
state in humans: decreased levels of circulating estrogen, loss
of bone mineral density, and cessation of estrous cycles [18].
Upon arrival, mice had ad libitum access to water and chow
diet and were on a 12 : 12 h light/dark cycle.

To compare the effects of CR and EX on reversal of
obesity and insulin resistance, and other metabolic pertur-
bations, 48 mice were singly housed upon receipt and put on
a diet-induced obesity (DIO) regimen for 8 wks consisting of
ad libitum access to a 60 kcal% fat diet (D12492; Research
Diets, Inc, New Brunswick, NJ, USA), beginning one week
after arrival. At week 9, the mice were randomized into the
following treatment groups (n = 12/group): (1) DIO control
(AIN-76A diet fed ad libitum); (2) 30% CR; (3) treadmill
exercise regimen, fed AIN-76A diet ad libitum (EX); or
(4) continuation on the DIO regimen. In animal models,
CR diet regimens, typically involving a 20–40 reduction in
carbohydrate calorie intake and designed to limit total energy
intake while insuring adequate nutrition, represent the most
potent dietary approach to prevent and/or reverse obesity
and inhibit tumor growth [7]. The DIO control and EX
groups were switched from the DIO regimen to a modified
AIN-76A diet (D12450B, that is 10 kcal% fat and is the base
diet of our CR regimen; Research Diets, New Brunswick,
NJ, USA) consumed ad libitum. The DIO control group was

used as a feeding control for determining CR feed intake and
to ensure that EX mice were not overeating to compensate
for increased energy expenditure. We have previously shown
that switching DIO mice to the control (AIN-76A) diet
maintains adiposity near the peak level achieved during
the 8 weeks of DIO [19], and this was confirmed in the
current study. Since body weight and body composition data
on this DIO control diet were comparable to continuous
DIO, the DIO control group was used as the comparator
for all analyses. This also provided control for changes
in expression due to differences in diet composition/fat
consumption, since the diets for the DIO control, CR, and
EX groups all based on the AIN-76A diet. The CR group
consumed a modified diet (D0302702, administered in daily
aliquots) providing 30% fewer calories from carbohydrates
compared to the control diet, with all other components
being isonutrient when intake was limited to 70% of mean
kcal consumption of the diet control group. The EX group
were run on a variable speed treadmill 5 days/wk on a 5%
grade, beginning with 10 min/day at 12 m/min. Time and
intensity were increased gradually over the next two weeks
until the EX group reached 40 min/day at a maximum rate of
20 m/min. The DIO control, continuous DIO and CR mice
were all placed on the treadmill but not run. Body weights
and feed intake were measured weekly.

At the beginning of week 17, when the CR and EX mice
achieved comparable reductions in adiposity relative to the
DIO controls, mice were euthanized. In the morning the
mice were killed, all mice received their respective dietary
or exercise treatment, followed by a 6-hr fast. Mice were
anesthetized with isofluorane for terminal blood collection
via the retro-orbital venous plexus, and then killed by
cervical dislocation. Whole blood was allowed to clot at room
temperature for 30 min prior to centrifugation at 1000×g
for 10 min. The serum was removed and stored at −80◦C for
analyses. A 1-gram sample of VWAT was collected from each
mouse and stored at −80◦C until further analyses. Carcasses
were stored at −20◦C. Percent body fat and lean mass were
determined using dual energy X-ray absorptiometry (DXA)
(GE Lunar Piximus II, Madison, WI, USA) as described
previously [20].

To further characterize the effect of CR on the histone
code (which required different tissue processing procedures
than the gene expression microarray analysis), an additional
group of 15 mice received the AIN-76A control diet (labeled
overweight mice), CR diet (labeled lean mice), or DIO
(labeled obese mice) for 8 weeks (n = 5/diet group).
Body composition on these mice was determined using
quantitative magnetic resonance (Echo Medical Systems,
Houston, TX, USA). Animals were then killed after an 8-
hr fast, serum collected as described above, and tissues
(including VWAT, liver and mammary glands 4 and 9)
were excised, formadehyde treated to crosslink proteins,
and immediately flash frozen for analysis by the chromatin
immunoprecipitation assay described below.

2.2. Glucose Tolerance Test. To determine the effects of CR
and EX on glucose regulation following weight loss, we
conducted a glucose tolerance test (GTT) on the 48 mice
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on study at week 15. GTT was performed after a 6-hour
fast by administration of 20% glucose (2 g/kg body weight
IP). Blood samples were taken from the tail and analyzed
for glucose concentration using an Ascencia Elite XL 3901G
glucose analyzer (Bayer Corporation, Mishawaka, Ind).
Glucose levels were determined at baseline, 15, 30, 60, and
120 min after injection of glucose.

2.3. Serum Hormones. Leptin, insulin, and adiponectin were
measured in serum collected at the terminal bleed, using
mouse adipokine LINCOplex Multiplex Assays (Millipore,
Inc., Billerica, MA, USA) analyzed on a BioRad Bioplex 200
analysis system (Biorad, Inc. Hercules, CA, USA).

2.4. Gene Expression Microarray Analysis. Total RNA was
isolated from VWAT tissues using an organic extraction
and precipitation protocol with a DNAseI treatment step
(Asuragen Inc., Austin, TX, USA). Biotin-labeled targets
were prepared using modified MessageAmp-based protocols
(Ambion Inc., Austin, TX, USA) and hybridized to MOE
430A 2.0 arrays (Affymetrix, Santa Clara, CA, USA). The
arrays were scanned on an Affymetrix GeneChip Scanner
3000 7G. A summary of the image signal data, detection
calls, and gene annotations for every gene interrogated on the
array was generated using Affymetrix Statistical Algorithm
MAS 5.0 (GCOS v1.3), with all arrays scaled to 500. Sample
normalization was carried out using the Robust Multichip
Average (RMA) followed by multiple group analysis compar-
ison using ANOVA. Pairwise comparisons were performed
to identify expression fold differences with false discovery
rate (FDR) set at 0.05. Genes with expression differences
equal or greater than 2-fold compared to DIO controls, were
selected to be analyzed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID; [21]). The
resulting Gene Ontology (GO) analysis was used to identify
genes relevant to the different effects of CR and EX in
reversing obesity, some of which were selected for further
analysis. In the DAVID analysis, genes that were represented
more than once in the microarray output were filtered.
Some of the genes in the Gene Ontology analysis belonged
to more than one functional category and are tabulated
accordingly. Expression changes were verified in VWAT from
a separate cohort of mice that underwent CR or EX following
DIO, as described above, using Taqman Gene Expression
Assay (Applied Bioystems Inc., Carlsbad, CA, USA). Gene
expression data were normalized to the housekeeping gene
β-actin.

2.5. Chromatin Immunoprecipitation (ChIP) Assay. ChIP
assays were performed per manufacturer’s instructions (Mil-
lipore). Briefly, proteins from VWAT were formaldehyde
crosslinked to DNA. After homogenization, lysis, and son-
ication, proteins were incubated overnight with antibodies
to acetyl-histone H4 or trimethyl histone H4 (Millipore).
The DNA-protein complexes were washed, DNA was eluted,
and crosslinking was reversed by heating to 65◦C overnight.
DNA was purified using QIAGEN PCR purification kit
(QIAGEN, Valencia, CA, USA). Quantitative, real-time PCR
was performed using SYBR Green (ABI) with the following

Slc2a4 primers: forward primer 5′-CCCTTTAAGGCTCCA-
TCTCC-3′ and reverse primer 5′-TGTGTGTATGCCCCG-
AAGTA-3′ (ABI). GAPDH was used as the internal control
for analysis of acetylation with the following primers:
forward primer 5′-CATGGCCTTCCGTGTTCCTA-3′ and
reverse primer 5′-CCTGCTTCACCACCTTCTTGAT-3′.
For analysis of methylation, p16 was used as the internal
control with the following primers: forward primer 5′-
ACACTCCTTGCCTACCTGAA-3′ and reverse primer 5′-
CGAACTCGAGGAGAGCCATC-3′.

2.6. Statistics. Values are presented as mean ± standard
error (SE). One-way analysis of variance (ANOVA) followed
by Tukey’s Honestly Significant Differences test was used
to assess the effects of diet on mean weekly body weight
at weeks 8 and 16, body composition data at week 16,
serum adipokine levels, and fasting glucose levels. Repeated
measures analysis was used to evaluate glucose tolerance
tests. For serum insulin, mRNA levels (as measured by
qRT-PCR), and relative quantification of Glut 4 in ChIP
experiments means, were compared using Student’s t-test.
For all tests SPSS software was used (SPSS Inc., Chicago, IL,
USA), and P ≤ .05 was considered statistically significant.

3. Results

3.1. Both CR and EX Decrease Adiposity, Insulin and Leptin
Levels, but Only CR Increases Adiponectin and Restores Insulin
Sensitivity in DIO Mice. During the first 8 weeks, the DIO
regimen increased mean body weight of the 48 mice on study
from 20.3 ± 0.5 g to 30.7 ± 0.5 g, and % body fat to 52.3%.
As shown in Table 1, one week after randomization (week
9 of the study), the DIO control, EX, CR, and continuous
DIO groups did not differ in body weight. However, by week
16 of the study, the DIO control group (30.8 ± 1.6 g) was
significantly heavier than the EX mice (26.0 ± 0.9 g) and
the CR mice (19.9 ± 0.5 g), but not the continuous DIO
group (33.2± 1.5 g). The body weight data closely correlated
with calorie intake (for weeks 9–16: 709 ± 10.0 kcal for DIO
controls; 556 ± 4.6 kcal for the EX mice; 413.0 ± 4.3 kcal for
the CR; and 722 ± 11.6 kcal for the continuous DIO group)
and % body fat (Table 1). Although the CR mice weighed
significantly less than the EX mice (primarily due to the
increase in lean mass in the EX group relative to the CR
mice), there was no difference in percent body fat, with both
groups exhibiting >25% reductions in % body fat compared
to DIO control mice. Achieving meaningful reductions in
adiposity in obese mice via CR and EX was a goal of the
study design, given that percent body fat is associated with
insulin resistance and other key metabolic changes associated
with DIO [22]. Since body weight, kcal consumption and
body composition data for mice on the DIO control diet were
comparable to mice on the continuous DIO diet, the DIO
control group was used as the comparator for all analyses.
This allowed us to eliminate the possibility that any changes
observed in hormones and gene expression could have been
due to differences in diet composition/fat consumption,
since the diets for the DIO control, CR, and EX groups
were all based on the same AIN-76A diet composition.
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Table 1: Body composition after 8 weeks of DIO followed by 8 weeks of control diet, exercise, or calorie restriction.

Group Body weight week 9 (g) Body weight week 16 (g) Percent body fat (%) Lean mass (g)

DIO Control 30.1 ± 0.9a 30.8. ± 0.6a 51.1 ± 3.8a 12.6 ± 0.2a

Exercise 29.3 ± 0.6a 26.0 ± 0.9b 38.9 ± 2.7b 13.6 ± 0.2b

Calorie Restriction 31.3± 0.6a 19.9 ± 0.5c 33.7 ± 1.4b 10.5 ± 0.1c

ContinuousDIO∗ 30.3 ± 1.2a 33.2± 1.5a 57.3 ± 2.9a 11.8 ± 0.2d

Data are presented mean ± SEM. Significant differences (P < .05) beween data within a column are indicated by different superscripts; n = 12/group.

As shown in Figure 1(a), this also allowed us to limit our
hormone and microarray analyses to 3 groups (DIO control,
CR, and EX), without the continuous DIO group, thus
increasing the number of mice per group analyzed within our
budget constraints.

At the end of the study we also measured circulating
leptin and adiponectin levels, two adipokines that are pos-
itively and negatively correlated with adiposity, respectively
[23]. Consistent with decreased adiposity, leptin levels were
roughly 80% lower in the CR and EX mice (Figure 1(b)).
However, only CR increased adiponectin levels compared
to DIO control mice (Figure 1(c)), even though percent
body fat in CR and EX mice did not statistically differ. The
higher levels of adiponectin observed in the CR mice were
associated with decreased fasting insulin levels (Figure 1(d)),
decreased fasting glucose levels (Figure 1(e)), and increased
insulin sensitivity as indicated by significantly lower blood
glucose levels at every time point following glucose challenge
(Figure 1(e)). In contrast, the EX mice did not display
increased insulin sensitivity or decreased fasting insulin levels
compared to sedentary DIO. Taken together, these data
demonstrate that CR and EX differentially affected adipose
tissue metabolism.

3.2. Transcriptional Changes Common to CR and EX in
VWAT. Gene expression microarray analysis was performed
on VWAT collected following the 8-wk weight-loss phase
after DIO. Pairwise comparisons of DIO versus CR and DIO
versus EX revealed that 725 transcripts were significantly
altered (±2.0 fold, P < .05, Figure 2(a)). Of those 725
transcripts, 209 were common to CR and EX (Figure 2(a)),
possibly representing a suite of genes most sensitive to energy
balance. GO analysis was used to categorize these genes
according to function and revealed that the majority of genes
altered both by CR and EX were related to metabolic process,
immune response, and stress response (Figure 2(b)). Within
the metabolic process category, 24 of the genes were related
to lipid metabolism, and overall the response of the genes
to CR and EX was qualitatively similar. More specifically,
a number of genes involved in fatty acid synthesis and
transport were upregulated (Figure 2(c)). These included
stearoyl-CoA desaturase (Scd1), fatty acid synthase (Fasn),
carnitine palmitoyltransferase 1 (Cpt1), and elongation of
long chain fatty acids 3 and 6 (ELOVL3 and ELOVL6). In
addition, 9 genes related to glucose metabolism were affected
by CR and EX, including pyruvate dehydrogenase E1 alpha
1(Pdha1), leptin (Lep), and glycerol phosphate dehydroge-
nase 2 (Gpd2). As in lipid metabolism, genes related to
carbohydrate metabolism were qualitatively responsive to

both CR and EX, although CR had a stronger quantitative
effect.

Reductions in adiposity are accompanied by lower levels
of immune cell infiltrates into adipose tissue, which mediate
the proinflammatory state associated with obesity [24].
As expected, the reduced adiposity in CR and EX mice
was associated with decreased expression of genes related
to immune response (Figure 2(b)). These immune-related
genes also comprised the majority of the genes in the stress
response category, including downregulation of transcripts
that code for chemokines that attract and are produced by
monocytes and macrophages, specifically Chemokine (C-C
motif) ligand (Ccl) 2, 6, 7, and 9.

3.3. Unique Transcriptional Changes in Response to CR or
EX in VWAT. CR uniquely affected expression of 496 genes,
whereas a mere 20 genes were responsive only to EX
(Figure 2(a)). GO analysis of the genes uniquely responsive
to EX revealed that only the grouping of genes related
to mitochondrial transport was significant. Specifically,
uncoupling proteins Ucp1 and Ucp2 were both upregulated
by EX. Given the robust transcriptional response to CR, we
focused our analysis on those genes whose expression was
affected by CR but not EX (Table 2). GO analysis showed
that in every category of genes altered by both CR and EX,
CR impacted an additional set of genes unaffected by EX.
For example, in genes relating to cellular lipid metabolic pro-
cesses, which was the largest subset of transcripts uniquely
altered by CR, soluble carrier family 27 (Slc27a1) and Acetyl-
Coenzyme A carboxylase alpha (Acaca) were upregulated.
CR also uniquely increased expression of sterol regulatory
element binding transcription factor 1 (Srebp1), a master
regulator for lipid metabolism in adipocytes. With respect
to immune response and stress response, CR resulted in a
downregulation of gene expression, whereas expression of
genes related to biosynthesis of steroids was upregulated.

In addition to affecting more genes in each functional
category than EX, CR affected the transcription of genes
in another category not modulated by EX, specifically 4
genes related to glucose transport. Complementing this
increase in transcription of glucose transport genes, CR
resulted in upregulation of another 14 genes related to
carbohydrate metabolism processes. Taken together, these
data are suggestive of increased glucose flux into the adipose
tissue, which may underlie the enhanced insulin sensitivity
observed in response to CR.

3.4. Real-Time RT-PCR Confirmation of Microarray Results.
Given that the DIO mice were on a high-fat diet, and the CR
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Figure 1: Effect of calorie restriction or exercise in diet-induced obese mice on serum hormones and glucose tolerance. (a) Animal study
design for gene expression microarray experiments. (b) Serum leptin levels, (c) serum adiponectin levels, and (d) serum insulin levels after
8 weeks of intervention, (n = 11 for DIO group; n = 10 for CR group; n = 10 for EX group). (e) Blood glucose concentrations during a
glucose tolerance after 7 weeks of intervention. Data shown are mean ± SE. DIO (•), EX (�), CR (�), n = 12/group. Significance (P ≤ .05)
between groups is denoted by different letters.
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Figure 2: Effect of weight loss induced by calorie restriction or exercise on mRNA expression in VWAT. (a) Venn Diagram of genes
differentially expressed by CR and EX compared to DIO controls. (b) Classification of genes targeted by both CR and EX. (c) Heat map
of genes related to metabolic processes affected by both CR and EX. (d) Classification of genes targeted uniquely by CR (n = 6/group).

and EX consumed a low-fat diet, we were concerned that the
observed differences in expression of metabolic genes might
be due to differences in the macronutrient contents of the
diets and not energy balance per se. To address this concern,
confirmatory analysis of mRNA expression was done using
the diet control mice as the reference group. A gene that was
responsive to both CR and EX (Lep), two genes uniquely
responsive to EX (Ucp1 and Ucp2), and three genes uniquely

responsive to CR and relating to carbohydrate metabolism
and transport (Slc2a4, Acly, and Sh2b) were selected for val-
idation. RT-PCR analysis verified that Ucp1, but not Ucp2,
was significantly increased by EX only (Figure 3). Although
according to the microarray analyses, Lep was reduced by
both CR and EX, RT-PCR analyses revealed that only CR sig-
nificantly reduced Lep expression (Figure 3). All three genes
relating to carbohydrate metabolism and transport, Acly,
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Figure 3: Confirmation of microarray data analysis of mRNA expression in VWAT. Expression of mRNA transcripts in VWAT from DIO
control, CR and EX mice (n = 7/group). (a) Leptin (Lep), (b) Uncoupling protein 1 (Ucp1), (c) Uncoupling protein 2 (Ucp2), (d) Solute
carrier 2, family 4 (Slc2a4) (e) ATP-citrate lyase (Acly), and (f) SH2B adapter protein 2 (Sh2b2) (Data shown are mean ± SE, ∗(P ≤ .05)).

Slc2a4, and Sh2b2, were indeed significantly increased by CR
only (Figure 3). Importantly, Slc2a4 codes for the insulin-
responsive glucose transporter, Glut4. Translocation of Glut4
from the cytosol to the plasma membrane in response to
insulin signaling is the rate-limiting step of glucose transport
into the adipocyte. Furthermore, downregulation of Glut4 at
the messenger RNA and protein levels has been implicated in
obesity and insulin resistance. Although we lacked sufficient
VWAT samples for an extensive protein analysis, due to the
use of these tissues for genomic and other analyses, Western
blot analyses for Glut4 protein expression on 3 VWAT
samples/group showed similar trends as observed with the
mRNA analyses. Specifically, the lowest Glut 4 protein
expression was observed in VWAT from a control mouse,
the highest expression was in a CR sample, and the samples
from the exercise group were similar to the controls (data not
shown). Finally, increases in the enzyme ATP-citrate lyase
(Acly), which was also upregulated by CR but not EX, has
recently been linked to increases in Glut4 mRNA levels [25].
For these reasons, we focused our analyses on elucidating
how CR resulted in increased transcription of Glut4.

3.5. CR Results in Acetylation of Histone 4 at the GLUT4
Promoter. Since regulation of acetylation of histones has
been shown to be nutrient dependent [25], we hypothesized
that increased Glut4 mRNA expression in CR mice may be
the result of histone modifications at the Glut4 promoter. To
test this hypothesis, we generated obese (DIO) and lean (CR)
mice (relative to overweight control mice consuming AIN-
76A diet ad libitum) through an 8-week diet intervention.
Body weight and percent body fat were positively associated
with fasting blood glucose levels and inversely related to

Glut4 mRNA levels in the VWAT (Figures 4(b), 4(c), and
4(d)). Modifications to the histone code such as methylation,
which can result in decreased transcription [26] or acetyla-
tion, which can result in increased transcription [25] may
account for the differences in Glut4 transcription in VWAT,
so both forms of epigenetic alteration were assessed. There
were no differences in trimethylation of histone 4 at the Glut4
promoter (Figure 5(a)). However, CR significantly increased
histone 4 acetylation at the Glut4 promoter compared to
control mice (Figure 5(b)), which was associated with higher
levels of Glut4 mRNA and increased insulin sensitivity.

4. Discussion

With over two thirds of American adults classified as
overweight or obese [1], increased understanding of how best
to reverse the harmful effects of obesity is urgently needed.
Given the critical role of adipose tissue in regulating glucose
homeostasis and other aspects of metabolism, analysis of the
changes that occur in adipose tissue after weight loss could
reveal novel targets for prevention or treatment of obesity-
related diseases. To our knowledge, this is the first study to
compare the effects of CR and EX (the two most commonly
recommended lifestyle modifications to prevent or reverse
obesity) on gene expression in adipose tissue in a model of
DIO. The direct comparison of these two obesity reversal
interventions revealed the following novel findings: (1) CR
led to altered expression of more than 20 times the number
of genes in the adipose tissue than were uniquely affected
by EX; (2) alteration of expression of carbohydrate transport
genes (particularly GLUT4) was uniquely affected by CR and
correlated with the increased insulin sensitivity exhibited by
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Figure 4: Lean phenotype is associated with lower blood glucose levels and elevated levels of Glut4 mRNA relative to control mice. (a) Study
design for chromosomal immunoprecipitation experiments. (b) Average body weight of mice on DIO, overweight (control AIN-76A) diet,
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CR; (3) upregulation of Glut 4 by CR may be explained in
part by our finding that CR increased acetylation of histone
4 at the Glut4 promoter.

CR and EX both resulted in significant weight loss
compared to sedentary DIO controls, which remained obese
with a % body fat >50%. Although CR, and EX groups
displayed comparable levels of percent body fat at the end
of the intervention, only CR significantly improved insulin
sensitivity. Exercise has been shown to increase insulin
sensitivity in mice and humans [27, 28], although these

effects are less clear in obese individuals such as the DIO
mice used in this report. The relatively short intervention
in our study may explain why EX was not as affective
as CR at altering indices of insulin resistance. In other
rodent studies that showed a significant affect of EX, the
intervention was either more than 10 weeks long [10, 28, 29]
or the intervention period was longer than the period of
diet-induced obesity [15]. These differences in study design
suggest that, in the short term, EX may not be as effective as
CR in restoring insulin sensitivity.
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Table 2: Transcriptional changes in response to calorie restriction or exercise in visceral white adipose tissue.

Gene Symbol Gene title Fold change

Cellular lipid metabolic process CR × DIO

Slc27a1 Solute carrier family 27 (fatty acid transporter) 2.53 up

Fads2 Fatty acid desaturase 2 2.18 up

Ces3 Carboxylesterase 3 2.51 up

Sult1a1 Sulfotransferase family 1A 2.22 up

Ptges Prostaglandin E synthase 2.25 up

Sgpp1 Sphingosine-1-phosphate phosphatase 1 2.73 down

Echs1 Enoyl Coenzyme A hydratase 2.00 up

Hsd11b1 Hydroxysteroid 11-beta dehydrogenase 1 3.28 up

Apoc3 Apolipoprotein C-III 5.71 up

Srebf1∗ Sterol regulatory element binding transcription factor 1 2.98 up

Aldh1a7 Aldehyde dehydrogenase family 1 2.18 up

Hpgd Hydroxyprostaglandin dehydrogenase 15 (NAD) 2.09 down

Rdh11 Retinol dehydrogenase 11 4.59 up

Rarres2 Retinoic acid receptor responder (tazarotene induced) 2 2.61 down

Nsdhl∗ NAD(P) dependent steroid dehydrogenase-like 2.65 up

Gpam Glycerol-3-phosphate acyltransferase 2.06 up

Hmgcs1∗ 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 3.01 down

Abat 4-aminobutyrate aminotransferase 2.88 down

Sorl1 Sortilin-related receptor 2.77 up

Pip4k2a Phosphatidylinositol-5-phosphate 4-kinase 2.02 down

Acaca Acetyl-Coenzyme A carboxylase alpha 4.60 up

Tm7sf2∗ Transmembrane 7 superfamily member 2 3.69 up

Sc5d∗ Sterol-C5-desaturase 2.11 up

Fdft1∗ Farnesyl diphosphate farnesyl transferase 1 2.68 up

Hsd17b12∗ Hydroxysteroid (17-beta) dehydrogenase 12 2.17 up

Pcx∗ Pyruvate carboxylase 2.88 up

Cellular carbohydrate metabolic process

Fn3k Fructosamine 3 kinase 4.05 up

Chst1∗ Carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 2.00 up

Dlat Dihydrolipoamide S-acetyltransferase 2.59 up

Pkm2 Pyruvate kinase 2.37 up

Pmm1 Phosphomannomutase 1 2.72 up

Ppp1r1a Protein phosphatase 1 2.61 up

Pgd Phosphogluconate dehydrogenase 2.40 up

Agl Amylo-1 2.16 up

Oxct1 3-oxoacid CoA transferase 1 2.17 down

Pdk1 Pyruvate dehydrogenase kinase 3.07 up

Gpd1 Glycerol-3-phosphate dehydrogenase 1 (soluble) 2.02 up

Taldo1 Transaldolase 1 2.03 up

Glucose transport

Sh2b2∗ SH2B adaptor protein 2 3.26 up

Slc2a4 Solute carrier family 2 (facilitated glucose transporter) 3.43 up

Pcx∗ Pyruvate carboxylase 2.88 up

Klf15 Kruppel-like factor 15 2.36 up

Immune response CR × DIO

Malt1 Mucosa associated lymphoid tissue Lymphoma translocation gene 1 2.55 down

Bcl6∗ B-cell leukemia/lymphoma 6 2.90 down

Clec7a∗ C-type lectin domain family 7 2.89 down

Cfb Complement factor B 2.53 down

Cd55∗ CD55 antigen 2.25 Down

Thy1 Thymus cell antigen 1 2.44 down
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Table 2: Continued.

Gene Symbol Gene title Fold change

Biosynthesis of Steroids

Lss Lanosterol synthase 2.13 up

Hmgcs1∗ 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 3.01 down

Tm7sf2∗ Transmembrane 7 superfamily member 2 3.69 up

Sc5d∗ Sterol-C5-desaturase 2.11 up

Fdft1∗ Farnesyl diphosphate farnesyl transferase 1 2.68 up

Hsd17b12∗ Hydroxysteroid (17-beta) dehydrogenase 12 2.17 up

Nsdhl∗ NAD(P) dependent steroid dehydrogenase-like 2.65 up

Sh2b2∗ SH2B adaptor protein 2 3.26 up

Stress response

Thbs1 Thrombospondin 1 2.29 down

Tfpi2 Tissue factor pathway inhibitor 2 4.32 down

Gp1bb Glycoprotein Ib 2.06 up

Taok3 TAO kinase 3 2.21 down

Sod3 Superoxide dismutase 3 2.17 down

Dusp10 Dual specificity phosphatase 10 2.62 down

Adrb3 Adrenergic receptor 2.09 up

F2r Coagulation factor II (thrombin) receptor 2.22 down

Ccnd1 Cyclin D1 2.91 down

Evl Ena-vasodilator stimulated phosphoprotein 2.32 down

Ctsb Cathepsin B 2.00 down

Ly86 Lymphocyte antigen 86 2.65 down

Fabp4 Fatty acid binding protein 4 2.03 up

Rad50 RAD50 homolog (S. cerevisiae) 2.27 down

Tsc22d2 TSC22 domain family 2 2.41 down

Ptger3 Prostaglandin E receptor 3 (subtype EP3) 2.21 up

Lcp1 Lymphocyte cytosolic protein 1 3.06 down

Pros1 Protein S (alpha) 2.09 down

Hspa12a Heat shock protein 12A 2.40 down

Anxa2 Annexin A2 2.01 down

Uhrf1 Ubiquitin-like 2.84 down

Cdkn1a Cyclin-dependent kinase inhibitor 1A (P21) 2.28 down

Srebf1∗ Sterol regulatory element binding transcription factor 1 2.98 up

Chst1∗ Carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 2.00 up

Bcl6∗ B-cell leukemia/lymphoma 6 2.90 down

Clec7a∗ C-type lectin domain family 7 2.89 down

Cd55∗ CD55 antigen 2.25 down

Exercise unique

Mitochondrial Transport EX × DIO

Ucp1 Uncoupling protein 8.94 up

Ucp2 Uncoupling protein 2 2.09 down
∗

Genes represented in two different categories.

CR has been shown to decrease expression of genes
related to aging and tumorigenesis in multiple tissues
[30]. However, there is a paucity of studies examining the
effect of CR on adipose tissue following weight loss. More
importantly, there are no studies, to our knowledge, directly
comparing the effect of CR and EX on gene expression
in adipose tissue. To our knowledge there are only two
microarray studies comparing CR to EX; one was performed

by our group in the mouse mammary gland [31] and the
other by Lu et al. in mouse skin [32]. In these reports CR
and EX exhibited distinct effects on gene expression, with CR
impacting more than 4 times the number of genes than EX.
In the present study, we found that this differential impact
was more pronounced in adipose tissue, with CR affecting
more than 20 times the number of genes altered by EX. Not
only did CR induce a stronger quantitative effect than EX on
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Figure 5: Calorie restriction increases histone H4 acetylation at the GLUT 4 promoter. (a) Relative quantification of Glut4 DNA
immunoprecipitated with anti-trimethyl H4 antibody. (b) Relative quantification of Glut4 DNA immunoprecipitated with anti-acetyl H4
antibody (n = 3/group). Data shown are mean ± SE, ∗(P ≤ 0.05).

genes that were qualitatively similar in their response to both
CR and EX, but CR affected an additional 48 genes related to
metabolism that were unaffected by EX. Of those genes, there
was an overall upregulation of genes related to carbohydrate
metabolism and glucose transport, including Glut4.

We also found that DIO downregulates multiple genes
that play a role in lipid metabolism and upregulates a profile
of genes related to immune/inflammatory response [33, 34].
Furthermore, many of the lipid metabolism genes shown to
be decreased by DIO were increased by CR and EX in our
study [33]. Likewise, immune response genes that have been
shown to be increased by DIO were decreased after weight
loss induced by CR or EX [33]. Together these data support
previous findings that in the obese state, there is diminished
fatty acid synthesis and transport, characteristic of insulin-
resistant adipose tissue rich in immune cell infiltrates.
Importantly, our data show that these processes are sensitive
to both CR and EX interventions.

Many of the transcripts related to lipid and carbohydrate
metabolism that were affected by both CR and EX in the
present study were also shown by Shankar et al. to be induced
by a high-carbohydrate diet [35]. Increased transcription of
these genes is consistent with increased uptake of glucose and
fatty acids into the adipose tissue. In the study by Shankar
et al. these transcriptional changes were measured in rats
fed a high-carbohydrate diet for 4 weeks, during which time
the rats gained weight and the adipocytes hypertrophied,
whereas the mice in our study first underwent DIO but
then lost weight for 8 weeks before analysis. The similarities
between the two studies are indicative of increased signaling
through the insulin receptor/phosphatidylinositol 3-kinase
(IR/PI3K) pathway that mediates glucose uptake and the
lipogenic effects of insulin in adipose tissue.

Glucose uptake into adipose tissue is mediated by two
different Glut isoforms: Glut1 and Glut4. Glut1 mediates
basal uptake of glucose into adipocytes. Although others
have reported that Glut1 mRNA increases with obesity [36],
we did not observe any changes in Glut1 mRNA expression
in the microarray. Translocation of the GLUT4 transporter

from the cytosol to the membrane is the rate-limiting step in
insulin-mediated glucose uptake in adipocytes and skeletal
muscle [37]. The importance of Glut4 function in adipose
tissue is underscored by the finding that overexpression of
Glut4 in adipocytes rescues insulin resistance in mice with
muscle-specific knockout of Glut4 [38]. However, expression
of Glut4 in the muscle does not compensate for lack of Glut4
activity in adipose tissue [39], further implicating adipose
tissue as a key metabolic organ in the etiology of insulin
resistance. There is considerable evidence that Glut4 mRNA
levels in adipose tissue decrease with obesity [40], and that
increases in Glut4 mRNA in adipose tissue can ameliorate
insulin resistance [41, 42]. Indeed, our finding that Glut4
mRNA levels were significantly increased by CR, but not
by EX, and that this increase was associated with improved
insulin sensitivity, supports this idea. Therefore, increased
transcription of Glut4 in VWAT during weight loss may be a
critical event in reversing insulin resistance.

Studies into the transcriptional regulation of Glut4 in
skeletal muscle implicate a histone deacetylase (HDAC5)
as a crucial mediator of changes to Glut4 mRNA levels
in response to exercise [43]. Raychaudhuri et al. have also
described a series of histone modifications mediated by
histone deacetylases and histone methyltransferases that
culminate in a metabolic knockdown of the Glut4 gene in
the skeletal muscle of rats that had experienced intrauterine
growth restriction [44]. Collectively, these studies suggest
that transcriptional regulation of the Glut4 gene is highly
responsive to changes in energy balance. This led to our
hypothesis that Glut4 mRNA levels in adipose tissue could be
subjected to similar transcriptional regulation. In support of
this hypothesis, Wellen et al. recently discovered that during
adipocyte differentiation, levels of global histone acetylation
are dependent on glucose availability [25]. More specifically,
acetylation of histones 3 and 4 at the Glut4 promoter is
linked to increased Glut4 mRNA expression in response to
higher concentrations of glucose during differentiation. Our
in vivo ChIP data extend the in vitro findings and show that
increased acetylation of histone 4 at the Glut4 promoter,
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which was associated with higher levels of Glut4 mRNA,
occurred in lean mice that were highly insulin sensitive as
indicated by significantly decreased fasting glucose levels.
Taken together, these data suggest that insulin-responsive
adipose tissue maintains H4 acetylation. This leads to
increased transcription of Glut4 to facilitate continued
glucose uptake. However, as adiposity increases so does
insulin resistance [3]. Deregulation of signal transduction
downstream of the insulin receptor results in decreased traf-
ficking of Glut4 to the cell membrane [45, 46] and a decline
in glucose flux into the adipocyte [47]. According to the
findings of Wellen et al., limited glucose availability results in
diminished histone acetylation and decreased Glut4 mRNA
expression [25]. Therefore, in the context of obesity and
insulin resistance, the lower levels of Glut4 mRNA expressed
in adipose tissue may be a consequence of decreased insulin-
mediated uptake of glucose that results in diminished
histone acetylation at the Glut4 promoter. Further analyses
are required to determine if other modifications to the
histone code at the Glut4 promoter may be contributing to
transcriptional repression of Glut4 mRNA in obesity.

In conclusion, these findings show that obesity rever-
sal by CR versus EX results in many shared, but also
many differential, changes in the adipose transcriptome. In
particular, CR has specific and significant effects on the
expression of key metabolic genes and pathways associated
with obesity-related disease. In addition, some of the effects
of these antiobesity interventions on VWAT gene expression
and metabolism may result from chromatin remodeling, as
illustrated by CR’s effect on histone acetylation of the GLUT4
promoter. Taken together, these studies provide insights
regarding new targets, including potential epigenetic-related
regulation of key metabolic genes, such as Glut4 acetylation,
for preventing or treating obesity-related diseases.
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