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The retinal fractal dimension (FD) is a measure of vasculature branching pattern complexity. FD has been considered as a potential
biomarker for the detection of several diseases like diabetes and hypertension. However, conflicting findings were found in the
reported literature regarding the association between this biomarker and diseases. In this paper, we examine the stability of the
FD measurement with respect to (1) different vessel annotations obtained from human observers, (2) automatic segmentation
methods, (3) various regions of interest, (4) accuracy of vessel segmentation methods, and (5) different imaging modalities. Our
results demonstrate that the relative errors for the measurement of FD are significant and FD varies considerably according to the
image quality, modality, and the technique used for measuring it. Automated and semiautomated methods for the measurement of
FD are not stable enough, which makes FD a deceptive biomarker in quantitative clinical applications.

1. Introduction

The blood vessels, as part of the human circulatory system,
transport the blood with nutrition and oxygen and remove
the waste throughout the body. The development of the
vascular system is not a random process but follows a set
of optimization principles, such as the minimum friction
between the blood flow and the vessel wall, the optimal
heart rate to achieve proper blood supply, and the shortest
transportation distance [1]. Inmany diseases such as diabetes,
glaucoma, hypertension, and other cardiovascular diseases,
these optimal conditions are no longer maintained, leading
topological abnormalities to appear in the vascular network.
Vessels in organs like the brain, the lung, or the kidney
can only be observed indirectly by certain image modalities,
such as magnetic resonance angiograph, CTA, and X-ray
angiography. However, the vasculature in the nerve fiber
layer of the retina can be observed directly and noninvasively
by fundus cameras. Therefore, increasing attention has been

drawn to the retinal images for the quantitative analysis of
retinal blood vessels, whichmight provide useful information
about the progress of systemic and cardiovascular diseases.

One of the biomarkers that could describe changes in
microvasculature due to the disease progression is the fractal
dimension (FD). The theory of FD was first introduced by
Mandelbrot in 1983 [2]. He proposed a set of mathematical
definitions for a self-similar object and used a noninteger
number to describe the dimension of this highly irregular
shape. In 1989, the fractal dimension was first introduced into
the ophthalmology by Family et al. [3]. After that, there has
been a growing interest in studying the association between
the fractal dimension of the retinal vasculature and the
disease severity and progression [4–8].

In many clinical studies, the fractal dimension has shown
its potential in characterizing the growth of neurons, tissues,
and vessels. Firstly, the fractal describes growing progression
of the neuron cells by quantifying their complex dendrites.
For instance, Ristanović et al. [9] and Milošević et al. [10]
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studied the morphology of the branching patterns in the cor-
tical neuronal dendrites by fractal dimension and Reichen-
bach et al. [11] used it as a discriminator for different mam-
malian astroglial cell types. In the case of tissue image anal-
ysis, Li et al. [12] applied the fractal calculation on medical
tissue images in order to detect the special texture of patho-
logical tissues. In addition, fractal dimension was used as a
feature for parenchymal lung disease detection [13]. Finally,
as is the focus of this paper, the fractal dimensions have been
appliedwidely on human retinal images for disease detection.

However, we found conflicting findings in different clin-
ical studies. Some literature reports a higher FD in images
of a patient group with a late stage of proliferative diabetic
retinopathy compared to a healthy control group [4, 8, 14].
Broe et al. [7] did a fractal analysis on optic disc centered
images of 180 patients who had type 1 diabetes in a 16-year
follow-up study. They compared the fractal dimension of the
patients with their values that were recorded 16 years ago
and found that the fractal dimensionwas generally decreased.
Similarly, Grauslund et al. [6] compared the box dimension of
94 type 1 diabetes patients without proliferative retinopathy
to 79 patients with proliferative retinopathy (PR).They found
that the PR group had lower dimension than the group with-
out PR. Also papers report mixed results when comparing
healthy and diabetic groups. In the study of Aliahmad et
al. [8], 189 optic disc centered retinal images of healthy and
diabetic individuals were examined with box dimension.The
statistical results showed that the healthy subjects had higher
fractal dimension than the diabetic group. However, Yau et
al. [5] found higher fractal dimensions in the diabetic group
with 498 patients compared to those in the normal group
with 743 healthy subjects.Moreover, the cross-sectional study
conducted by Cheung et al. [4] showed that the longer the
diabetic duration of one patient was, the higher his retinal
fractal dimension was.

Of course, all the above-mentioned studies had different
setups. Not only the number of patients but also the cameras
used in data acquisition in each study were different. There-
fore, the images’ resolution, illumination, and quality varied
across studies. Moreover, the computer software which semi-
automatically does the optic disc detection, vessel segmen-
tation, vessel skeletonization, and the fractal computation
was also different in each study. Finally, the region of interest
for FD calculation was not the same for all studies. These
different experimental settings, therefore, may be the reasons
of conflicting findings in each study.

In that case, it is worth to investigate the reliability of
the FD measurement, since the measurement itself might
not be stable enough to provide reliable results. Previously,
few works analyzed the stability and the reliability of FD
measurements. Wainwright et al. [14] studied the robustness
of the FD measurement in terms of variation of brightness,
focus, contrast, and image format and concluded that FD
is highly sensitive to all these factors. MacGillivray and
Patton [15] reported that the segmentation threshold value
significantly affected the FD. Mendonça et al. [16] found that
the FD was highly dependent on both vessel segmentation
and FD calculation methods.

In our previous study [17], we have examined the stability
of multiple fractal measurements in different cases. In this
paper, we extend the previous work into 6 cases, in which
we calculated the variation of the fractal dimension. (1)
We calculated the FD values in groups of subjects with
various diabetic retinopathy grades, where the intergroup
and intragroup variations are compared. (2) We calculated
the fractal dimension on the manual vessel segmentation
annotated by different human observers. (3) We investi-
gated the stability of FD using different vessel segmentation
methods. (4) We explored the changes of FD in various
regions of interest. (5) We tuned the segmentation threshold
values to examine the influence of segmentation accuracy on
the fractal measurements and (6) we compared the fractal
dimensions that are calculated on the images acquired by
different cameras.

The paper is organized as follows: in Section 2, we
introduce the materials and datasets used in this study. In
Section 3, we explain the pipeline for computing the fractal
dimension, including four state-of-the-art vessel segmen-
tation methods, the region of interest determination, and
three classic fractal dimension calculation methods that are
widely used in clinical studies. In Section 4 the results of
different cases are compared, and the discussion is presented
in Section 5. Finally, Section 6 summarizes the conclusions.

2. Materials

In this section, we introduce the public retinal image datasets
and the test image dataset that were used in the stability stud-
ies. We used three datasets: MESSIDOR, DRIVE, and a test
dataset including images captured by five different cameras.

2.1. MESSIDOR Database. The MESSIDOR public dataset
[21] includes 1200 eye color fundus images with diabetic
retinopathy grades (R0, R1, R2, and R3). The grades are
provided based on the number of microaneurysms and
hemorrhages and the presence of neovascularization. The
images were taken in 3 ophthalmologic departments in
France by using the Topcon TRC NW6 (Topcon, Japan) with
field of view (FOV) of 45 degree. The images have three
different sizes: 1440 × 960, 2240 × 1488, and 2304 × 1536. In
this paper, we use this dataset for investigating the intragroup
FD differences.

2.2. DRIVE Database. The DRIVE dataset [22] contains 40
fovea centered color retinal images, which were captured on
33 nondiabetic retinopathy subjects and 7 with mild early
diabetic retinopathy. The images were acquired by a Canon
CR5 nonmydriatic 3CCD camera (Canon, Japan) with a FOV
of 45 degree. The 40 images were randomly divided into a
training set and a testing set of equal size. In the testing
set, the images were manually annotated by 2 different well-
trained ophthalmologists. These 20 test images were used for
the fractal stability and robustness study.

2.3. 5 Cameras Dataset. In order to investigate the variation
of FD computed on the images acquired by different cameras,
we established a new dataset which consists of the retinal



Journal of Ophthalmology 3

Input image Vessel enhancement Binary segmentation

ROI determinationFovea detection

Fractal dimension calculation

OD detection and
segmentation

log
−1−2−3−4−5

2

4

6

8

[1/𝜀]

lo
g[

n
(𝜀

)]

Figure 1: The pipeline for calculating the fractal dimension from a color fundus image.

images captured by 5 different fundus cameras on 12 young
healthy volunteers. The 5 fundus cameras were installed in
the Ophthalmology Department of the Academic Hospital
Maastricht (AZM) in Netherlands. The volunteers are young
students with 20 to 25 years of age. The retinal photographs
were taken on the left eye of every subject 5 times with each
camera, both fovea centered and optic disc centered (120
images in total).

The 5 cameras are 3nethra Classic, Canon CR-1 Mark II,
Nidek AFC-230, TopconNW300, and EasyScan.The 3nethra
Classic (Forus, India) provides color fundus images with size
of 2048 × 1536, and the FOV is 40 degrees. The Canon CR-
1 mark II (Canon, Japan) is a nonmydriatic retinal camera
with FOV of 45 degrees, and the image size is 3456 × 2304.
The Nidek AFC-230 (Nidek, Japan) is also a nonmydriatic
autofundus camera with 45-degree FOV and captures the
fundus on a 3744 × 3744 color image. The Topcon NW300
(Topcon, Japan) is a color fundus camerawith picture angle of
45 degrees and its image size is 2048 × 1536. Finally, EasyScan
(iOptics, Netherlands) is a scanning laser ophthalmoscopy
(SLO) camera with FOV of 45 degrees and the image size of
1024 × 1024.

3. Methodology

In this section, we introduce the pipeline andmethodologies,
which are used to compute the fractal dimension from a
fundus image. The pipeline involves 6 steps (see Figure 1).
First of all, we import the raw color images from each dataset
and rescale them to the same pixel size as the images in the
DRIVE dataset. As a result of the acquisition process, very
often the retinal images are nonuniformly illuminated and
exhibit local luminosity and contrast variability. In order to
overcome this problem, each image is preprocessed using the
method proposed by Foracchia et al. [23], which normalizes
both luminosity and contrast based on a model of the
observed image. Luminosity and contrast variability in the

background are estimated and then used for normalizing the
whole image.

After the image local normalization, we apply 3 state-of-
the-art vessel segmentation methods on color retinal images
and one particular segmentation method on the SLO images
to obtain the vessel probability maps (soft segmentation).
Afterwards, a threshold value is applied to the obtained vessel
probability maps in order to construct binary segmentations
(hard segmentations). At the same time, we automatically
determine the region of interest for FD calculation by
detecting, segmenting, and parameterizing the optic disc and
the fovea. Finally, the fractal dimension is calculated on the
binary vessel segmented images within a circular ROI using 3
classic FD measurements. In the following section, each step
of the pipeline is introduced in detail.

3.1. Automatic Vessel Segmentation Methods. The fractal di-
mension is usually calculated on a vessel binary map, where
pixel intensity of 1 is considered as vessel and 0 as background.
Generally manual vessel annotations provided by the human
observers have better quality than automatic vessel segmenta-
tion techniques. Additionally, for large volume clinical stud-
ies, an automatic vessel segmentation program is needed for
the vessel detection. In our study, we investigated three vessel
segmentation methods for extracting the vessels from RGB
retinal images, Frangi’s vesselness method, Soares’ method,
andZhang’smethod, and theBIMSOmethod for SLO images.

3.1.1. Frangi’s Vesselness. Frangi’s vesselness is a multiscale
vessel enhancement method proposed by Frangi et al. [18],
which uses the second-order derivatives to enhance elongated
structures in the image. An important property for an
elongated structure is a large change of gradient (principal
curvature) in one direction but little gradient change in the
direction perpendicular to the former. Therefore, the pixels
of a vessel have 𝜆

1
⩾ 𝜆
2
, where 𝜆

1
and 𝜆

2
are the magnitudes

of the local principle curvatures that can be calculated via the
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Figure 2: (a) An original image from the DRIVE database; (b)–(d) the vessel probability maps generated by the methods of Frangi et al. [18],
Soares et al. [19], and Zhang et al. [20].

eigenvalues of the 2DGaussian Hessian.Thus, the vessels can
be enhanced by a normal probability distribution function:
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is a structure term, and 𝛼 and 𝛽 are

constant values that determine the sharpness of the filter.The
vessel probability map generated by this method is shown in
Figure 2(b).

3.1.2. Soares’ Segmentation. Soares’ segmentation is a super-
vised method for vessel enhancement proposed by Soares et
al. [19]. First it extracts 5 features including the pixel intensity
(the green channel) and 4 Gabor filter responses from the
images. By using a bank of Gabor filters with multiscales,
multifrequencies, and multiorientations, vessels with differ-
ent sizes and orientations are enhanced and differentiated
from the image background.

Afterwards a supervised Gaussian Mixture Model
(GMM) classification method is used to classify the pixels
into vessel or background using the obtained features. The
output is a probability map indicating the likelihood for a
pixel being a vessel (shown in Figure 2(c)).

3.1.3. Zhang’sMethod. Zhang’smethod is based on describing
the image as a function on an extended space of positions and
orientations [20]. In the method, the image is lifted to the 3D
space of positions and orientations via a wavelet-type trans-
form. In the 3D domain, vessels are disentangled at crossings
due to their difference in orientation. In the new space, left-
invariant Gaussian derivatives are used (exploiting a rotating
coordinate system) in order to enhance the blood vessels.The
method results in crossing preserving enhancement of blood
vessels (shown in Figure 2(d)).

3.1.4. BIMSO Method. BIMSO method is a brain-inspired
multiscale and multiorientation technique proposed by
Abbasi-Sureshjani et al. [24], which is mainly designed for
the vessel segmentation in SLO images. In this method, the

image is lifted to the 3D orientation score using rotated
anisotropic wavelets and then a nonlinear transform is
applied to enhance the elongated structures (blood vessels)
and to suppress the noise. Afterwards, several features for
each pixel are extracted including the intensity, filter response
to the oriented wavelets, and the multiscale left-invariant
Gaussian derivatives jet. The pixels are then classified by a
neural network classifier into vessel or background using the
obtained features.

3.2. Region of Interest (ROI). In this subtask, the fractal
dimensions were calculated in different circular regions with
various radii around the fovea and optic disc (OD) centers.
For fovea centered images, the regions of interest were
centered at the fovea centralis with radii of 4, 5, and 6 times
the optic disc radius (OD

𝑟
).These radii were set in accordance

to the diameter of human optic discs and the average fovea-
to-disc distance. According to the study of [25], the average
diameter of the human optic disc is 1.83mm and the distance
from the fovea center to the optic disc center is 4.93mm,
which is about 5 times OD

𝑟
. Therefore, the circular ROI with

radius 4 × OD
𝑟
covers the retina but excludes the optic disc,

the 5×OD
𝑟
ROI covers half of the optic disc, and the 6×OD

𝑟

ROI covers the full optic disc. Throughout the studies, the
ROI is determined automatically by a pipeline described in
the following subsubsections.

3.2.1. Optic Disk Detection. Optic Disk detection is done
using the method proposed by Bekkers et al. [26]. In this
method, the OD is detected via a cross-correlation based
template matching in higher dimensional objects called
orientation scores. An orientation score represents image
data on the 3D space of positions and orientations, where
the vessels with different orientations are lifted to different
planes of the space. The templates are designed to detect
the 3D pattern of vessels originating from the optic nerve
head.Therefore, the global maximum of the correlated image
reveals the position of the OD.

3.2.2. Optic Disk Segmentation. Optic disk segmentation is
performed after locating the OD centralis. The segmentation
is done within a small patch of an enhanced OD to detect
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Figure 3: The RGB color difference between the pixels inside and outside the optic nerve head region.

its circular boundary. On a regular RGB fundus image, the
OD region has higher color differences than the background
region. For instance, the tissue and vessels inside the disc have
greater yellow-blue color difference than the background ves-
sel and tissue (see Figure 3).Therefore, the color derivatives of
the red, green, and blue intensity can be used to enhance the
OD region and suppress the background tissue of the retina.

The color derivatives of an RGB image are computed
using the Gaussian color model proposed in [27, 28], where
the best linear transform from the RGB color domain to the
Gaussian color model is defined by

[
[

[

𝑒

𝑒
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𝑒
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]
]

]
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]
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where 𝑒, 𝑒
𝜆
, and 𝑒

𝜆𝜆
represent the nonderivative, 1st-order

derivative, and 2nd-order derivative with respect to the wave-
length 𝜆. The enhanced OD image is obtained by combining
invariant assemblies of 𝑒, 𝑒

𝜆
, and 𝑒

𝜆𝜆
.

After the enhancement, the OD boundary becomes
stronger and the potential interferences caused by the edge
of vessels are suppressed and a simple zero crossings of the
Laplace operator is used for OD edge detection. After that,
an ellipse is fitted to the detected boundary positions and the
major and minor radius are obtained. Finally, the OD radius
(OD
𝑟
) is estimated as the average of themajor andminor radii

of the fitted ellipse.

3.2.3. Fovea Center Detection. Fovea center detection is done
within a ring area around the optic disc center. As mentioned
earlier, the average distance between the fovea centralis and
the optic disc centralis is about 5×OD

𝑟
, so the inner and outer

radii of the ring of interest are selected as 4×OD
𝑟
and 6×OD

𝑟
,

respectively. After determining the ring area, we reduced the
interference of blood vessels by using the binary vessel seg-
mentation obtained beforehand and an inpainting algorithm
which replaces/paints the detected vessels by their neighbor
background texture. Finally, the fovea center is detected as the
global minimum at a large Gaussian blurring scale.

3.3. Fractal DimensionMeasurements. The fractal dimension
is a measurement which quantifies the highly irregular shape
of fractals or fractal objects. An important property of the
fractal objects is their self-similarity over different scales or
magnifications. This means that at different scales a same
pattern with different sizes can be observed, such as trees,
snowflakes, and river systems. This self-similar property can
be described by the following formula:

𝑁(𝑟) = 𝑟
−𝐷
, (3)

where 𝑁(𝑟) is some measurements applied on the compli-
cated pattern of the object at a scale 𝑟; 𝐷 is the fractal
dimension that implies how many new similar patterns are
observed as the resolution magnification (scale) decreases or
increases. In order to solve for𝐷 we rewrite (3) into

𝐷 = −
log𝑁(𝑟)

log 𝑟
. (4)

According to the definition, a fractal object is self-similar;
therefore the comparison of two measurements in various
scales should yield the same results. This implies that the
fractal can also be calculated by comparing themeasurements
between any two scales:

𝐷 ≈ −
log𝑁(𝑟

𝑛
) − log𝑁(𝑟

𝑛−1
)

log 𝑟
𝑛
− log 𝑟

𝑛−1

. (5)

Based on the above relation between measurements in
different scales, a box-counting method is introduced to do
a simple, fast estimation of the fractal dimension 𝐷. In this
method, the full space is firstly covered by squared boxes
with side-length 𝑟

𝑛
. And then measurements are done in

the boxes that are overlapping with the objects. This step
will be repeated multiple times with different box side-
lengths. Finally, the size of the box and the corresponding
measurement are plotted in a log-log plot. The estimated
fractal dimension is the slope of the regression line that fits
to these data points.

In this paper, we are mainly interested in three fractal
methods that are widely used in the literature: the box
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dimension 𝐷
𝐵
, information dimension 𝐷

𝐼
, and correlation

dimension𝐷
𝐶
, which measure different properties (different

𝑁(𝑟)) of the self-similar pattern of the object, respectively.

3.3.1. Box Dimension (𝐷
𝐵
). Box dimension (𝐷

𝐵
) is the most

simple and popular method for estimating the FD of fractal
objects proposed by [29]. It is the direct implementation
of the Hausdorff dimension in mathematics [30]. The box
dimension is defined as the real number 𝐷

𝐵
, such that the

number𝑁(𝑟) of balls with radius 𝑟 that is needed to cover an
object grows with (1/𝑟)𝐷𝐵 as 𝑟 → 0. In other words, 𝐷

𝐵
is

calculated via

𝐷
𝐵
= lim
𝑟→0

log𝑁(𝑟)

log 1/𝑟
. (6)

So, in the image domain, the measurement 𝑁(𝑟) in (6)
is the number of boxes with side-length 𝑟 which overlap
with the vessel segmentation. When dealing with discrete
problems, taking the limit 𝑟 → 0 is not possible. Instead, as
suggested by [29], 𝐷

𝐵
can be computed as the slope of 𝑁(𝑟)

plotted against 𝑟 in a log-log plot.

3.3.2. Information Dimension (𝐷
𝐼
). Information Dimension

(𝐷
𝐼
) is inspired from information theory. In information

theory, entropy is the measure of the uncertainty of a random
event.The less likely a random event might happen, the more
informative it is and thus the larger entropy it has. Conversely,
if an event happens very often, it provides less information,
implying lower entropy. The information dimension [31, 32]
is defined as

𝐷
𝐼
= lim
𝛿→0

∑
𝑁

𝑖=1
𝑝
𝑖
log𝑝
𝑖

log 1/𝛿
, (7)

where 𝑁 is the number of boxes with size 𝛿 overlapped
with the object, the numerator∑𝑁

𝑖=1
𝑝
𝑖
log𝑝
𝑖
is the first-order

Shannon entropy, 𝑝
𝑖
= 𝑛
𝑖
/𝑀 is the probability for finding a

part of the object in the 𝑖th box,𝑀 is the totalmass of it, and 𝑛
𝑖

is the part of the object in the box.The limit of (7) is estimated
as the slope of the regression line of the logarithmic points.

3.3.3. Correlation Dimension (𝐷
𝐶
). Correlation dimension

(𝐷
𝐶
) estimates the FD via the relationship between two pixels

inside a region. A correlation integral is defined via the
Heaviside step function for counting the pair of points in a
region with size 𝑟

𝑘
and can be approximately expressed in

terms of the probability density:

𝐶
𝑘
=

1

𝑁
2

𝑁

∑

𝑖=1,𝑗=1,𝑖 ̸=𝑗

Θ(𝑟
𝑘
−

x
𝑖
− x
𝑗


) ≈

𝑁𝑘

∑

𝑗=1

𝑝
2

𝑗𝑘
, (8)

where Θ(𝑥) is the Heaviside step function, x
𝑖
is the 𝑖th pixel

belonging to an object, and 𝑝
𝑗𝑘
= 𝑛
𝑗𝑘
/𝑀 is the probability

density of the object with mass𝑀 in the 𝑗th box with size 𝑟
𝑘
.

The correlation dimension 𝐷
𝐶
is defined via the relationship

between 𝐶
𝑘
and 𝑟
𝑘
as𝐷
𝐶
= lim
𝑟𝑘→0

(log𝐶
𝑘
/ log 𝑟

𝑘
).

4. Stability Analysis and Results

In this section, we present our stability analysis of the fractal
methods in terms of the choice of manual annotations,
different segmentation methods, various regions of interest,
the accuracy of the segmentation method, and different
imaging modalities. To study the variation of FDs, we use
the relative error (RE) with respect to the binary images
annotated by Observer 1 as the reference. The RE is obtained
using |(𝐷

𝑥
−𝐷
𝑟
)|/𝐷
𝑟
, where𝐷

𝑥
is the obtained FD in different

studies and 𝐷
𝑟
is the reference FD. To test whether or not

measurement methods are correlated, we use the Pearson
correlation coefficient test.

Study 1: Intergroup and Intragroup Fractal Dimension Vari-
ation. In order to show the significance of these relative
errors in different experiments, the obtained FD values are
compared with the coefficient of variation, also known as
relative standard deviations (RSD) of all subjects in the
DRIVE dataset, which are 2.3%, 2.1%, and 2.0% for 𝐷

𝐵
, 𝐷
𝐼
,

and𝐷
𝐶
, respectively.

We also obtained the intergroup and intragroup fractal
dimension (𝐷

𝐵
) variations for the different groups of diabetic

retinopathy in the MESSIDOR dataset. For all images with
different DR grades, the box dimension is calculated once on
the full image and once inside the region of interest around
the fovea (5 × OD

𝑟
). The averages and relative standard

deviations of FD values for each separateDR group are shown
in Table 1. As we can see in this table and in Figure 4, the
differences between the mean of FD values for different DR
groups are small compared to the RSD of each DR group.The
average of RSD in the different groups is higher than 2.5%.

The results of multiple one-way ANOVA tests are shown
in Table 2. With this test, we study whether a pair of
subgroups have different distributions. In the case of using
the full FOV as ROI, there are no significantmean differences
between any two groups, except in group pairs R0–R2 and
R2–R3. For the circle ROI around the fovea, the mean
difference is significant between R0 and R2 and between R1
and R2 groups.

Study 2: Variation between Different Manual Annotations. We
compared the FD values that were calculated on the ground
truth images annotated by two experts within the circular
ROI with 5 × OD

𝑟
. Here we used the FDs of Observer 1

as reference as this is also considered as ground truth in
[22]. The result is shown in the 1st row of Table 3. The
main difference between the two manual annotations is the
presence of the tiny vessels. We found that missdetecting the
tiny vessels does affect the fractal dimension. The maximal
differences of 7.11%, 6.70%, and 6.23% and mean relative
errors of 1.97%, 1.88%, and 1.77% are obtained for 𝐷

𝐵
, 𝐷
𝐼
,

and 𝐷
𝐶
, respectively, which are noticeable compared to the

calculated RSDs.
Itmeans that even if the FDs are calculated on vesselmaps

annotated by human observers, the methods cannot produce
stable values for diagnosis, which makes fractal dimension
measurement useless. In addition, Figure 5 plots 𝐷

𝐵
of 20

images of the two observers. The curves illustrate that the
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Table 1: The mean and standard deviation of FD values (𝐷
𝐵
) for different DR grades.

DR grade Number of images ROI: full FOV ROI: 5 ×OD
𝑟

Mean SD∗ RSD† Mean SD RSD
R0 546 1.3864 0.0324 2.34% 1.3285 0.0316 2.38%
R1 153 1.3852 0.0345 2.49% 1.3317 0.0304 2.28%
R2 247 1.3781 0.0364 2.64% 1.3215 0.0384 2.91%
R3 254 1.3869 0.0384 2.77% 1.3276 0.0375 2.82%
Total 1200 1.3846 0.0350 2.52% 1.3273 0.0343 2.59%
∗SD: standard deviation.
†RSD: relative standard deviation.

Table 2: Comparison between FD values in different DR groups (ANOVA test).

DR grade Mean difference Std. error 𝑝 value† 95% confidence interval
Lower bound Upper bound

ROI: full FOV R0
R1 0.00123 0.00319 0.981 −0.0070 0.0094
R2 0.00834∗ 0.00267 0.010 0.0015 0.0152
R3 −0.00046 0.00265 0.998 −0.0073 0.0063

ROI: full FOV R1 R2 0.00711 0.00358 0.195 −0.0021 0.0163
R3 −0.00169 0.00356 0.965 −0.0109 0.0075

ROI: full FOV R2 R3 −0.00879∗ 0.00311 0.025 −0.0168 −0.0008

ROI: 5 ×OD
𝑟

R0
R1 −0.00324 0.00313 0.730 −0.0113 0.0048
R2 0.00696∗ 0.00263 0.040 0.0002 0.0137
R3 0.00086 0.00260 0.987 −0.0058 0.0076

ROI: 5 ×OD
𝑟

R1 R2 0.01020∗ 0.00352 0.020 0.0011 0.0193
R3 0.00410 0.00350 0.646 −0.0049 0.0131

ROI: 5 ×OD
𝑟

R2 R3 −0.00610 0.00306 0.191 −0.0140 0.0018
∗Themean difference is significant at the 0.05 level.
†One-way ANOVA test with null hypothesis that the means of distributions are equal.
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Figure 4: Box plots of the fractal dimensions (𝐷
𝐵
) of different DR groups for (a) ROI: full FOV and (b) ROI: 5 ×OD

𝑟
.

variations of FD for two observers in some subjects are
too large which might cause wrong discrimination among
subjects for clinical applications. For example, we see 𝐷

𝐵
of

patient 5 is greater than patient 4 forObserver 2, while the two
patients have similar values obtained from the other observer.

Study 3: Variation between Different Vessel Segmentation
Methods. In this study, we investigated the variation of

fractal dimensionswhenusing automatic vessel segmentation
methods instead of human annotations. The methods by
Frangi et al. [18], Soares et al. [19], and Zhang et al. [20] were
used as described previously. Each method produces a vessel
probability map from the raw fundus image from which
we obtain a binary map by setting an optimal threshold.
The optimal threshold for each method is set to the value
which maximizes the vessel segmentation accuracy for the
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Table 3: The comparison of FD between two human observers and different vessel segmentation methods by considering Observer 1 as
reference.

Method Box dimension (𝐷
𝐵
) Information dimension (𝐷

𝐼
) Correlation dimension (𝐷

𝐶
)

Max∗ MRE† p value‡ Max MRE p value Max MRE p value
Observer 2 7.1% 2.0% 0.0585 6.7% 1.9% 0.0851 6.2% 1.8% 0.0974
Frangi [18] 9.3% 4.3% 0.8035 9.4% 4.3% 0.8802 9.4% 4.3% 0.6990
Soares [19] 8.7% 2.9% 0.4926 8.7% 3.0% 0.7339 8.9% 3.0% 0.8657
Zhang [20] 7.4% 3.9% 0.4950 7.4% 3.8% 0.8506 7.3% 3.8% 0.691
∗Max: maximum relative error with respect to Observer 1.
†MRE: mean of relative error with respect to Observer 1.
‡Pearson correlation test with null hypothesis that the correlation coefficient is zero.
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Figure 5:The box dimension values using themanual segmentation
by two observers for all patients.

whole dataset. For measuring the errors, we used the FDs
of Observer 1 as reference. The 2nd to 4th rows of Table 3
show the REs when using the binary images created by the
segmentation methods instead of human observers.

The maximum errors of the box dimension for the
three segmentation techniques are 9.32%, 8.70%, and 7.37%,
respectively. The average errors are 4.29%, 2.88%, and 3.97%,
which are significantly compared to the RSD values. These
values suggest that using an automatic segmentation would
induce a large error in fractal calculation. In addition, the
very high 𝑝 values imply the weak association between the
automatic methods and the manual. The variation among
different segmentation methods is also large according to
curves shown in Figure 6, which shows the mean and
standard deviation of𝐷

𝐵
among the 3methods.This suggests

that the fractal measurement is very sensitive to the choice of
vessel segmentation method.

Study 4: Different Regions of Interest. We calculate the FD
in various circular regions around the fovea center of the
DRIVE ground truth images annotated by Observer 1. As
mentioned previously, the ROI radii are considered as 4×OD

𝑟

(ROI1), 5 × OD
𝑟
(ROI2), and 6 × OD

𝑟
(ROI3), and ROI3

is used as reference for the relative error calculation. The
relative errors of changing the ROI are shown in Table 4.
When FDs are calculated in ROI1, the maximum error of the
box dimension is 3.8%, and the average error is 2.4%. If we
use ROI2, the relative errors were smaller, with a maximum
of 1.0% and average of 0.4% error. Figure 7 shows the plot
of 𝐷
𝐵
calculated in ROI1 (red), ROI2 (green), and ROI3

(blue) and also the mean and deviation of them (purple).
According to the table and figure, changing ROI causes a

Table 4: The comparison of 𝐷
𝐵
values using different region of

interest.

Method Radius Max MRE p value∗

ROI1 4 ×OD
𝑟

3.8% 2.4% <0.01
ROI2 5 ×OD

𝑟
1.0% 0.4% <0.01

ROI3 6 ×OD
𝑟

Reference
∗Pearson correlation test with null hypothesis that the population correlation
coefficient is zero with respect to ROI3.
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Figure 6: The box dimension values using different segmentation
methods for all patients.
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Figure 7:𝐷
𝐵
of 20 subjects varied with the change of the ROI.

variation in fractal calculation; in particular the FDs of ROI1
are significantly lower compared to ROI2 and ROI3. But,
from another point of view, we see that 𝑝 values are less than
0.01, which means the FDs calculated in different ROIs are
significantly associated.

Study 5: Vessel Segmentation Method Quality. We studied
the relation between the FD error and the quality of vessel
segmentation methods. The FD is usually calculated on a
vessel binary map, which is converted from the vessel prob-
ability map with a threshold value. The choice for threshold
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Table 5: FD variation against vessel segmentation accuracy.

Threshold
𝑡 = 0.15 𝑡 = 0.21 𝑡 = 0.34

Average of vessel
segmentation
accuracy

63.74% 77.95% 63%

Average of FD
variation 14.44% 10.42% 25%

value changes the accuracy of vessel segmentation, and the
accuracy of the segmentation method turns out to affect the
fractal measurement significantly. The comparison is based
on Zhang’s segmentation method in a fixed region of interest
(ROI2). Several threshold values 𝑡 with range from 0.15 to
0.35 and step size 0.01 are applied to the vessel probability
map for all test images in the DRIVE database to obtain the
vessel binary segmentations. Since there is a large difference
between number of vessel pixels and nonvessel pixels in
retinal images, we used the Matthews correlation coefficient
(MCC) instead of accuracy to evaluate the quality of binary
images. The MCC is a balanced measure which can be used
even if the classes are of very different sizes:

MCC

=
TP × TN − FP × FN

√(TP + FP) (TP + FN) (TN + FP) (TN + FN)
,

(9)

where TP, TN, FP, and FN are the true positive, true negative,
false positive, and false negative parts of the segmentation
with respect to the annotations by Observer 1. For each result
of the binary segmentation, the fractal dimension ismeasured
and compared to the values of the reference ones.

Themean relative errors for the 20 images with respect to
the reference ones are shown in Table 5 for 3 sample thresh-
olds t = 0.15, 0.21, and 0.34. As we can see in this table, using
both 0.15 and 0.34 as threshold results in similar MCC values
for the vessel segmentation, while one is the oversegmented
(higher FD) and the other one is the undersegmented (lower
FD), a threshold equal to 0.21 gives the highest MCC 78% as
an average among 20 images.Note that no postprocessingwas
applied after the thresholding, so the segmentation accuracy
in our studies might be lower than the proposed accuracy in
the literature. From the table, we see that if the threshold is
set properly (t = 0.21), the relative error is small. Meanwhile
if 𝑡 is underestimated or overestimated, the relative error
dramatically increases. Moreover, Figure 8 shows the plot
of the mean MCC of vessel segmentation against the mean
error of FD of 20 images. We can see that segmentation with
higher accuracy produces a more reliable FD. These results
suggest that poor segmentation with improper selection of
the threshold value leads to a large error for fractal dimension
calculation.

Study 6: Different Cameras and Different Image Modalities.
We investigated the variation of fractal dimension which
is calculated on the images captured by different cameras
described previously. The optic disc centered images of the
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Figure 8: The mean relative error of fractal dimension against the
quality of vessel segmentation based on MCC.

12 volunteers are used in this examination (see Figure 9).
The circular region of interest centered at the OD center with
radius 4 ×OD

𝑟
is used in all images. The vessel segmentation

results of the RGB images captured by regular cameras are
generated by Zhang’s [20] method and those of the EasyScan
SLO camera are generated by the BIMSO method [24].

First we compare the variation among different cameras,
where the box dimensions of 12 subjects are shown in
Figure 10 with different colors per camera. As we can see
from this figure, the fractal dimension is very sensitive to
image properties like resolution, amount of noise, quality, and
imaging modality, which depend on the type of camera. For
example, the mean relative difference between 3nethra (red
dashed line) and Nidek (purple dashed line) is 2.31% with
respect to the average of two cameras. Moreover, using dif-
ferent imaging modalities also causes a significant variation.
The SLO images acquired by EasyScan (green dashed line)
in general have lower FDs than the other color RGB cameras
except for 3nethra. In addition, the average relative variation
between the SLO images and RGB images (by Canon camera)
is 1.95%.

Finally, we investigate the repeatability of different cam-
eras by comparing the FDs of different acquisitions of
one subject. The repeatability is measured as the standard
deviation of the fractals calculated on 5 acquisitions of the
same subject divided by the average of them. As we can
see from Table 6, the 5 cameras give an average of 1.11%
variation on the same subject in different acquisition times.
With Canon and Nidek cameras, this error is small (0.69%
and 0.96% resp.), which shows better stability compared to
other cameras.

5. Discussion

In previous studies, fractal dimension is considered as a
potential biomarker for disease detection. However, conflict-
ing findings were found in different literature. Therefore, we
examined the reliability of three classic fractal measurements
for their use in clinical study applications. We divided our
experiments into six studies, which we will discuss in the
remainder of this section.

In our first and second studies, we investigated inter-
group and intragroup variability of FD methods using the
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Figure 9: The retina of one subject captured by different cameras: (a) 3nethra, (b) Canon, (c) Nidek, (d) Topcon, and (e) EasyScan.
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Table 6: The mean relative error of FD for repeated acquisitions in different cameras.

Camera Image modality Image size FOV Max RSD Mean RSD
3nethra RGB 2048 × 1536 40∘ 2.60% 1.25%
Canon RGB 3456 × 2304 45∘ 1.64% 0.69%
Topcon RGB 2048 × 1536 45∘ 3.86% 1.41%
Nidek RGB 3744 × 3744 45∘ 2.20% 0.94%
EasyScan SLO 1024 × 1024 45∘ 3.68% 1.25%
Average — — — 2.80% 1.11%
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Figure 10: 𝐷
𝐵
calculated on the images captured by 5 different

fundus cameras.

MESSIDOR dataset. Also, we studied intraobserver variation
using ground truth segmentation from the DRIVE dataset.
The experimental results show that, even with ground truth
vessel maps, the fractal dimensions are not reliable. The RSD
of𝐷
𝐵
of all patients in the DRIVE dataset is 2.3%. Moreover,

the variation of FD between different human observers
produces errors of 1.97%, 1.88%, and 1.77% on average on
𝐷
𝐵
, 𝐷
𝐼
, and 𝐷

𝐶
. This significant variation makes the FD less

informative and less reliable in discriminating DR patients in
different severity levels from the healthy ones. No significant
differences in FD were found between different DR groups of
the MESSIDOR dataset. From Figure 11, we see that the main
difference between the vessel annotations of two observers
is the presence or absence of small vessels. Therefore, the
influence of small vessels on the fractal measurements cannot
be neglected and should be considered seriously.

In the third study, we investigated the influence of
automatic segmentation method on FD computations. We
examined the FD on the vessel maps produced by three
different vessel segmentation methods on the same imaging
modality (RGB fundus images). The results show that the
FDs calculated with various segmentations have significant
differences compared to the values calculated using the
annotations by Observer 1. In addition, the statistical tests
show that the FDs were not associated with those computed
from ground truth images. Therefore, the FD computed by
automatic computer softwaremight not be reliable, as was the
case in the studies from [4–8].

In the fourth study, we investigated the variation of FD
calculated within different regions of interest centered at the
fovea centralis. This study is motivated by the fact that, in
clinical retinal photography, the actual captured area on the
retina is not always the same because of eyemotion.The result
shows that FDs calculated in 3 different ROIs are associated

with each other, with 𝑝 values less than 0.01. However, as
we can see from Figure 7, a smaller ROI produces a lower
FD in general, because fewer vessels are taken into account.
Therefore, this study implies that a fixed region of interest is
necessary in order to obtain comparable FD values.

In the fifth study, we investigated the influence of the
accuracy of vessel segmentation methods on the fractal
measurements. Most vessel segmentation methods need a
threshold value to convert the vessel probability map into
a vessel binary map. This threshold value also affects the
accuracy of the segmentation. In this study, we computed the
FD on vessel binary segmentations using different thresholds
(MCC ranged from 61% to 78%). As expected, the computed
FD values become closer to the ones obtained from manual
segmentations when segmentation accuracies increase (with
respect to manual segmentation). Moreover, the variation
decreases faster when the segmentation accuracy is higher
than 75%. Therefore, a proper thresholding technique is
required to obtain a stable FD measurement.

Finally, in the sixth study, we compared the FDs cal-
culated on images acquired by different fundus cameras.
The result shows that the variations of FD are significant
when different cameras are used. These five cameras use
different flashing systems resulting in different contrast and
tissue reflections. Finally, the image sizes and resolutions are
different, so the details of retina captured by these cameras
are also not identical. Moreover, some cameras were easier
to operate (e.g., via autofocus), resulting in more consistent
image quality. The comparison result shows that, in general,
the FD of the same subject using different cameras has
significant differences. The differences in terms of image
properties cause significant variations as we see from the
results.

Besides the variation between cameras, we also inves-
tigated the repeatability of the FD measurement on the
same subject using the same camera. The slight differences
among multiple acquisitions on the same patient with the
same camera are caused by variation in image quality,
for example, caused by eye motions (blurry image), weak
flashing/illumination, or incorrect focusing.The results show
that the 5 cameras generally produce 1.11% variation between
multiple photographs.

6. Conclusion

Our experiments suggest that the classic fractal dimensions
must be calculated under very strict conditions, and tiny
changes on the images and vessel segmentation can cause
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(a) (b)

Figure 11: The vessel annotations of 2 human observers. The major difference is the missing of small vessels, as indicated by the red circles;
(a) Observer 1 (𝐷

𝐵
= 1.468) and (b) Observer 2 (𝐷

𝐵
= 1.450).

significant variations. The vessel segmentation method must
be very carefully chosen, the region of interest in all images
must be equally set for the FD calculation, and an optimal
threshold value for creating a high accuracy binary vessel
segmentation map is required. For future studies, FD’s high
sensitivity to the segmentation methods and thresholding
techniques will be addressed by measuring FD directly from
the vessel probability maps.
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