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Biomedical Data Annotation: An OCT Imaging Case Study
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In ophthalmology, optical coherence tomography (OCT) is a widely used imaging modality, allowing visualisation of the
structures of the eye with objective and quantitative cross-sectional three-dimensional (3D) volumetric scans. Due to the quantity
of data generated from OCT scans and the time taken for an ophthalmologist to inspect for various disease pathology features,
automated image analysis in the form of deep neural networks has seen success for the classifcation and segmentation of OCT
layers and quantifcation of features. However, existing high-performance deep learning approaches rely on huge training datasets
with high-quality annotations, which are challenging to obtain in many clinical applications. Te collection of annotations from
less experienced clinicians has the potential to alleviate time constraints from more senior clinicians, allowing faster data
collection of medical image annotations; however, with less experience, there is the possibility of reduced annotation quality. In
this study, we evaluate the quality of diabetic macular edema (DME) intraretinal fuid (IRF) biomarker image annotations on OCT
B-scans from fve clinicians with a range of experience. We also assess the efectiveness of annotating across multiple sessions
following a training session led by an expert clinician. Our investigation shows a notable variance in annotation performance, with
a correlation that depends on the clinician’s experience with OCT image interpretation of DME, and that having multiple
annotation sessions has a limited efect on the annotation quality.

1. Introduction

OCT is an interferometric imaging technique which can
provide cross-sectional views of the subsurface microstruc-
ture of biological tissue [1]. Due to its noninvasive nature,
simplicity of use, absence of ionising radiation, and high
resolution, OCT has seen widespread use in diagnostic
ophthalmology and has played a critical role in the diagnosis
and monitoring of eye diseases such as age-related macular
degeneration (AMD) and DME [2] as well as other retinal
vascular diseases and macular disorders. Te role of OCT
analysis is also expanding in the prediction andmonitoring of
systemic neurodegenerative diseases. Providing high-
resolution information on anatomic and structural changes
within the eye, the technology can allow clinicians to detect
early disease changes and monitor response to treatments,

hence consequently improving patients’ outcomes. With the
development of spectral-domainOCT, clinicians are now able
to capture denser 3D images, generating large amounts of
patient-specifc data. While OCT imaging holds promising
benefts, the challenge of interpreting an extensive array of
biomarkers using both 2D and 3D perspectives, combined
with the need for comparisons to prior scans, presents dif-
fculties. Tis challenge is particularly pronounced within
clinics already grappling with substantial workloads. Due to
this, each patient has become a “big data” challenge [3].

Automated image segmentation algorithms have emerged
to provide meaningful data from medical images. Tese al-
gorithms use deep learning, a subfeld ofmachine learning that
has proven successful in retinal structure segmentation in
fundus [4] andOCTimages [5, 6].Te use of deep learning has
stimulated a proliferation in automatic assessments of various
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segmented features of disease pathologies within an OCT
volume, particularly IRF, subretinal fuid, pigment epithelial
detachment, and subretinal hyper-refective material [7–9].

Supervised deep neural networks have achieved strong
performance in medical image segmentation, in part due to
high-quality annotated data [10]. However, the collection of
high-quality image data annotations has many hurdles, in-
cluding time and monetary costs, as well as regulatory issues
[11]. To appropriately model the underlying data distribution
of a given task, current supervised deep learning systems rely
on labelled data. Te quality of the labelled data is one of the
most important aspects in achieving the desired performance
for computer vision algorithms driven by deep learning.
Furthermore, due to obscure boundaries of morphological
features pertaining to disease pathology on medical images,
annotations can sufer from inter/intraobserver variance even
among specialists. As deep neural networks are vulnerable to
overftting, accepting annotations as perfectly correct and
reliable may result in biased models with poor generalization
[12].Tis further necessitates the development of more robust
annotation quality analysis approaches for the creation of
more reliable and applicable datasets.

In this study, we investigated the quality of IRF anno-
tations from multiple clinician annotators on OCT images
collected from patients with DME. Te main focus of this
work is to explore how the quality (as evaluated through
comparison of a given annotation against a ground truth) of
OCT-based image annotations can vary based on clinician
experience. As well as this, we explore the efect of having
multiple annotation rounds on the resulting annotation
quality. To evaluate the underlying variations in the anno-
tations, image-based properties such as image noise and
pixel intensity are also considered.

1.1. Related Work. Data quality and annotation techniques
have been investigated in recent years in diferent felds of
artifcial intelligence due to their importance. McCulloh
et al. [13] described numerous measures for assessing
interannotator agreement, rater consistency, and distraction
rate, applied to natural language processing tasks. Tey
demonstrated improvement in annotator utilisation, inter-
annotator agreement, and the rate of annotation through the
management of the annotation process by actively moni-
toring several quality and schedule metrics.

For automated analysis of OCT imaging, there has been
limited work in the literature investigating how annotation
quality can be evaluated. Kurmann et al. [14] implemented
an image annotation quality control for OCT B scans in the
form of majority voting and intergrader performance
evaluation using Kappa metrics, which improved the per-
formance of a machine learning model for the classifcation
of AMD biomarkers. Apostolopoulos et al. [15] investigated
the use of automatic image enhancement on OCT B scans
prior to annotating, resulting in greater annotation quality
between two graders for several biomarkers.

Most investigations into how the annotator’s experience
can afect annotation quality are related to crowd-sourcing,
which describes the use of many nonexperts for large-scale
labelling and the rapid generation of labelled images for

algorithm development and evaluation. Irshad et al. [16]
showed that crowd-sourced nonexpert-derived evaluation
metrics perform at a level similar to both research fellow and
automated method-derived metrics for the relatively simple
task of nucleus detection and segmentation, with the re-
search fellow annotations showing the strongest perfor-
mance for detection and the crowd-sourced scores showing
the strongest performance for segmentation. Tey con-
cluded that crowd-sourced image annotation is a highly
scalable and efective method of obtaining nucleus anno-
tations for large-scale projects in computational pathology.

Others have also investigated the impact of annotated
data quality on algorithm performance measurements.
Using multiple publicly available datasets of stationary
ground-based camera data of outdoor spaces and urban
scenes, Joseph et al. [17] conducted several data annotation
experiments to measure interannotator agreement and
consistency, as well as how the selection of ground truth
impacts the perceived algorithm performance. Tey showed
that when not monitoring the quality of annotations during
the annotation process, subsequent algorithm precision can
have a signifcant loss and that knowledge of the labelling
process, training data, and ground truth data used for al-
gorithm evaluation are fundamental components to accu-
rately assess the trustworthiness of an AI system. Walter and
Sörgel [18] identifed common issues in crowd-sourced
geographic data annotation, such as object mis-
representation. Tey demonstrated that by annotating the
data numerous times and using a single shared dataset, some
of these quality discrepancies can be removed.

Tough there have been investigations into quality control
of annotation eforts for a range of imaging modalities, to the
best of our knowledge, there has been little work to show to the
extent which junior clinicians can be utilised for the devel-
opment of biomedical imaging annotations, and how these
annotations compare to that of more experienced clinicians,
especially for the case of OCT images.

2. Materials and Methods

2.1. OCT Imaging Data. Te images utilised for this study
were captured using the SD-OCT Heidelberg Spectralis
(Heidelberg, Germany) as part of routine clinical care, using
standard imaging protocol at Sunderland Eye Infrmary, UK.
Te dataset consists of 10 randomly selected individual OCT
B scan slices from 10 patients with active DMEwho attended
vascular clinics for treatment and follow-up. Te imaging
protocol used had a scan width of 15× 30° with 19 scans (240
microns spacing) and an ART value of 9 (high speed). Te
individual line scans had a slight variation in size and scaling
but were typically 732 by 428 pixels with a scaling of 10.5
microns per pixel on the X (horizontal) axis and 3.8 microns
per pixel on the Y (vertical) axis.

2.2. Annotation Protocol. Te annotation process took place
utilising annotation software developed by Glif [19]. Te
annotation tool is designed to work on any kind of imaging
modality, with intuitive features of 3-step zooming, contrast
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adjustment of the image or the annotation, and precision
annotation size to subpixel level. 10 OCTimages were graded
using the tool by 5 clinicians with diferent levels of expe-
rience in OCT interpretations. Te clinicians whose anno-
tations are used in this study are anonymised for
confdentiality reasons into abbreviations of expert “Exi” and
junior “Jri.” Te clinician experience is as follows:
Ex1> 15 years and Ex2> 15 years. Both experts are senior
ophthalmology clinicians and retinal specialists. All juniors
are ophthalmic trainees at diferent levels of their specialist
training: Jr1 7 years, Jr2 2 years, and Jr3 0 years.

A clinician ophthalmologist, Ex1, performed the an-
notation once using the platform. A second clinician
ophthalmologist, Ex2, performed the annotations two
times—once before each trainee training session (with
a minimum of 1-month period between each round). Ex2
also conducted a training session for the three clinicians
considered juniors. Training focused on understanding the
tool features and identifying and defning various OCT
landmarks, and the features and characteristics of IRF cysts,
as well as other common OCT image defects, such as vessels
and exudates shadowing or dark retinal tissue that can
mimic IRF cysts. Te clinicians were then presented with
the 10 training OCT scans of various clarities and with
a wide mix of OCT features. Te 3 junior clinicians were
given the task of annotating all areas of IRF cysts, with no
limit on size.Tey were instructed to shade the entire area of
IRF cysts, rather than edges only. Following the frst round
of annotations, the annotated images were collated and
reviewed by Ex2. A training session was set to review the
results of the 3 junior clinicians to identify any wrongly
defned areas of IRF cysts and evaluate over or un-
derestimation trends of annotation and identify correct
edges of the diferent IRF cysts, especially in images with
low-resolution or ill-defned edges with poor scan quality.
Te clinicians were instructed to have a month cooling
period before further attempts for the second round of
annotation using the same platform and taking into con-
sideration, the training provided and remarks made to
improve the accuracy of defning cysts’ edges and borders.
None of the clinicians had access to other clinicians’ an-
notations to prevent any infuence on results. Ground truth
annotations were generated through a majority vote of
clinicians Ex1 and Ex2 last round of annotations to create
the most accurate representation of ground truth possible.

Despite only 10 OCT images being used for this study,
2399 IRF areas were annotated across all clinicians and
annotation rounds. Furthermore, the 10 images used rep-
resent scans that cover a large range of variations in both
image noise/clarity, as well as disease progression, therefore
allowing a greater insight into quality variation for the
clinicians under diferent circumstances.

2.3. Annotator Evaluation

2.3.1. Majority Voting. We use majority voting to generate
expert agreed ground-truth annotations, following the ap-
proach detailed by Kajino et al. [20]. Figure 1 shows an
example of a majority vote with the correlated OCT region.

2.3.2. Performance Metrics. To assess annotator perfor-
mance, annotations are evaluated against the majority vote.
Quantitative metrics used include intersection over union
(IoU), dice similarity coefcient (DSC), true-negative rate
(TNR), true-positive rate (TPR), precision, and Cohen’s
kappa. Te metrics are calculated using the following
equations:

IoU �
TP

TP + FP + FN
,

DSC �
2TP

2TP + FP + FN
,

TNR �
TN

TN + FP
,

TPR �
TP

TP + FN
,

precision �
TP

TP + FP
,

(1)

where TP, TN, FP, and FN refer to true-positive, true-
negative, false-positive, and false-negative regions, re-
spectively. TP represents the number of pixels which are part
of the region that are labelled correctly by both the annotator
and the ground truth. TN represents the number of pixels
which are part of the background region and labelled cor-
rectly by both the annotator and the ground truth. FP
represents the number of pixels labelled as part of the region
by the annotator but labelled as a part of the background by
the ground truth. Finally, FN represents the number of pixels
labelled as part of the background by the annotator but
labelled as part of the region in the ground truth.

Cohen’s kappa coefcient is used as a metric to analyse
the reliability of the agreement among annotators, which has
the beneft over the alternatives of accounting for the
possibility of the agreement happening by chance. Te
coefcient ranges between 0 when the agreement is not
better than chance and 1 when there is perfect agreement
[21]. Kappa values are grouped as follows: κ≤ 0 indicating no
agreement, κ≥ 0.01 and κ≤ 0.20 as none to slight, κ≥ 0.21
and κ≤ 0.40 as fair, κ≥ 0.41 and κ≤ 0.60 as moderate,
κ≥ 0.61 and κ≤ 0.80 as substantial, and κ≥ 0.81 and κ≤ 1.00
as almost perfect agreement. κ is calculated using the fol-
lowing equation:

κ �
po − pe

1 − pe

, (2)

where po represents the relative observed agreement among
annotators and pe is the hypothetical probability of chance
agreement, both calculated using the following equations:

po �
TP + TN

TP + TN + FP + FN
,

pe �
(TP + FN) · (TP + FP) +(FP + TN) · (FN + TN)

(TP + TN + FP + FN)
2 .

(3)

Gwet’s AC1 is also calculated similarly as another
interrater agreeability metric [22]. Gwet’s AC1 tends to be
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less infuenced by imbalanced data and prevalence than
Cohen’s kappa. Terefore, providing values for Gwet’s AC1
alongside Cohen’s kappa is recommended due to strong
evidence to support its benefts, as detailed byWongpakaran
et al. [23]. Gwet’s AC1 has the same structure as Cohen’s
kappa described in equation (2); however, the main dif-
ference lies in the calculation of pe:

AC1 �
po − pe

1 − pe

,

pe � p1 ∗p1 + p2 ∗p2 + p3 ∗p3 + · · · + pn ∗pn,

(4)

where p1, p2, p3, . . ., pn are the probabilities of each category
occurring for both raters and n is the number of categories.
Terefore, in the case of binary annotations, we defne pe as
follows:

pe � ppositive ∗ppositive + pnegative ∗pnegative,

ppositive �
(TP + FP)

(TP + TN + FP + FN)
,

pnegative �
(FN + TN)

(TP + TN + FP + FN)
.

(5)

2.4. Annotation Image Analysis. To better understand the
underlying variance in the annotations of IRF from the
annotators, image properties of the annotations against the
corresponding OCT images are evaluated. IRF appears as
round, minimally refective spaces within OCT images [24];
therefore, we expect the annotations to be present in dark,
rounded regions within the image. We evaluate the greyscale
pixel intensity diference between the outer and inner
boundaries of each annotation, with each referring to 1 pixel
outside or inside the edge of the annotated region, re-
spectively. As IRF regions are visibly darker than the sur-
rounding tissue, this is used to gain insight into whether
clinicians are over/undersegmenting. Where the IRF regions
have normalised greyscale pixel intensity values closer to
0 (black) and surrounding tissue closer to 0.5 (grey), a larger
diference in the pixel intensity between outer/inner

annotation boundaries indicates a more accurate annota-
tion. Figure 2 shows the annotation boundaries for some
annotated areas.

Due to OCT images sufering from noise defects, an-
notator performance for diferent noise levels is evaluated to
determine the impact of noise on the annotations. As the
speckle noise present in OCT follows a Poisson distribution
[25], the shape parameter λ for each OCT image is estimated
using the approach detailed by Laligant et al. [26]. Each of
the 10 OCT images used is then assigned to groupings of low
noise (λ≥ 0, λ≤ 20), medium noise (λ≥ 20, λ≤ 40), and high
noise (λ≥ 40). Te subsequent distribution had 5 OCT
images designated as low noise, 3 as medium noise, and 2 as
high noise. Figure 3 shows OCT images from our dataset
with a low and high noise estimate.

Finally, we investigate whether the quality of the an-
notation varies based on the location of the perceived IRF
biomarker on the OCT image. Tree zones are established at
locations moving outward in each direction from the centre
of the OCT image, with a vertical crop at 0.5mm,
0.5mm–1.5mm, and 1.5mm–3mm. Figure 4 illustrates
these zones on an OCT image from our dataset. Recent
research work has shown variable correlations between
fuctuations in fuid volumes in diferent central zones of the
OCT scans and visual outcomes after treatment, as well as
diferences between 2D area measurements and estimates of
fuid versus 3D volumetric measurements. It is, therefore,
prudent to assess and compare the annotation accuracy for
these diferent zones for future interpretation of results.

3. Results

3.1. Clinician Grading of IRF. Te mean κ value for the IRF
annotation agreement across both round-1 and round-2
annotations was 0.68, with minimum and maximum
scores of 0.56 and 0.94, respectively. Te mean κ value for
round-2 was lower than that for round-1
(κround−2 � 0.68< κround−1 � 0.71). Te highest agreement
was observed for expert clinician’s Ex1 and Ex2 on round-1
annotations (κ � 0.94), indicating almost perfect agreement,
and the lowest agreement was seen for clinician’s Ex2 and Jr2
on round-1 annotations (κ � 0.56), indicating moderate

(a) (b) (c) (d)

Figure 1: Sample cropped expert annotations with correlated OCT region and the majority voted ground truth (GT). (a) OCT. (b) GT.
(c) Ex1. (d) Ex2.
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agreement. Figure 5 shows the relations of κ between each
pair of graders for the annotations of round-1 and round-2.
In comparison, the mean AC1 value for round-2 was also
found to be lower than that for round-1
(AC1round−2

� 0.60<AC1round−1
� 0.63). Te same maximum

and minimum agreement values between pairs were found
as with previously stated Cohen’s kappa pairs. Figure 6
shows the relations of the AC1 value between each pair of
graders for the annotations of round-1 and round-2.

Tables 1 and 2 describe the performance of each clinician
grader against the majority vote, with metrics averaged
across all annotations. Columns “# of annotations” within
each table refer to the number of annotated fuid areas
within the images. Figure 7 shows the distribution of IoU
scores for each clinician’s annotation rounds. Performance
metrics had limited improvement in the second round of
annotations for the 4 annotators with a second round, where
9 of 20 metric values across IoU, DSC, TNR, TPR, and
precision increased, with 2 remaining the same and 9
decreasing.

3.2. Annotation Image Region Properties. Te variance of the
IoU values for each clinician’s last round of annotations
grouped into diferent noise levels can be observed in Fig-
ure 8. Image noise did not have a signifcantly strong cor-
relation to annotator performance, withmean IoU for expert
and junior clinicians in low noise images of 0.8648 and
0.4304, respectively, whilst in high noise expert and junior,
mean IoU is 0.8479 and 0.4687, respectively.

Figure 9 shows the variance of the IoU values across the
three zones previously defned for each clinician’s last round
of annotations. A relationship between the location of the
annotation and the performance of the annotator can be
seen, particularly for juniors with a large decrease in mean
IoU farther from the centre of the OCTimage.Temean IoU
for expert and junior clinicians in zone 1 is 0.8857 and
0.6179, respectively, whilst in zone 3, expert and junior mean
IoU reduces to 0.8305 and 0.2782, respectively.

Figure 10 depicts the mean normalised greyscale pixel
intensity values for each clinician’s last round of annotations
for the 10 OCT images. A larger diference between the

Figure 2: Annotated areas with highlighted outer boundary (red) and inner boundary (blue).

(a) (b)

Figure 3: OCT images of DME with a low and high noise estimate. (a) Low λ� 4.88. (b) High λ� 80.76.

1 mm

Zone 3Zone 2Zone 2 Zone 1Zone 3

5 mm

3 mm

Figure 4: Zone locations within an OCT image.
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expert’s outer and inner annotation boundaries can be seen
with a mean diference of 0.1522, in comparison with the
juniors which have a mean diference of 0.1216. Further-
more, the greyscale pixel intensity of the entire area of
annotations shows that on average, junior annotations have
higher greyscale intensity annotations than the experts. Both
factors suggest that when annotating the IRF areas, junior
annotations tend to be slightly oversegmented into the
surrounding retinal tissue.

4. Discussion

Our experimental results show that the quality of annota-
tions can have a notable range based on clinician experience.
Diferences in the annotation quality between the clinicians
used within this study could be attributed to human-centric
limitations during the manual annotation process such as
clinical experience, lack of annotator focus, and distractions.

Inter-rater agreeability analysis found that agreement as
evaluated through Gwet’s AC1 is lower than that of Cohen’s
kappa. Tis could be attributed to the calculation of Gwet’s

AC1, which takes into account the prevalence of categories
and adjusts for imbalanced data. As our data are imbalanced,
with a majority of pixels in each annotation being back-
ground, this suggests the clinicians agree on the more
prevalent category (background), but disagree more on the
less prevalent category (IRF), which can be expected. Despite
the slight disparity in the absolute values of the two metrics,
they reveal comparable trends of agreeability between cli-
nicians, where the pairs of clinicians with the highest and
lowest agreement metrics remain consistent across both
measures.

A unique feature detailed within our investigation was
an image analysis-based method to evaluate the variance of
the image properties of the annotations. Tis showed that
expert clinicians have precise annotations which are more
contained to the IRF areas, whilst less experienced clinicians
have larger and less precise annotations which oversegment.
Furthermore, we found the noise present in the OCT image
not to have a signifcant efect on annotation quality;
however, annotations farther away from the centre of the
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Figure 5: Intergrader Cohen’s kappa values for round-1 and
round-2 annotations. Annotations for Ex1 round-2 are the same as
round-1 due to limited data.
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annotations. Annotations for Ex1 round-2 are the same as round-1
due to limited data.
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scan have a signifcant reduction in quality for junior cli-
nicians. Our approach of having a clinician annotation of the
same image over multiple rounds showed little improvement
in the quality of the annotations against the ground truth.
Tis could be due to the training approach undertaken not
being efective, or that such biomarker identifcation on
OCT images takes many years of clinical experience to
improve upon.

We have also shown that the identifcation of DME
biomarkers in OCT images is a challenging task even for
clinicians with decades of clinical experience. Whilst this
variation might be attributed to a variety of reasons, in-
cluding adherence to the biomarker specifcation, size, ex-
tent of the biomarker in the picture, or image quality, the
intergrader agreeability between experts was high.

Tere are some limitations to the methods we have used.
Tis investigation was carried out with very limited data;

Table 1: Annotator assessment on IRF round-1 annotations
measured against ground truth.

Clinician DSC TNR TPR Precision # of
annotated areas

Ex1 0.9078 1 0.8312 1 411
Ex2 0.9336 0.9996 0.8983 0.9719 285
Jr1 0.7195 0.9981 0.6321 0.8451 219
Jr2 0.5527 0.9993 0.3943 0.9456 254
Jr3 0.7359 0.9993 0.6039 0.9491 307

Table 2: Annotator assessment on IRF round-2 annotations
measured against ground truth.

Clinician DSC TNR TPR Precision # of
annotated areas

Ex2 0.9375 1 0.8825 1 285
Jr1 0.7235 0.9981 0.6373 0.8435 191
Jr2 0.5827 0.9979 0.4575 0.8291 111
Jr3 0.6267 0.9993 0.4725 0.9482 336
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therefore, the results may be skewed to this small sample. As
well as this, with only 2 experts to create the majority vote,
when evaluating the performance of the data used to create
the majority vote, there will be some bias. Tis could be
prevented by having a minimum of 3 expert clinicians in-
cluded and using a leave-out approach where performance
metrics and intergrader agreeability are also evaluated for
a majority vote in which their annotations are not included,
as shown in the investigation by Kurmann et al. [14]. Finally,
it would be benefcial to include annotations of other bio-
markers to determine how the quality of the annotations
may vary depending on the biomarker, as only IRF anno-
tations were considered in this study.

5. Conclusion

In this work, we investigated the variance in annotation
quality on OCT image annotations from multiple anno-
tators with diferent levels of experience. Based on inter-
grader agreeability metrics, we observed that expert
clinicians have an almost perfect agreement with a mod-
erate-substantial agreement with junior clinicians, whilst
juniors have substantial agreement with each other. It was
found that having junior clinicians annotate over multiple
training rounds had a limited improvement in quality.
Trough an image-based analysis, image noise had little
efect on annotation quality; however, annotations farther
from the centre of the image have substantially reduced
quality for junior clinician annotations. Furthermore, it
was found through analysis of annotation boundaries that
expert clinician annotations were contained to the darker
IRF areas, whereas juniors tend to oversegment into sur-
rounding retinal tissue.

Tis study has shown the extent to which annotations
from annotators with diferent levels of subject experience
can vary. Tese fndings suggest that the use of less expe-
rienced clinicians for image annotation may not be a reliable
solution for improving the efciency of data collection in
ophthalmology. It may be necessary to invest in more
comprehensive training programs or to prioritize the in-
volvement of experienced clinicians in the annotation
process to ensure the reliability and accuracy of automated
image analysis using deep learning approaches that rely
upon these annotations.
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