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Background. Anti-vascular endothelial growth factor (anti-VEGF) therapy via intravitreal injection is an efective treatment for
patients with abnormal ocular neovascularization, such as age-related macular degeneration (AMD) and diabetic macular edema
(DME). However, prolonged and frequent anti-VEGF treatment is associated with a risk of local and systemic adverse events,
including geographic atrophy, cerebrovascular disease, and death. Furthermore, some patients do not adequately respond to anti-
VEGF therapy. Hypoxia-inducible factor (HIF) is a transcription factor that controls the expression of hypoxia-responsive genes
involved in angiogenesis, infammation, and metabolism. Te HIF/VEGF pathway plays an important role in neovascularization,
and the inhibition of HIF activation could be an efective biomolecular target for neovascular diseases. Te demand for disease
prevention or treatment using functional foods such as superfoods has increased in recent years. Few reports to date have focused
on the antineovascular efects of superfoods in the retinal pigment epithelium (RPE). In light of the growing demand for
functional foods, we aimed to fnd novel HIF inhibitors from superfoods worked in RPE cells, which could be an adjuvant for anti-
VEGF therapy. Methods. Seven superfoods were examined to identify novel HIF inhibitor candidates using luciferase assay
screening. We used the human RPE cell line ARPE-19 and fetal human RPE (fhRPE) to investigate the biomolecular actions of
novel HIF inhibitors using quantitative PCR and western blotting. Results. Under CoCl2-induced pseudohypoxic condition and
1% oxygen hypoxic incubation, camu-camu (Myrciaria dubia) showed HIF inhibitory efects determined by luciferase assays.
Camu-camu downregulated HIF-1α and VEGFA mRNA expressions in a concentration-dependent manner. Camu-camu also
inhibited HIF-1α protein expressions, and its inhibitory efect was greater than that of vitamin C, which is present at high levels in
camu-camu. Conclusion. Te camu-camu extract suppressed the activation of HIF and VEGF in RPE cells. Tis could assist anti-
VEGF therapy in patients with abnormal ocular neovascularization.

1. Introduction

Hypoxia induces infammation, cell death, and abnormal
angiogenesis in humans [1–3]. Hypoxia in retinal pigment
epithelial (RPE) cells is one of the leading causes of age-related
macular degeneration (AMD) [4–6]. Hypoxia-inducible factor
(HIF) is a transcription factor for vascular endothelial growth

factor (VEGF) and other hypoxia-responsive genes in RPE
cells. Under normal conditions, HIF is constitutively expressed,
hydroxylated by prolyl hydroxylase (PHD), and targeted by
von Hippel–Lindau protein (VHL) for ubiquitination and
proteasomal degradation [7]. Under hypoxia, HIF translocates
into the nucleus, binds to hypoxia response elements (HRE),
and induces the expression of hypoxia-responsive genes, such
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as VEGF, B-cell lymphoma-interacting protein 3 (BNIP3),
glucose transporter 1 (GLUT1), and phosphoinositide-
dependent kinase 1 (PDK1) [8, 9]. Because the VHL/HIF/
VEGF pathway plays an important role in neovascularization
[2, 10, 11], targeting HIFs could be an antineovascularization
treatment of AMD and other retinopathies caused by angio-
genesis. Hypoxia leads to HIF stabilization and hence increases
levels of VEGF in RPE cells [12, 13]. In addition, HIF ex-
pression has been observed during choroidal neo-
vascularization (CNV) in AMD patients [14–16].

We previously reported that pharmacological inhibition
of HIF-1α or HIF-2α suppressed retinal neovascularization
in murine models of oxygen-induced retinopathy (OIR)
[17–19], known as a retinal neovascularization model, and
laser-induced CNV [20–22], known as an exudative
AMD model.

Humans consume a variety of nutrients in a daily life.
Interests in the relationship between food and health and the
prevention of diseases through food in recent years have
increased as healthcare costs, life expectancy, and health
concerns have been issued among people in developed
countries [23, 24]. In general, superfoods are ingredients
consumed for health promotion purposes for a long time,
with excellent nutritional balance or exceptionally high
amounts of certain nutrients [24, 25]. Medical uses of
superfoods, such as the prevention of metabolic syndrome
through the consumption of superfoods, have also been
reported [26–28]. Previously, ten clinical trials, which in-
vestigated broccoli sprout supplementation and car-
diometabolic health, showed that the dietary intake of
broccoli sprouts signifcantly reduced systolic and diastolic
blood pressures [29]. Te health efect of camu-camu is still
in controversial status. However, daily 70mL of 100% camu-
camu juice taken for 7 days could reduce oxidative stress
markers, such as levels of urinary 8-hydroxy-
deoxyguanosine and infammatory markers, including se-
rum levels of high-sensitivity C-reactive protein, interleukin
(IL)-6, and IL-8 in male with smoking [14].

In recent fundamental studies using superfoods, the
polyphenol velutin of acai fruit has been shown to down-
regulate HIF-1α expression in RAW 264.7 mouse monocyte
macrophage cells [30], and wolfberry polysaccharides could
inhibit HIF-1α expression in the mouse retina [31]. Few
studies to date have focused on the antineovascular efects of
superfoods on RPE cells. In this study, we screened seven
superfoods (camu-camu, coconut, broccoli sprout, chia seed,
hemp, maca, and cacao) that have been suggested to have
efcacies in human health in interventional clinical trials
[28, 29, 32–34] for new inhibitors for the HIF/VEGF
pathway in RPE cells.

2. Materials and Methods

2.1. Cell Culture. Te human retinal pigment epithelial cell
line ARPE-19 was cultured in DMEM/F-12 (Cat
#C11330500BT, Gibco, NY, USA) media with 10% FBS and
1% streptomycin-penicillin in a 5% CO2 atmosphere at 37°C.
fhRPE cells were cultured in the cell culture medium, as
previously reported [35]: MEM, α-modifcation media (Cat

# M-4526, Sigma-Aldrich, MO, USA) with N1 supplement
(Cat# N-6530, Sigma-Aldrich) 1 :100mL/mL, nonessential
amino acid solution (Cat# M-7145, Sigma-Aldrich) 1 :
100mL/mL, hydrocortisone (Cat# H-0396, Sigma-Aldrich)
20 μg/L, taurine (Cat# T0625-10G, Sigma-Aldrich) 250mg/
L, and triiodo-thyronine (Cat# T-5516, Sigma-Aldrich)
0.013 μg/L, 5% FBS, and 1% penicillin-streptomycin in a 5%
CO2 atmosphere at 37°C.

2.2. Superfood Sample Preparation. Seven superfoods were
prepared: six powdered samples of camu-camu (Myrciaria
dubia) (Seikatsunoki, Tokyo, Japan), coconut (Arisan, Sai-
tama, Japan), broccoli sprout (Imajin, Saitama, Japan), chia
seed (Navitas organics, Novate, CA, USA), hemp (IMPLEX,
Osaka, Japan), and maca (Seikatsunoki, Tokyo, Japan)
dissolved in Milli-Q® water (MQ) at various concentrations.
Cacao nibs were homogenized with zirconia balls (As One,
Osaka, Japan) at 6,000 rpm for 20 s three times in MQ. All
samples were adjusted immediately before use. Camu-camu
powder used in this study was made from camu-camu pulps
and contains 5,850mg of vitamin C per 100 g.

2.3. Luciferase Assay Screening. ARPE-19 cells were trans-
fected with HIF activity-dependent frefy luciferase and
endogenous control CMV-Renilla luciferase using a lenti-
virus. We produced a stable-expression cell line “RH-
ARPE19,” as previously described [17, 20]. Te steps are as
follows: Te HIF-luciferase reporter gene (Cignal Lenti HIF-
1 Reporter #336891 CLS-007L, Qiagen, Venlo, Netherlands)
were transfected into ARPE-19 cells using a lentivirus. Re-
garding HIF-frefy luciferase, multiplicity of infection
(MOI) was set to 25, and 2×104 cells were infected with HIF-
1α-frefy lentivirus 5×105 TU. Tese cells were also
cotransfected with CMV-Renilla luciferase construct as an
internal control. Te MOI was set to 3, and 2×104 cells were
infected with CMV-Renilla Control (Cignal Lenti CMV-
Renilla Control Reporter #336891 CLS-RCL, Qiagen, Venlo,
Netherlands) 6×104 TU using a lentivirus. Infections were
carried out simultaneously, and after infection, antibiotic
selection was performed using puromycin and hygromycin;
stable cell lines were established by cloning. Firefy/Renilla is
25/3 from the set MOI.

RH-ARPE19 cells were seeded at 1.0×104 cells/well/
70 μL in white sterile HTS Transwell-96 receiver plates
(Corning, NY, USA). After 24 h, the cells were treated with
cobalt chloride (CoCl2) (200 μM, cobalt (II) chloride
hexahydrate;Wako, Saitama, Japan) as a proline hydroxylase
(PHD) inhibitor or incubated under 1% O2 hypoxic con-
ditions to stabilize HIF expression. Superfood samples
(1mg/mL) or camu-camu (1–1,000 μg/mL) were added to
assess the HIF inhibitory efect. After 24 h of incubation,
luciferin was added to obtain a luminescence signal that
refects HIF activity. Luminescence was measured using
a Dual-Luciferase® Reporter Assay System (Promega,
Madison, WI, USA). In addition, 1mM of topotecan
(Cayman Chemical, Ann Arbor, MI, USA) or doxorubicin
(Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) was used
as positive controls of HIF inhibition [36]).
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2.4. Quantitative PCR. Te efects of the camu-camu extract
on the expression of HIF signaling-related genes were ex-
amined, as previously described [19, 21]. Specifcally, ARPE-
19 cells were seeded in 12-well plates (Corning) at
1.2×105 cells/well/mL. After 24 h, camu-camu extract
(0.1–30 μg/mL) and vitamin C (1.755 μg/mL, L(+)-ascorbic
acid; Nacalai Tesque, Inc., Kyoto, Japan) were added to the
culture medium. Tirty micrograms of camu-camu extract
contains 1.755 μg of vitamin C. After 7 h of incubation, the
cells were dissolved in TRI reagent (MRC Global, Cincin-
nati, OH, USA), and RNA extraction was performed using
EconoSpin columns (GeneDesign, Osaka, Japan). Te col-
umns were washed with RPE and RWT bufers (Qiagen,
Hilden, Germany). cDNA was synthesized from extracted
RNA using ReverTra Ace™ qPCR RT Master Mix with
gDNA Remover (Toyobo Co., Ltd. Osaka, Japan). Real-time
PCR was performed using THUNDERBIRD® SYBR® qPCRMix (Toyobo Co., Ltd. Osaka, Japan) with QuantStudio 5
(Life Technologies, Carlsbad, CA, USA).

Te primer sequences used were as follows: HIF-1α for-
ward TTCACCTGAGCCTAATAGTCC,HIF-1α reverse CAA
GTCTAAATCTGTGTCCTG, HIF-2α forward CGGAGG
TGTTCTATGAGCTGG, HIF-2α reverse AGCTTGTGTGTT
CGCAGGAA,GLUT1 forwardCGGGCCAAGAGTGTGCTA
AA, GLUT1 reverse TGACGATACCGGAGCCAATG, BNIP3
forward GACAGAGTAGTTCCAGAGGCAGTTC, BNIP3
reverse GTGTGCATTTCCACATCAAACAT, PDK1 forward
ACAAGGAGAGCTTCGGGGTGGATC, PDK1 reverse CCA
CGTCGCAGTTTGGATTTATGC, VEGF forward TCTACC
TCCACCATGCCAAGT, VEGF reverse GATGATTCTGCC
CTCCTCCTT, β-actin forward GGAGGAAGAGGATGC
GGCA, and β-actin reverse GAAGCTGTGCTATGTTGC
TCTA. Te fold change between the levels of diferent tran-
scripts was calculated by the ∆∆CT method.

2.5. Western Blotting. ARPE-19 and fhRPE cells were lysed
on ice in RIPA bufer (Termo Fisher Scientifc, Waltham,
MA, USA) containing a protease inhibitor cocktail (Roche
Diagnostics, Basel, Switzerland) to extract the cellular
proteins. Equal amounts of protein (based on the BCA
assay) were treated with a sample bufer solution con-
taining a reducing reagent (Nacalai Tesque, Inc., Kyoto,
Japan). Te samples were heated to 95°C for 3min, frac-
tionated by 10% SDS-PAGE, transferred to polyvinylidene
fuoride (PVDF) membranes, and immunoblotted. Anti-
β-actin antibody (1 : 5000, Cat #3700, Cell Signaling
Technology, Danvers, MA, USA) was used as an internal
standard to normalize each sample. Anti-HIF-1α (1 : 1000,
Cat #36169, Cell Signaling Technology) and anti-HIF-2α (1 :
1000, Cat #NB100-122, Novus Biologicals, Centennial, CO,
USA) were used as primary antibodies. Te immunoblots
were developed using horseradish peroxidase-conjugated
secondary antibodies (1 : 5000; GE Healthcare, Princeton,
NJ, USA). Signals were detected using an ECL kit (Ez
WestLumi plus, ATTO, Tokyo, Japan) and imaged using
chemiluminescence (ImageQuant™ LAS 4000 mini, GE
Healthcare). All raw data of western blotting is available in
Supplement Figure 1.

2.6. Statistical Analysis. Statistical signifcance was calcu-
lated using two-tailed Student’s t-test for comparison of two
groups. p values of less than 0.05 were considered statisti-
cally signifcant.

3. Results

RH-ARPE19 cells were treated with seven superfood sam-
ples to test for the HIF inhibitory activity. For the frst
luciferase assay screening, 200 μMCoCl2 was used to induce
the HIF activity, and 1mM of topotecan was used as the
positive control for HIF inhibition [37, 38] (Figure 1(a)).
Compared to the control containing only pure water, the
relative luciferase activity was increased in the MQ group
loaded with CoCl2-induced pseudohypoxic conditions
(Figure 1(a)). Te four superfood samples camu-camu, chia
seeds, maca, and cacao nibs exhibited HIF-suppressive ef-
fects compared to MQ (Figure 1(a)) under CoCl2-induced
pseudohypoxic conditions. In the second luciferase
screening, to better mimic hypoxic conditions, we used 1%
O2 hypoxic incubation to stabilize HIF expression
(Figure 1(b)). Te four superfood samples selected by the
frst trial of the luciferase assay screening were used in the
second luciferase screening (Figure 1(b)). Camu-camu had
a statistically signifcant inhibitory efect on HIF activation.
Camu-camu treatment inhibited the HIF activity under
CoCl2-induced pseudohypoxic conditions in a dose-
dependent manner (from 1 to 1,000 μg/mL) (Figure 2(a)).
Cell toxicity of camu-camu treatment was increased between
300 and 1000 μg/ml regarding internal control Renilla ex-
pression (Figure 2(b)). From the series of screening tests, we
found that camu-camu may have the potential to destabilize
HIF expression in human RPE cells.

We then investigated the efect of camu-camu treatment
on HIF-1α, HIF-2α, and HIF downstream-target hypoxia-
responsive gene expressions [39, 40] in ARPE-19 cells
(Figure 3). After 7 hours of camu-camu treatment, the ex-
pression levels of HIF-1α, GLUT1, BNIP3, PDK1, and
VEGFA were signifcantly downregulated under normal
culture conditions (Figures 3(a), 3(d)–3(f )).

Camu-camu is a vitamin C-rich fruit, and the red-stage
fresh matter contains 1.88%–2.06% vitamin C by weight
[41, 42]. Te antioxidant properties of vitamin C are well
known [43], and it can also reduce HIF-1α expression in vivo
[44, 45]. Terefore, we compared the HIF-1α and HIF-2α
inhibitory efects of camu-camu with those of vitamin
C.HIF-1α andHIF-2αmRNA expressions were signifcantly
reduced by high- and low-dose camu-camu treatments
(Figures 4(a) and 4(b)). Te efects of high- and low-dose
camu-camu treatment on HIF-1α and BNIP3 mRNA ex-
pressions were greater than those of vitamin C treatment
(Figures 4(a) and 4(c)). As high-dose camu-camu treatment
(30 μg/ml) contains 1.755 μg/ml of vitamin C, we selected
1.755 μg/ml of vitamin C for vitamin C treatment (Figure 4).
We examined the efects of the camu-camu extract on the
expression of HIF-1α and HIF-2α. Camu-camu noticeably
inhibited CoCl2-dependent induction of HIF-1α in a dose-
dependent manner in ARPE-19 cells (Figures 5(a) and 5(b)).
Camu-camu also had an HIF-1α inhibiting tendency in
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fhRPE cells (Figures 5(c) and 5(d)).Te suppressive efects of
camu-camu treatment on HIF protein expression were
stronger than those of vitamin C treatment (Figure 5(b)).

4. Discussion

In this study, we found that camu-camu treatment could
inhibit the stabilization of nonphysiologic HIF-1α proteins
in ARPE-19 cells. Among the seven superfood candidates,
camu-camu was found to be a novel HIF inhibitor based on
luciferase assay screening under pseudohypoxic conditions
using CoCl2 and 1% O2 (Figure 1). Camu-camu is a native
Amazonian bush-bearing, round, redberry-like fruit. Camu-
camu pulps are used not only in the Amazon region but also
in Japan and Europe as juice, sherbet, and extracts [41].
Camu-camu contains natural antioxidants, such as vitamin
C, carotene, phenolic compounds, favonols, anthocyanins,
ellagic acid conjugates, ellagitannins, gallic acid derivatives,

and proanthocyanidins [41, 42, 46]. Tese bioactive sub-
stances have been reported to possess antioxidant and free
radical scavenging abilities [47–49]. Camu-camu has been
reported to contain approximately 1,882–2,061mg of vita-
min C in 100 g of fresh mature fruit [46, 50].Te camu-camu
powder used in this study contained 5,850mg of vitamin C
per 100 g, indicating that 5.85% of the powder contained
vitamin C by weight.

Vitamin C is a strong antioxidant [43] that inhibits HIF
expression in cancer [51] and lens epithelial cells [52].
Furthermore, the mode of action of vitamin C on HIF-1α
suppression has been suggested to involve in prolyl hy-
droxylation [45].Te camu-camu extract suppressed HIF-1α
and HIF-2α expressions to a greater extent than vitamin C in
ARPE-19 cells (Figures 4 and 5). Tese results suggest that
components other than vitamin C in camu-camu may
synergize with the inhibitory efects of HIF. In our current
study, water-soluble substances in camu-camu were only

Re
lat

iv
e l

uc
ife

ra
se

 ac
tiv

ity
(R

at
io

 to
 co

nt
ro

l)

CoCl2

###

** ***
***

**

***

0

20

40

60

80

C
on

tro
l

M
Q

To
po

Ca
m

uc
am

u

C
oc

on
ut

Br
oc

co
li 

sp
ro

ut

Ch
ia

 se
ed

H
em

p

M
ac

a

Ca
ca

o 
ni

b

Camucamu

(a)

Re
lat

iv
e l

uc
ife

ra
se

 ac
tiv

ity
(R

at
io

 to
 C

on
tro

l)

**

*

1% O2

***

M
Q

Ca
m

uc
am

u

Ch
ia

 se
ed

M
ac

a

Ca
ca

o 
ni

b

0

0.6

1.2

1.8

2.4

Camucamu

(b)

Figure 1: Inhibitory hypoxia-inducible factor (HIF) activity efects of superfoods. Of seven superfoods (camu-camu, coconut, broccoli
sprout, chia seed, hemp, maca, and cacao nib) after the frst screening, four samples (camu-camu, chia seed, maca, and cacao nib) were
shown to be positive (a). After the second screening, camu-camu was identifed as a new HIF inhibitor candidate (b). Quantitative analyses
of the HIF-reporter luciferase assay using ARPE-19 cells (n� 3 per group, biological). Te superfoods were added at 1mg/mL each. (a) HIF
activity induced by 200 μM CoCl2 or (b) 1% O2 hypoxic incubation. Te control was no induction of HIF activity. ###p< 0.001 compared
with no treatment. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001 compared with MQ by (a) 200 μM of CoCl2 treatment or (b) 1% O2 hypoxic
incubation, respectively. Te bar graphs present means with the± standard deviation. Te data were analyzed using two-tailed Student’s t-
test for comparison. MQ: Milli-Q® pure water; Topo: topotecan.

4 Journal of Ophthalmology



focused. Terefore, it might be required to investigate HIF-
inhibitory efects of hydrophobic compounds in camu-camu
(such as ellagic acid conjugates and gallic acid derivatives).
Te ellagic acid has been reported to have HIF-1α sup-
pressive efects on the human urinary bladder carcinoma cell
line (ECV304) [53]. Aqueous HIF-inhibitory substances can
reach the choroidal blood vessels that nourish RPE cells, as
abundant blood fows into the choroid blood vessels from
the short posterior ciliary artery, the long posterior ciliary
artery, and the anterior ciliary artery which are from the
internal carotid artery. Taken together, the investigation on
substances in camu-camu that may have additional HIF-
inhibitory efects will be further studied.

Intravitreal anti-VEGF therapy is an important treat-
ment option for patients with vision loss due to abnormal
neovascularization, including AMD, macular edema sec-
ondary to retinal vein occlusion (RVO), diabetic macular
edema (DME), myopic choroidal neovascularization
(mCNV), and retinopathy of prematurity (ROP). More than
2.5 million intravitreal injections are used annually in the
United States [54]. Anti-VEGF therapy appears to be an
efective treatment for the retina; however, prolonged and/or
frequent treatments may be associated with an increased risk
of ocular local and/or systemic adverse events, including
geographic atrophy [55], cerebrovascular disease, and death
[56]. Occasionally, patients do not respond adequately to
anti-VEGF therapy [57, 58]. Terefore, it is necessary to

explore treatment options other than anti-VEGF therapy for
these diseases. In this regard, our camu-camu extract might
be helpful.

Increased HIF-1α expression in RPE cells promotes the
production of VEGF, and increased VEGF expression pro-
motes the development of abnormal neovascularization
[59–61]. Muller cells have possibilities to play an important
role in the production of VEGF and HIF-1α, which are as-
sociated with infammation of the inner retinal layers, such as
in diabetic retinopathy [62]. Although we focused onHIF and
VEGF expressions in RPE cells in our current study, it may be
necessary to consider Muller cells for the further work. Based
on the role of HIF-1α in angiogenesis, HIF-1αmay represent
a molecular therapeutic target for ocular neovascularization
diseases in addition to VEGF, as noted in previous reports
[63–65]. We showed that the camu-camu extract inhibited
HIF-1α and HIF-2α expressions in ARPE-19 cells. Te HIF-
2α mRNA level was decreased by the 10μg/ml and 30 μg/ml
camu-camu treatments (Figure 4).Te 10 μg/ml and 30 μg/ml
camu-camu treatments inhibited the transcription ofHIF-2a,
but the translation is unknown from this experiment because
we were unable to detect translation changes in HIF-2α
protein. Regarding HIF-1α, the camu-camu treatments in-
hibit transcription and translation (Figures 3–5). VEGF and
its receptors VEGF receptor-1 and VEGF receptor-2 are
directly induced by HIF-2α under hypoxic conditions
through their identifed HRE [66, 67]. Inhibition of excessive
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Figure 2: Inhibitory hypoxia-inducible factor (HIF) activity efects of camu-camu. Camu-camu was evaluated at various concentrations. (a,
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HIF-2α expression may also be protective against ocular
neovascularization and RPE atrophy since a relationship
between HIF-2α and angiogenic retinopathy has been

suggested [16]. Particularly, in retinal disease characterized by
neovascularization as a result of severe tissue hypoxia, such as
AMD [16] or proliferative diabetic retinopathy (PDR) [68],
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0.1 μg/mL to 10 μg/mL each in ARPE-19 cells. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001 compared with no treatment. Te bar graphs present
means with± standard deviation. Te data were analyzed using two-tailed Student’s t-test for comparison.
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Figure 4: Comparison of hypoxia-responsive gene expression by camu-camu and vitamin C. Quantitative analyses (n� 3–5 per group,
biological) using ARPE-19 cells reveal signifcant changes in HIF-1α, HIF-2α, and BNIP3 mRNA expression after 7 hours of 10 μg/mL and
30 μg/mL camu-camu treatment. Vitamin C was added at 1.755 μg/mL. Low-dose camu-camu treatment comprised 10 μg/mL of camu-
camu, and high-dose camu-camu treatment (30 μg/mL) contained 1.755 μg/mL of vitamin C. HIF-1α, HIF-2α, and BNIP3 mRNA-
suppressive efects of camu-camu treatment were generally greater than those of vitamin C treatment. #p< 0.05, ##p< 0.01, and ###p< 0.001
compared with no treatment. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001 compared with camu-camu treatments and vitamin C treatment.
NS: no signifcant. Te bar graphs present means with± standard deviation. Te data were analyzed using two-tailed Student’s t-test for
comparison.
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HIF-2α is expressed in the subretina in patients. Deferox-
amine (DFO), an iron chelator, causes RPE atrophy as adverse
efects. Clinically inhibiting upregulation of HIF-2α by
α-ketoglutarate relieved DFO-related RPE atrophy [69].
Camu-camu, which suppresses both HIF-1α and HIF-2α
expressions in RPE cells, could become an adjuvant therapy to

assist current treatments for patients with abnormal neo-
vascularization and subsequent RPE atrophy. Because camu-
camu can readily be consumed in the form of juice or food, it
is considered acceptable to patients mentally and economi-
cally. However, the dosage and administration need to un-
dergo further study.
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Figure 5: Comparison of camu-camu and vitamin C efects on suppression of HIF-1α protein expression. HIF-1α activity induced by
200 μM CoCl2 and suppression by doxorubicin. Treatment with 1 μg/mL camu-camu comprises 5.85×10−2 μg/mL of vitamin C. (a) Camu-
camu suppresses HIF-1α protein expression in ARPE-19 cells. (b) Quantifcation of the blots shows that the administration of camu-camu
suppressed increased HIF-1α protein expression under CoCl2 in ARPE-19 cells (n� 3, biological and technical). (c) HIF-1α expression
under CoCl2 in fhRPE cells. (d) Quantifcation of the blots in fhRPE (n� 3, biological and technical). #p< 0.05 compared with CoCl2 +MQ.
∗p< 0.05 and ∗∗p< 0.01 compared with no CoCl2 treatment. Te bar graphs present means with± standard deviation. Te data were
analyzed using two-tailed Student’s t-test for comparison. MQ: Milli-Q® pure water; Topo: topotecan; DXR: doxorubicin; Vit C: vitamin C.
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5. Conclusions

Although the in vivo efects need to be further investigated,
we found that among the seven superfood candidates, camu-
camu treatment inhibited upregulation of HIF/VEGF ex-
pressions in ARPE-19 cells. Camu-camu could become an
adjuvant therapy to assist anti-VEGF therapy in patients
with abnormal neovascularization and subsequent RPE at-
rophy in an era of rising expectations regarding functional
foods and superfoods.
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