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Purpose. Four weight-gain-based algorithms are compared for the prediction of type 1 ROP in an Australian cohort: the weight,
insulin-like growth factor, neonatal retinopathy of prematurity (WINROP) algorithm, the Children’s Hospital of Philadelphia
Retinopathy of Prematurity (CHOPROP), the Colorado Retinopathy of Prematurity (CO-ROP) algorithm, and the postnatal
growth, retinopathy of prematurity (G-ROP) algorithm.Methods. A four-year retrospective cohort analysis of infants screened for
ROP in a tertiary neonatal intensive care unit in Brisbane, Australia. Te main outcome measures were sensitivities, specifcities,
and positive and negative predictive values. Results. 531 infants were included (mean gestational age 28 + 3). 24 infants (4.5%)
developed type 1 ROP.Te sensitivities, specifcities, and negative predictive values, respectively, for type 1 ROP (95% confdence
intervals) were for WINROP 83.3% (61.1–93.3%), 52.3% (47.8–56.7%), and 98.4% (96.1–99.4%); for CHOPROP 100%
(86.2–100%), 46.0% (41.7–50,3%), and 100% (98.4–100%); for CO-ROP 100% (86.2–100%), 32.0% (28.0%–36.1%), and 100%
(98.3–100%); and for G-ROP 100% (86.2–100%), 28.2% (24.5–32.3%), and 100% (97.4–100%). Of the fve infants with persistent
nontype 1 ROP that underwent treatment, only CO-ROP was able to successfully identify all. Conclusions. CHOPROP, CO-ROP,
and G-ROP performed well in this Australian population. CHOPROP, CO-ROP, and G-ROP would reduce the number of infants
requiring examinations by 43.9%, 30.5%, and 26.9%, respectively, compared to current ROP screening guidelines. Weight-gain-
based algorithms would be a useful adjunct to the current ROP screening.

1. Introduction

Retinopathy of prematurity (ROP), a disease of the de-
veloping retinal vasculature of premature infants [1, 2], is
a signifcant cause of adverse events and morbidity such as
retinal detachment and irreversible visual impairment [1, 2].

Infants at risk of developing ROP undergo repeated
retinal screening examinations to detect severe disease that
requires treatment [3–5]. Current ROP screening guidelines
recommend examination of infants below a certain gesta-
tional age (GA) and birth weight (BW) which are de-
termined according to the local characteristics of the
premature population and the quality of neonatal care [6]
(e.g., GA less than 31weeks and BW less than 1250 g in

Queensland, Australia). Infants with higher GA or BW than
screening cutofs who have an unstable clinical course are
also screened by the judgement of the neonatologist [7].

Te detection yield of ROP screening is low. According
to several years of the Australian and New Zealand Neonatal
Network Annual Reports [8], it is clear that the signifcant
majority of infants screened for ROP have a low likelihood of
developing severe disease (3-4%) [8], and this matches
studies in other developed nations [9–13]. Current screening
methods for ROP cause neonatal distress including hyper-
tension, decreased oxygen saturation, and the oculocardiac
refex [4, 14, 15]. Other issues with the low detection yield of
ROP screening include parental anxiety [4] and frequent
hospital presentations or prolonged hospital admissions for
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screening [16]. As only a small number of infants examined
require treatment for ROP, improving the detection of ROP
has the potential to increase the cost-efectiveness of current
ROP screening [7].

With a greater understanding of the pathophysiology of
ROP, clinical studies have shown that prolonged early IGF-1
defcits are associated with a higher risk of subsequent sight-
threatening ROP [1, 2, 17]. Defciencies in IGF-1 lead to
a hypoxic preclinical phase resulting in a more severe
subsequent proliferative vascular clinical phase. However, as
routine serial IGF-1 level monitoring would be challenging
to obtain and costly, postnatal weight gain has been adopted
as a surrogate [10].

Several screening algorithms using postnatal weight gain
to refect serum IGF-1 levels have been developed in the last
decade [9, 10, 18–21]. Tese algorithms utilise the postnatal
weight gain in combination with the GA and BW charac-
teristics to signal an alarm that a particular infant has a high
risk of developing severe ROP. Refecting the variable and
complex nature of this disease, these algorithms must be
validated at a local level prior to being implemented into
clinical practice. Terefore, further studies in Australian
cohorts are required [7].

To our knowledge, no studies have directly compared the
outcomes of all four algorithms for the same cohort. Tis
study aims to compare the performance of four algorithms,
namely CHOP-ROP (Children’s Hospital of Philadelphia
ROP) [18, 19], WINROP (weight, insulin-like growth factor
I, neonatal ROP) [10, 20], CO-ROP (Colorado retinopathy
of prematurity model) [21], and G-ROP (postnatal growth
and retinopathy of prematurity) [9] in an Australian tertiary
level NICU setting.Te secondary objective is to estimate the
impact of a more targeted screening process in reducing the
number of examinations in low-risk infants to focus on
high-risk infants.

2. Methods

Tis retrospective cohort study was conducted from January
2017 to December 2020 including all premature infants
admitted to the neonatal intensive care unit (NICU) at the
Mater Hospital in Brisbane, Queensland, who underwent
ROP screening (criteria GA< 31 and/or BW< 1250 g or who
had an unstable clinical course determined by the treating
neonatologist). Digital wide feld images and standard
binocular indirect ophthalmoscopy (if required) were used
to diagnose and classify ROP.

Weight data were collected from a review of the elec-
tronic records. Infants with the following were excluded
from this study: the presence of clinical conditions that cause
nonphysiological weight gain (including hydrocephalus and
severe subcutaneous oedema) and infants with incomplete
medical records (for example, infants transferred from an-
other hospital without weight gain data or infants who were
having ongoing retinal screening but who deceased prior to
the determination of fnal ROP outcome were excluded).

Data collected included birthweight, gestational age,
ROP outcomes including treatment, treatment modality, the
postmenstrual age at the time of treatment, and all postnatal

weight gain measurements until discharge from the ROP
screening clinic.Te ETROP study [22] classifcation was the
basis for the categorisation in our study (no ROP, mild ROP,
type 1 ROP, and type 2 ROP). Mild ROP is the presence of
ROP that does not meet the criteria for type 1 or type 2 ROP.

Data were entered into the following four weight gain
predictive algorithms according to their inclusion criteria.

2.1.WINROP. Only infants less than 32weeks of gestation at
birth irrespective of the BW are eligible to be entered into the
WINROP algorithm, which is available online [10, 20]. Birth
weight, date of birth, gestational age, and weekly weights
were entered until 40weeks of postmenstrual age or dis-
charge, or till the alarm signals in the algorithm, whichever
was earlier. WINROP algorithm allows postnatal weight to
be entered until 40weeks of postmenstrual age (PMA) to
classify risk.

2.2. CHOPROP. Infants less than 31weeks of GA or less
than 1501 g birthweight are eligible to be evaluated by
CHOPROP. Birthweight, gestational age, and daily weight
gain rate are entered into the algorithm to calculate the risk
score from 2nd week onwards [19]. CHOPROP requires the
documentation of neonatal weight at the end of the second
week to be included in the algorithm. Weight change in the
frst week was disregarded as per the original study.Te daily
weight gain rate was calculated by weekly measurements (the
diference between current weight and previous week’s
weight is divided by 7). Alarm cutof of >/� 0.014 was used
to identify neonates at risk of type 1 ROP.

2.3. CO-ROP. Infants less than or equal to 30weeks of GA
and who have a birthweight of less than 1501 g are eligible to
be evaluated by CO-ROP [21]. Tey also should not gain
more than 650 g by the 28th day of life.

2.4. G-ROP. Tis is the latest of the algorithms to be
designed and utilised by the largest cohort of infants during
development [9]. Infants meet the criteria for ROP screening
if they met any of the following six criteria: (1) birthweight
<1051 g; (2) gestational age <28weeks; (3) weight gain be-
tween day 10 and 19 <120 grams; (4) weight gain between
day 20–29 <180 grams; (5) weight gain between day 30–39
<170 grams; (6) diagnosis of hydrocephalus. For infants not
meeting the GA, BW, or hydrocephalus criteria for G-ROP,
there was no weight measurement at a particular mea-
surement day (for instance, day 10, 19, 20, 29, 30, and 39 for
G-ROP), and then, the nearest weight measurement (within
2 days) was used.

Diagnostic performances of all four algorithms were
described by calculating sensitivity, specifcity, PPV, NPV,
and likelihood ratios. Te Wilson method was used to de-
termine the 95% confdence intervals for all calculations. We
also sought to calculate the efciency of these algorithms by
calculating the reduction in the number of infants that
would require eye examinations. For this, we proposed that
the algorithms were utilised to make decisions on whether
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infants would be screened or not based on whether they were
alarmed or not. Infants that did not alarm would not un-
dergo an eye examination.

Ethical approval for the study was obtained from the
Mater Research Governance (HREC/15/MHS/112).

3. Results

Five hundred thirty-one infants met the inclusion criteria.
Figure 1 describes the study fow and reasons for exclusion
from the study.

531 infants included in the study had a median BW of
1100 g (IQR 432 g) and the median GA of 28weeks (IQR
3weeks). Of the infants, 296 (55.7%) were male. Any ROP
developed in 356 infants (67.0%), of whom 24 (4.5%) de-
veloped type 1 ROP, and all received intravitreal bev-
acizumab injections and/or laser retinal photocoagulation. A
further 40 (7.5%) infants developed type 2 ROP of whom 5
received late laser retinal photocoagulation for nonresolving
activity/ongoing ischaemia. Te demographics of included
infants are found in Table 1.

Diagnostic performances of all four screening algorithms
are shown in Table 2. All 531 infants were entered into
CHOP-ROP, CO-ROP, and G-ROP to determine the risk of
type 1 ROP (Table 2). Using WINROP, a total of 508 infants
were entered (the remaining 23 infants were more than
32weeks gestation, and none of these 23 infants developed
type 1 or type 2 ROP).

All four algorithms have high negative predictive values
(NPV) for type 1, type 2, and treated ROP. CO-ROP had the
highest negative predictive values and 95% confdence in-
tervals (95% CI) for type 1, type 2, and treated ROP closely
followed by G-ROP. Te 95% CI for NPV for an infant with
a negative test result on CO-ROP that does not have type 1
ROP, not have type 2 ROP, and not have treatment requiring
ROP was 98.3–100%, 94.7%–99.4%, and 97.7–100%, re-
spectively. Likelihood ratios for all algorithms screening type
1, type 2, treated, and any ROP were calculated and included
in Table 2. We found that the negative likelihood ratios were
consistent with the high negative predictive values for type 1
ROP and treated ROP.

If the algorithms were used to reduce the number of
infants requiring examinations, G-ROP would have reduced
the number of infants requiring examinations by 143 (26.9%)
including 4 neonates with type 2 ROP infants of which one
required treatment; compared to 162 (30.5%) for CO-ROP
including 3 infants with type 2 ROP, none of whom required
treatment; if CHOPROP was used 233 (43.9%), infants would
not undergo examinations, and this number includes 8 in-
fants with type 2 ROP of which 2 required treatment; and
WINROP would reduce the number of infants undergoing
examinations by 252 (49.7%) which includes 13 infants with
type 2 ROP of which 1 required treatment and 4 infants with
type 1 ROP (who all required treatment).

4. Discussion

We present, for the frst time, a comparison of the sensi-
tivities, specifcities, predictive values, and likelihood ratios

for multiple weight gain algorithms within a single Aus-
tralian cohort.

Our study found a prevalence of 4.5% of type 1 ROP in
infants screened for ROP between 2017 and 2020 which is
similar to other prevalence studies in industrialised nations.
Postnatal Growth and Retinopathy of Prematurity (G-ROP)
retrospective cohort study conducted in 29 hospitals [11]
found a prevalence rate of 6.1% of infants developing type 1
ROP. In a large Swedish cohort, the rate was 5.3% [12], and
in a UK cohort, the prevalence rate was 4.0% [13].

In this study’s Australian cohort, WINROP had the
lowest sensitivity for detecting type 1 ROP. Of all the al-
gorithms WINROP has been the most extensively studied;
36 studies across the world with a resultant range of sen-
sitivities from 100% to 55% [23]. Tere is one other study
conducted within an Australian population that found
a sensitivity of 85.7%, a specifcity of 59.0%, an PPV of 7.0%,
and an NPV of 99.1% [24]. A recent systematic review found
that WINROP has a sensitivity of 89%, specifcity of 57%,
and a negative likelihood ratio of 0.19 [23]. Tere were three
validation studies that found sensitivities less than 75%
[25–27]. Zepeda-Romero et al. argued that their low sen-
sitivity was because the cohort of infants studied were ex-
posed to unmonitored supplemental oxygen that caused
larger and more mature infants to develop severe ROP [26].
When the validation study was repeated, with NICU changes
implementing monitoring with constant pulse oximetry,
oxygen saturation targets of 85–95%, alarms for oxygen
saturation at 90–95%, and education courses for medical and
nursing staf, the authors found an increased sensitivity of
80% [28]. A Taiwanese study also noted poor sensitivity in
WINROP which was suggested to be a likely consequence of
regional variation in expected weight gains between a South-
East Asian premature infant and a European premature
infant [27]. Models developed from small cohorts can be
overftted resulting in undesirable outcomes when validation
studies in other regions of the world are performed [7]. Such
results highlighted the need to perform such validation
studies within our own neonatal population prior to
implementation into clinical practice.

Tere are, in comparison, signifcantly fewer worldwide
validation studies on CHOPROP, CO-ROP, and G-ROP
[18–20, 23, 29–43], but, to date, the sensitivity results for
type 1 ROP are promising (consistently between 90 and
100%). When assessed against the same cohort of 7483
infants that were part of developing the G-ROP model,
CHOPROP had a sensitivity of 98.5% (95% confdence
interval between 96.9 and 99.3%) [29] and CO-ROP had
a sensitivity of 96.0% (95% confdence interval 93.4–97.6%)
[32]. CO-ROP ranges from 93.1% to 100% sensitivity for
type 1 ROP in American validation studies [20, 30–32], and
CHOPROP ranges from 97.9% to 100% sensitivity for type 1
ROP in American, Italian, and Chinese validation studies
[19, 29, 33, 34].

In 7 of 9 worldwide validation studies of G-ROP, the
sensitivity for detecting type 1 ROP was 100% [9, 36–41],
however in small cohort studies in Portugal and Turkey the
sensitivity was 91% [42, 43]. A systematic review of postnatal
weight gain algorithms has found that G-ROP has

Journal of Ophthalmology 3



a worldwide sensitivity for type 1 ROP of 100%, specifcity of
60%, negative likelihood ratio of 0.00, and positive likelihood
ratio of 2.5 [23]. Our study had a signifcantly lower spec-
ifcity compared to the systematic review (28.2% vs 60%).
We take note of an outlier study by Caruggi et al. [39] that
found a specifcity of 100% which has skewed the specifcity
of Athikarisamy et al.’s meta-analysis [23]. If Caruggi et al.’s
study [39] is excluded, the specifcity ranges between 15%
and 42%.

We found the algorithms did not have 100% sensitivity
in detecting type 2 ROP; however, it should be noted that
WINROP and CHOPROP were designed to identify type 1

ROP only. In our cohort, we found a prevalence of 4.7% of
persistent nontype 1 ROP that required treatment. Tis is
similar to Koucheki et al. [44] who found 4.9% of infants in
the Canadian population. Tese rates are lower than that
found by Liu et al. [45] who performed a secondary analysis
of data from the G-ROP study to look at the prevalence and
indications for treating infants who did not meet ETROP
type 1 ROP criteria. Tey found that of the 1004 eyes of 514
infants who received treatment for ROP, 126 eyes of 91
infants (0.8% of all eyes and 12.5% of treated eyes in G-ROP)
were treating nontype 1 ROP [45]. In Koucheki et al., the
decision to treat the cases of nontype 1 ROP with

Table 1: Demographics of infants included in the study.

Characteristics No ROP (N� 175) Mild ROP
(N� 292)

Type 2 ROP
(n� 40)

Type 1 ROP
(N� 24) Total (N� 531)

Birth weight, grams
Mean (SD) 1257 (265) 1078 (301) 912.2 (248.0) 719.4 (201.8) 1107 (310)
Median (IQR) 1255 (393) 1050 (369) 883 (329) 656 (231) 1100 (432)
Range 610–2040 510–2600 475–1490 420–1220 420–2600
% <1000 g 18.9% 45.5% 62.5% 91.7% 40.1%
% ≥1000 g 81.1% 54.5% 37.5% 8.3% 59.9%
Gestational age, weeks
Mean (SD) 29 + 6 (2) 28 + 0 (2) 27 + 0 (2) 25 + 0 (2) 28 + 3 (2)
Median (IQR range) 30 + 0 (2) 28 + 0 (3) 27 + 1 (3) 24 + 5 (3) 28 + 3 (3)
Range 25 + 2–34 + 3 23 + 1–37 + 1 23 + 4–31 + 2 23 + 0–27 + 5 23 + 0–37 + 1
% <28weeks 12% 49.0% 67.5% 100% 40.5%
% ≥28weeks 88% 51.0% 32.5% 0% 59.5%
Gender (female), no (%) 78 (44.6%) 132 (45.2%) 17 (42.5%) 6 (33.3%) 235 (44.3%)

594 infants screened for ROP at a tertiarty hospital in Brisbane

467 infants with no
or mild ROP

64 with Type 1 or
Type 2 ROP 

40 infants with Type 2 ROP (5
treated with laser) 

24 infants with
Type 1 ROP (all

treated)

63 infants excluded*

*Features of excluded infants
57 excluded due to incomplete weight
measurements (due to interhospital transfer into or
out of tertiary hospital) 

5 infants excluded due to death

1 excluded due to hydrocephalus and severe
subcutaneous oedema

Figure 1: Flowchart for patients included in the validation comparison of weight-gain-based prediction models for retinopathy of
prematurity in an Australian population.
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unfavourable structural outcomes was made before post-
menstrual age 45 [44], whereas in our study, this occurred
from postmenstrual age week 45 and up to postmenstrual
age week 55. Of the fve infants with persistent nontype 1
ROP that underwent treatment, only CO-ROP was able to
successfully identify all (CHOPROP alarmed 3 out of the

5 infants). As there are no clear current guidelines on
whether to treat or observe persisting nontype 1 ROP, the
clinical experience of the ophthalmologist and the patient
factors ultimately determine management. Tis ulti-
mately limits the utility of these algorithms in these
neonates.

Table 2: Predictions of type 1 ROP, type 2 ROP, and treated ROP for CHOPROP, WINROP, CO-ROP, and G-ROP.

CHOPROP WINROP CO-ROP G-ROP
Type 1 ROP n� 24 n� 24 n� 24 n� 24

Sensitivity, % (95% CI) 100 83.3 100 100
(86.2–100) (64.1–93.3) (86.2–100) (86.2–100)

Specifcity, % (95% CI) 46.0 52.3 32.0 28.2
(41.7–50.3) (47.8–56.7) (28.0–36.1) (24.5–32.3)

Positive predictive value, % (95% CI) 8.1 8.0 6.5 6.2
(5.5–11.7) (5.2–12.0) (4.4–9.5) (4.2–9.0)

Negative predictive value, % (95% CI) 100 98.4 100 100
(98.4–100) (96.1–99.4) (98.3–100) (97.4–100)

Positive likelihood ratio (95% CI) 1.85 1.75 1.47 1.39
(1.64–2.00) (1.43–2.14) (1.60–1.94) (1.26–1.48)

Negative likelihood ratio 0.00 0.32 0.00 0.00
(0.00–0.69) (0.13–0.78) (0.00–0.72) (0.00–1.13)

Type 2 ROP n� 40 n� 40 n� 40 n� 40

Sensitivity (95% CI) 80.0 67.5 92.5 90.0
(65.0–90.0) (52.0–79.9) (80.1–97.4) (76.9–96.0)

Specifcity (95% CI) 45.8 52.0 32.4 28.3
(41.6–50.2) (47.5–56.5) (28.4–36.6) (24.5–32.5)

Positive predictive value, % (95% CI) 10.7 10.6 10.0 9.3
(7.7–14.8) (7.4–15.0) (7.4–13.5) (6.8–12.6)

Negative predictive value, % (95% CI) 96.6 95.0 98.1 97.2
(93.4–98.3) (91.6–97.0) (94.7–99.4) (93.0–98.9)

Positive likelihood ratio 1.48 1.41 1.37 1.26
(1.24–1.76) (1.11–1.78) (1.23–1.52) (1.12–1.41)

Negative likelihood ratio 0.44 0.62 0.23 0.35
(0.23–082) (0.40–0.98) (0.08–0.69) (0.14–0.90)

Treated ROP n� 29 n� 29 n� 29 n� 29

Sensitivity (95% CI) 93.1 82.8 100% 96.6
(78.0–98.1) (65.5–92.4) (88.3–100) (82.8–99.4)

Specifcity (95% CI) 46.0 52.6 32.3 28.3
(41.7–50.4) (48.1–57.0) (28.3–36.5) (24.5–32.4)

Positive predictive value, % (95% CI) 9.1 9.6 7.9 7.2
(6.3–12.9) (6.5–13.8) (5.5–11.1) (5.0–10.2)

Negative predictive value, % (95% CI) 99.1 98.1 100 99.3
(96.9–99.8) (95.5–99.2) (97.7–100.0) (96.1–99.9)

Positive likelihood ratio (95% CI) 1.72 1.75 1.48 1.35
(1.52–1.96) (1.44–2.11) (1.34–1.57) (1.23–1.47)

Negative likelihood ratio 0.15 0.33 0.00 0.12
(0.04–0.57) (0.15–0.73) (0.00–0.91) (0.02–0.84)

Any ROP n� 356 n� 350† n� 356 n� 356

Sensitivity (95% CI) 69.9 54.9 78.4 78.4
(65.0–74.5) (49.6–60.0) 73.8–82.3) (73.8–82.3)

Specifcity (95% CI) 72.0 63.2 48.6 37.7
(4.9–78.1) (55.6–70.2) 41.3–55.9) (30.9–45.1)

Positive predictive value, % (95% CI) 83.6 76.2 75.6 71.9
(78.9–87.3) (70.6–81.0) (71.0–79.7) (67.2–76.1)

Negative predictive value, % (95% CI) 54.1 39.5 52.5 46.2
(47.7–60.4) (33.7–45.5) (44.8–60.0) (3.82–54.3)

Positive likelihood ratio 2.50 1.49 1.52 1.26
(1.95–3.20) (1.19–1.86) (1.31–1.78) (1.11–1.43)

Negative likelihood ratio 0.42 0.71 0.45 0.57
(0.35–0.50) (0.61–0.84) (0.35–0.57) (0.44–0.75)

†Six infants GA >32 cannot be entered into WINROP.
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Te use of weight-gain-based algorithms could be
a useful adjunct to screening by reducing the number of
infants requiring examinations. We found a reduction in
eye examinations with the utilisation of weight-gain-
based ROP algorithms ranging from 26.9% for G-ROP to
43.9% for CHOPROP. For CHOPROP, CO-ROP, and G-
ROP, our study found similar percentages to other studies
in the reduction of number of eye examinations needed
[19, 20, 23, 29–35]. Our study and other worldwide
studies show that weight-gain-based ROP algorithms
would help reduce the workload for ROP screening by
better targeting premature infants most at risk for de-
veloping severe ROP.

To date, validation studies have predominantly only
reported sensitivities and specifcities and have not included
other evaluations of screening tests such as predictive values
and likelihood ratios [9, 10, 18–21, 23–43]. Tese indicators
do not allow an individual clinician to safely decide whether
a particular infant can be safely excluded from screening,
especially if the infant has a high pretest probability of
developing severe ROP (such as extremely preterm or ex-
tremely low birthweight/adverse clinical course). We report
on likelihood ratios as they can be a better way to apply the
results of diagnostic tests to the individual patient [46].

Tere are some limitations in this study. Due to its
retrospective nature, there was no method to standardise the
data collection; for example, a diference of 1 day in the
weight gain measurement can modify the alarm thresholds
(particularly, for WINROP and CHOPROP). In addition, 63
infants out of 594 (10.6%) infants were excluded pre-
dominantly because there were not enough postnatal weight
measurements to be able to determine an alarm risk. Tis is
a limitation as some algorithms require longitudinal weight
measurements and infants who have had their neonatal care
in a diferent hospital and subsequently get transferred do
not have complete postnatal weight gain data. Tis data loss
has been a noted issue previously [25]. Furthermore, ret-
rospectively assessing clinical records limits the ability to
accurately diferentiate physiological from nonphysiological
weight gains.

A new ROP predictive model has been proposed known
as DIGIROP [47]. Tis model utilises data available at birth
for greater convenience and was demonstrated to be as
accurate as CHOPROP, WINROP, and CO-ROP [48]. Once
the latest version becomes available, further validation
studies would be useful.

Our fndings suggest that weight-gain-based ROP
predictive models could play a role as an adjunct to ROP
screening and add to reported sensitivities and specifc-
ities worldwide. Weight-gain-based ROP predictive
models would improve the balance between reducing
screenings and ensuring timely intervention so that
healthcare systems can allocate resources more efciently.
Caution should be advised if these algorithms are used as
screening criteria, as 3 of the 4 algorithms missed at least
one infant that required treatment. Weight-gain-based
algorithms are also limited as around 10% of infants
were excluded due to interhospital transfer, death, and
nonphysiological weight gain.

Te direction of future studies in weight-gain-based
ROP predictive models should not only continue to study
the efcacy of these algorithms in the local population but
also report the negative predictive values and negative
likelihood ratios in addition to sensitivity and specifcity.
Future studies could also assess how easily weight-gain-
based algorithms can be incorporated into ROP screening
clinics such as by measuring the time added to the clinic list
preparation when utilising these algorithms. Te cost-
efectiveness of weight-gain-based ROP predictive models
could be determined from the number of infants that would
not require screening. Prospective studies should be con-
sidered to collect an increasing amount of data that can
optimise the criteria that weight-gain-based ROP predictive
models are based on. From these studies, it can be de-
termined whether weight-gain-based ROP predictive
models can shift the cutof screening criteria for ophthal-
moscopy screening to a lower gestational age and birth
weight.

Data Availability
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