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Purpose. The aim of the study is to describe the genotype and phenotype of a Mexican cohort with PCARE-related retinal disease.
Methods. The study included 14 patients from 11 unrelated pedigrees with retinal dystrophies who were demonstrated to carry
biallelic pathogenic variants in PCARE. Visual assessment methods included best corrected visual acuity, color fundus pho-
tography, Goldmann visual field test, kinetic perimetry, dark/light adapted chromatic perimetry, full-field electroretinography,
autofluorescence imaging, and spectral domain-optical coherence tomography imaging. Genetic screening was performed either
by gene panel sequencing or by exome sequencing. Results. According to the results of multimodal imaging and functional tests, all
14 patients were diagnosed with cone-rod dystrophy. Six different PCARE pathogenic alleles were identified in our cohort,
including three novel mutations: ¢.3048_3049del (p.Tyr1016*), c.3314_3315del (p.Ser1105*), and ¢.551A > G (p.His184Arg).
Notably, alleles p.His184Arg, p.Arg613*, and p.Arg984* were present in 18 of the 22 (82%) PCARE alleles from probands in our
cohort. Conclusion. Our work expands the PCARE mutational profile by identifying three novel pathogenic variants causing
retinal dystrophy. While phenotypic variations occurred among patients, a cone-rod dystrophy pattern was observed in all
affected individuals.

1. Introduction

Inherited retinal degenerations (IRDs) are a heterogeneous
group of genetic disorders characterized by progressive
dysfunction of neuroretinal cells and/or the retinal pigment
epithelium. IRDs have a combined prevalence of approxi-
mately one case per 2,000 individuals [1] and are considered
the most common cause of blindness in the working-age

population [2]. IRDs are a paradigmatic example of diseases
with phenotypic and genotypic variabilities, as their age of
onset, severity of clinical manifestations, and rate of visual loss
are considerably variable among individuals and as mutations
in over 280 genes can result in the disease [3, 4]. IRD-related
genes participate in a myriad of cellular processes that are
essential for the structural and functional integrity of retinal
tissue [5]. Genetic screening of individuals with IRDs is
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a crucial procedure for accurate diagnosis, prognosis, and
management of patients, and it has been tremendously im-
proved in recent years by the widespread incorporation of
next-generation sequencing (NGS) techniques [6, 7].

Pathogenic variants in PCARE, a gene located at 2p23.2
and previously known as C2orf71, has been recently dem-
onstrated in IRDs [8, 9]. Recessive loss-of-function variants
in this gene have been reported in subjects with different
retinal phenotypes involving both rods and cones, namely
retinitis pigmentosa (RP) and cone-rod dystrophy (CRD)
[10-13]. PCARE-related IRD is associated with wide vari-
ation in terms of age of onset and progression rate of retinal
damage with vision loss typically beginning in the second or
third decade of life; about half of the patients also present
with nyctalopia at the time of consultation, and vision can be
preserved until the fifth or sixth decade [11]. Fundus ap-
pearance is particularly variable, ranging from early-onset
maculopathy to changes resembling retinitis pigmentosa
[11]. The prevalence of PCARE-related IRD is currently
unknown, but it is expected to vary from 1% as observed in
a French cohort [14] to 15% in a Swiss population [10].

To date, more than 30 PCARE pathogenic variants have
been recognized in patients suffering from diverse retinal
phenotypes, most of them from European and Asian eth-
nicities [15, 16]. The majority of these variants correspond to
single nucleotide variants or indels that generate premature
stop codons or frameshifts [17].

The aim of this study was to describe the phenotypes and
disease-causing variants in a cohort of PCARE-related IRD
patients from Mexico. Our results add to the knowledge of
the clinical and molecular spectrum of retinal dysfunction
due to PCARE mutations.

2. Materials and Methods

2.1. Study Population. The study corresponded to a retro-
spective and descriptive case series comprising 14 affected
patients with retinal disease who were demonstrated to carry
causative variants in PCARE; all included patients were of
Mexican origin. The study was approved by the Institutional
Review Board of the Institute of Ophthalmology “Conde de
Valenciana” in Mexico City. All procedures adhered to the
tenets of the Declaration of Helsinki, and written informed
consent was obtained from the participants.

2.2. Clinical Data. Medical records were reviewed to collect
clinical data and participants underwent a complete eye
examination, including visual acuity testing, ultrawide
fundus photography, Goldmann visual field kinetic peri-
metry, dark/light adapted chromatic perimetry (Metrovi-
sion, MonCvONE, France), autofluorescence imaging
(FAF), spectral domain-optical coherence tomography (SD-
OCT) (Spectralis; Heidelberg Engineering, Heidelberg,
Germany), and full-field electroretinography (ffERG)
(Metrovision, MonPackONE, France). Mean deficits in
chromatic perimetry scores were calculated using an internal
database of values from normal Mexican population. The
ERG protocol complied with the standards of the In-
ternational Society for Clinical Electrophysiology of Vision.
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2.3. Genetic Analysis. PCAREdisease-causing mutations
were identified by either gene panel (patients #1-9, 14) or
exome sequencing (ES) (patients #10-13). Briefly, genomic
DNA (gDNA) was extracted from peripheral blood leuko-
cytes using the QIAamp DNA Blood Mini Kit (Qiagen,
Germany), following the manufacturer’s protocol. In pa-
tients #1-9, and 14 gDNA was enriched for targeted regions
using a hybridization-based protocol and sequenced using
Mlumina technology. Sequence analysis and deletion/du-
plication testing were performed on 298 genes included in
the Invitae Inherited Retinal Disorders Panel (Invitae, San
Francisco, CA). Target regions were sequenced with >50x
depth, and reads were aligned to the GRCh37/Hg19 refer-
ence sequence. In patients #10-13, ES was performed at
3Billion, Inc. (Seoul, South Korea). DNA library preparation
was performed using the IDT xGen Exome Research Panel
v2.0 kit (Integrated DNA Technologies, Coralville, Iowa,
USA), and sequenced on NovaSeq 6000 (Illumina, San
Diego, CA, USA). The mean depth-of-coverage was 140x
with a minimum of 98.5% of the targeted region covered at
30x. The base call (BCL) sequence files generated by NovaSeq
6000 were converted and demultiplexed to FASTQ files
using bcl2fastq v2.20.0.422. Sequence reads in the FASTQ
files were aligned to the human reference genome (GRCh37/
hg19) using BWA-mem 0.7.17 to generate BAM files. BAM
files were processed following the GATK best practices
(GATK v.3.8) for variant calling to generate VCF files.
Exome sequencing data annotation and variant filtration
were performed using the Franklin platform (Genoox, Palo
Alto, CA). The designation of pathogenic or likely patho-
genic variants was performed according to the American
College of Genetics and Genomics (ACMG) guidelines. In
silico analysis and visualization of residue conservation and
position at the protein level were performed using Jalview
(jalview.org) and ConSurf-DB (consurfdb.tau.ac.il), re-
spectively, in relevant missense variants. Variants of clinical
significance were confirmed and segregated in families by
Sanger sequencing. Primers sequences and PCR conditions
are available on request.

3. Results

3.1. Patients’ Summary. A total of 14 patients pertaining to
11 unrelated families suffering from PCARE-related retinal
dystrophies were included in the analysis. Tables 1 and 2
present their demographic and clinical data; two families (II
and V) with more than one affected subject were ascertained.
The cohort included eight males (57%) and six females. The
mean age of symptoms onset was 17.2 years (+11.05, range
5-36), and the mean age upon clinical examination was
36 years (£11.80, range 16-54). Family VI reported a history
of consanguinity, while family IX reported endogamy.

3.2. Ocular Phenotypes. All patients had clinical data from at
least one ophthalmologic examination, which revealed
a tendency towards symmetric affectation (Tables 1 and 2).
The symptoms at the onset of the disease were nyctalopia (8/
14, 57%), vision loss (3/14, 21%), photophobia (2/14, 14%),
and photopsia (1/14, 7%). Visual acuity at examination
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ranged from 0.09 logMAR to light perception, with 10 out of
13 available patients having in both eyes a logMAR value of
0.50 or worse. Funduscopic common findings included
a tessellated appearance, hypopigmented dotting, optic disc
pallor, and vessel attenuation (Figure 1). Atrophic macul-
opathy was observed in six patients (ID# 2, 3, 6, 11, 12, and
14). Chromatic perimetry (available in four patients, #7-9,
11) showed a reduction in the response of both rod and cone
systems; photopic mean deficits ranged from 12.63dB to
20.14dB, and the scotopic mean deficits ranged from
20.08 dB to 41.9 dB. Five patients (ID# 2, 3, 6, 12, and 13)
with low visual acuity or poor fixation were unable to
perform a chromatic perimetry test, so a full-field stimulus
threshold test (FST) was completed instead. The FST showed
a reduced response under scotopic conditions and a more
reduced response under photopic conditions in all these
patients (Table 3). Goldmann perimetry results were
available in seven patients. Preservation of a central island of
vision was noted in four patients (ID# 2, 3, 8, 10); addi-
tionally, patient #8 had a nasal island of vision in the pe-
riphery. In the youngest patient (ID# 7), the visual field was
normal using V4e stimulus, while a perifoveal relative
scotoma with an augmented peripapillary scotoma was
found in the OD using the I4e stimulus.

In 11 patients in whom FAF test was performed, the
most frequent findings were hypo-AF with a nummular or
mottling pattern in the periphery (ID# 2, 3, 6-14); hyper-AF
foveal dot (ID# 2, 3, 7-13); hypo-AF in the central macular
area (ID# 2, 3, 6, 9-14); peripapillary hypo-AF (ID# 2, 3, 6, 9,
12, 13); and hyper-AF macular ring surrounding the
mentioned hypo-AF macular area (ID# 3, 7-10, 14) (Fig-
ure 1). All ten patients who underwent full-field ERG had an
abolished response in scotopic, mesopic, and photopic
conditions, with the exception of patient #7 who had
a subnormal scotopic and mesopic response in addition to
an abolished photopic response (see supplementary Table
(available here)).

SD-OCT images, available in 11 patients, demonstrated
loss of outer retinal layers to different degrees in all of them,
preservation of the ellipsoid zone (EZ) in four (ID# 7, 8, 10,
13), and severely atrophic damage with loss of retinal ar-
chitecture in five patients (ID# 2, 3, 6, 11, and 12). Outer
retinal tubulations (ORT) appeared in three patients (ID# 2,
3, 12) (Figure 1). According to multimodal imaging and
functional assessment, all 14 patients were diagnosed
with CRD.

3.3. Genetic Findings. All affected individuals carried bial-
lelic PCARE pathogenic alleles, including a total of 6 distinct
gene variants (Table 4). Pathogenic alleles included four
nonsense (two novel: p.Tyrl016* and p.Ser1105*), one
frameshift, and one novel missense variant (p.His184Arg).
Notably, three variants (p.His184Arg, p.Arg6l3*, and
p-Arg984*) were present in 18 of the 22 PCARE alleles from
the 11 probands (82%). Segregation analysis confirmed
compound heterozygosity in four probands while
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a homozygous status was confirmed in the other seven.
Based on the American College of Medical Genetics and
Genomics criteria for variant assessment, all five identified
null variants were classified as pathogenic, while the single
identified novel missense variant (p.His184Arg) was clas-
sified as likely pathogenic. Of note, the p.His184Arg variant
affects a highly conserved residue (GERP: 5.52) (Figure 2)
and has an extremely low frequency (gnomAD 0.0004%),
and in silico molecular analysis with different tools predicts
a deleterious effect (SIFT: 0, PolyPhen-2: 1, VARITY: 0.92).

4. Discussion

In the present study, we describe in depth the clinical and
genetic features of 14 patients, from 11 different pedigrees,
with biallelic disease-causing PCARE variants. To our
knowledge, this is one of the largest cohorts of PCARE-
related IRDs reported to date and the first to include Latin
American patients, a highly underrepresented population in
published IRDs cohorts.

PCARE stands for photoreceptor cilium actin regulator,
which is the name given to the protein product. As its name
indicates, it is specifically expressed in the retina [8], and
there is evidence showing its localization in the connecting
cilium of photoreceptor cells where it participates, along
with other proteins (e.g., WASF3), in actin dynamics for the
expansion of the ciliary membrane, an important process for
outer segment development and homeostasis [18-20].

In our cohort, the clinical findings showed a generalized
photoreceptor disorder with early macular involvement,
compatible with a CRD pattern. The clinical diagnosis of
CRD was established mainly based on the results of chro-
matic perimetry, since there was a relatively better response
under scotopic conditions in all the patients. Early macular
atrophy and prominent cone-system deterioration have
been mentioned in several reported cases of PCARE reti-
nopathy, usually co-occurring with manifestations of rod-
system deterioration [9-11, 14].

The descriptive data obtained from this cohort show, in
general terms, a variable expression of the disease, including
a variable age at onset ranging from the first to the fourth
decade of life, and heterogeneity in the severity of visual
symptoms. Indeed, nyctalopia as the first reported symptom
in some patients is unexpected for a CRD diagnosis, and this
could be the result of early and severe damage in regions
with a high density of rods, including some regions of the
macula, along with cone damage. All of our patients pre-
sented visual loss to some degree, progressing to light
perception vision after the fourth decade of life; as expected,
older individuals exhibited worse visual acuity in our cohort.
Notably, clinical variation appeared to be less marked among
subjects pertaining to the same family than among patients
from unrelated pedigrees.

ORTs were observed on OCT images from three patients
in our cohort. These are tubular retinal structures formed in
the outer nuclear layer by reorganization of photoreceptors
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Patient #6
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FIGURE 1: Retinal images of patients. The left column shows ultra-wide fundus photography, the middle column shows autofluorescence
imaging, and the right column shows SD-OCT images. Every row corresponds to a different patient.
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TaBLE 3: Full-field stimulus threshold test results (dB).
. Blue stimulus Red stimulus White stimulus
Subject#
OD oS OD oS OD oS
2 59 57 35 25 26 26
3 52 51 41 37 30 30
6 53 53 23 24 24 26
12 64 55 31 28 26 25
13 36 28 35 26 26 19
TABLE 4: PCARE variants identified in the cohort.
Allele count Classification
Variant in our Type Criteria (ACMG) Reference
(ACMG)
cohort
c551A>G ,
(p.His184Arg) 4 Missense LP PM2, PM3, PP3, PP5 Novel
c.947del .
(p.Asn316Metfs*7) 2 Frameshift P PVS1, PM2, PP5 [9]
c.1837C>T
(p.Arg613%) 6 Nonsense P PVS1, PM2, PP5 [11]
c.2950C>T
(p.Arg984*) 8 Nonsense P PVS1, PM2, PP5 [14]
¢.3048_3049del
(p.Tyr1016*) 1 Nonsense P PVS1, PM2, PM3, PP5 Novel
¢.3314_3315del
(p.Ser1105*) 1 Nonsense P PVS1, PM2, PM3 Novel

LP, likely pathogenic; P, pathogenic. (NM_001029883.3).

in different stages of degeneration, Miiller cells and RPE cells
[21]. These structures have been associated with a variety of
retinal conditions, such as age-related macular degeneration,
diabetic retinopathy, choroidopathies, and retinal dystro-
phies [22, 23]. Our observation of ORTs in PCARE-related
IRD is consistent with previous reports [11, 15], and notably,
the three subjects presented the ORTs in both eyes. In two
cases, asymmetric ORTs in terms of their size were observed
and, remarkably, in both cases, the eye with the larger ORTs
presented better visual acuity (Table 1). Interestingly,
a previously reported PCARE-related IRD case series de-
scribed three patients with ORTs who appeared to have
better visual acuity than the rest of the cohort [11]. Although
the clinical significance of ORTs is controversial, some
authors have recognized their potential use as clinical bio-
markers of prognosis [24, 25].

The genetic characterization of our cohort identified
a total of six different PCARE pathogenic variants, including
three novel mutations. Although all the included families
were apparently unrelated, certain PCARE variants had
a noticeably higher frequency than others. Interestingly, two
of these common variants, p.Arg613* and p.Arg984*, have
been reported in patients of Korean [11] and French [14]
ethnicities, respectively, suggesting that these could be re-
current gene variations. In contrast, the p.His184Arg mis-
sense variant, observed in 4 out of 22 probands’ alleles, had
not been previously reported. While a possible explanation

for this high frequency is a founder mutation effect in our
population, additional haplotype analyses are required to
confirm this hypothesis.

In accordance with previous reports, our results indicate
that the majority of IRD-related PCARE variants are pre-
dicted null variants. Thus, five different null variants and
a single missense variant were characterized in our cohort,
with all six having a predicted loss-of-function effect. Of
note, five out of six variants identified here introduce pre-
mature termination codons (PTCs), and according to the
canonical rules known for nonsense-mediated mRNA decay
activation [26], all of them are predicted to activate the
mechanism leading to transcript degradation. On the other
hand, mutation modeling shows that the novel p.His184Arg
variant affects a highly conserved residue of the PCARE
protein (Figure 2), located in a likely structured region
corresponding to a helical coiled coil domain, which is
predicted to have an important role in the function of the
protein [18, 19]. Previously characterized pathogenic PCARE
missense variants as p.lle201Phe [8] and p.Cys599Arg [27]
also affect relatively conserved residues. Even so, a clear
genotype-phenotype correlation was not established in our
cohort.

In conclusion, we report one of the largest cohorts of
PCARE-related retinal dystrophy, and the first that includes
Latino American population. Our results support that CRD
is the main phenotype related to PCARE defects and confirm
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FIGURE 2: In silico analysis of the novel p.His184Arg variant in PCARE. (a) Close up of the predicted protein structure of PCARE, the
p-His184 residue is located in a predicted helical coiled coil domain. (generated on ConSurf) (b) Protein sequence alignment of PCARE
orthologs among different species; the red mark delimitates the p.His184 residue. (generated on Jalview) (c) Sanger sequencing chro-
matogram showing the ¢.551A > G (p.His184Arg) variant in the genomic DNA of one heterozygous patient.

the association of ORT to the disease, an OCT finding that
could serve as a clinical biomarker of the disorder. We also
expand the mutational spectrum of PCARE with the report
of three novel disease-causing variants.
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